
espForth for ESP8266

Preface—IoT For Fun!

NodeMCU is a thumb-size microcontroller kit selling for $3.18 on eBay. It has a 32 bit

ESP8266 chip with 150 KB of RAM, 4 MB of flash, and a MicroUSB connector to

communicate with a PC. The most amazing feature is that it has a WiFi radio, ready to be

connected to the Internet, wirelessly. NodeMCU Kit is easily the most capable microcontroller

kit under $5, and thus opens the door for all people to explore IoT applications.

WiFi is a very complicated subject involving many hardware and software issues. The original

developers of ESP8266 in Espressif Systems, Shanghai, China, solved the hardware problem in

silicon, and left a few software development kits (SDK) for software engineers to deal with

software issues themselves. Software engineers all over the world took up the challenge and

released programming tools known as IDE (Integrated Development Environment) for users to

develop their own applications. Since there are 150 KB of RAM and 4 MB of flash memory on

board, people ported quite sophisticated interactive programming languages like MicroPython

and Lua to it, and allowed hobbyists to build IoT applications easily.

I am always of the opinion that Forth is the best programming language for microcontrollers,

and have promoted a very simple eForth Model to implement Forth language on every

microcontroller I laid my hands on. This NodeMCU Kit is an ideal platform to demonstrate the

usefulness of Forth in programming microcontrollers. Microcontroller programming is very

different from hardware engineering and software engineering, and I called it firmware

engineering.

In good old days, firmware engineering meant programming a UV Erasable EPROM chip to

run a standalone microcontroller system. Now, flash memory is integrated into microcontrollers,

and a microcontroller system can be programmed very conveniently through a USB Serial cable.

Would it be nice to program your target system remotely through WiFi, or even over the

Internet? NodeMCU give us the opportunity, and this possibility excited me. I got so excited

that I went to DMV and got myself a new license plate for it.

(Sorry to my Democrat friends about that Trump sticker on the car.)

In 2017, fellows in Silicon Valley Forth Interest Group got a big booth in the Bay Area Maker

Faire, and we ran an “IoT for Fun!” WiFi Workshop, featuring this NodeMCU Kit. We posted a

challenge to attendees to turn its on-board LED on and off, remotely over WiFi. Whoever

succeeded got a free NodeMCU Kit. It was fun, and we gave away more than 50 kits. We

provided tools to program NodeMCU in Forth, Arduino, MicroPython and Lua. This manual

details the espForth system we promoted in the Faire.

Although the official challenge was only to control the LED, we also attached s small speaker

to an output pin. In one of our examples, the speak beeps when LED is turned on. Here is a

picture of the setup:

Programming ESP8266 is not easy, believe me. The CPU, its memories, and its peripherals are

complicated, and not very well documented. Espressif Systems released several version of the

Software Development Kits (SDK) under Linux. I am a simple person, and never had the

patience to learn Unix or Linux. I could not get the make file to work, because I could not

install Linux correctly. I could not find an assembler for its CPU, Tensilica L106. Even if I

could, I had no way to deal with its peripherals, and especially, the WiFi hardware and software

stack. I needed help.

I tried Lua and MicroPython. It is nice that they are interactive, similar to Forth. But they are

very complicated underneath, i.e., object oriented, and carry great overhead for the convenience

they offer.

Another option was Arduino IDE. I had used it to program Arduino Uno Kit, based on

ATmega328P microcontroller from Atmel. Espressif Systems hired a Russian engineer Ivan

Grokhotkov to extend Arduino IDE so that it could support ESP8266 chip. I was very

impressed by the Arduino IDE, because it captured the essence of firmware programming in

two routines setup() and loop(). You simply insert C code into these routines, and Arduino

takes care of the rest. The only drawback was that it speaks only C language, so I had to write

my Forth in C.

I did write a Forth in C on Arduino Uno Kit. It was ceForth_328, for. However, it was only a

teaser, because ATmega328P chip had only 1.5 KB of RAM left to add new Forth commands,

and you could not build substantial application on it. Now, ESP8266 has 150 KB of RAM, and

it is more than enough to do serious applications. Arduino IDE supplies all library routines for

whatever you have to do with NodeMCU Kit.

I was pleasant surprised to port ceForth_328 to ESP8266 after a single day‟s work. I took pride

in porting eForth to a new microcontroller in about two weeks. Here because this Forth was

written in C, it moved over to a new chip very easily. Only the hardware interface has to be

changed. More than 95% of the code needs no modification.

I am very happy with this espForth. One reason is that it gave me an opportunity to re-examine

my Forth in C implementation, and made a few significant improvements, like using circular

buffers for stacks. The other reason is that it can be controlled by a serial monitor through USB

cable, and by UDP packets sent and received over a WiFi network. These two communication

channels work in parallel. I can now program NodeMCU interactively through a serial monitor,

and can dispatch it and control it remotely. When you can access microcontrollers remotely, it

will be possible to build large multiprocessing systems without limit. Forth is the best language

not only for us human to control computers, but also for computers to communicate with one

another.

I have to admit that I really do not understand ESP8266 chip at all. I do not understand the

Ardhuino IDE which bridges the gap between me and my ESP8266. Nevertheless, for the

privileges to talk to my ESP8266 remotely, I am willing to swallow my pride and accept C

language and the tools it built to turn on the LED on my NodeMCU Kit, remotely.

Chapter 1. Running espForth

Install Arduino IDE

espForth_44.ino is an Arduino sketch. It is a streamlined C program to be compiled by Arduino

IDE, and then uploaded to NodeMCU Kit to execute. To run espForth, you have to first install

Arduino IDE with ESP8266 extensions. Then you can copy espForth_44.ino to it and get it

running.

Arduino was originally developed for a lowly 8-bit AVR microcontrollers ATmega328P from

Atmel Corp, on an Arduino Uno kit. It greatly simplified the C programming language and

made it very easy for you to write your own application on AVR chips. It gives you a very

simple program template, which expects you to fill C code in two routines setup() and

loop(). It captures the essences of firmware engineering and invites everybody to become a

firmware engineer.

It is amazing that people in ESP8266 Community extended the Arduino IDE so that you can

program this very sophisticated 32-bit ESP8266 chip with ease. It even supports our ESP8266

NodeMCU Kit!

In the experiments with espForth and UDP Server, you will have to use Arduino IDE. If your

computer does not have it, you have to install it first. Aduino IDE has to be extended so that it

can compile programs for the ESP8266 chip, and to upload the compiled code to flash memory

on NodeMCU Kit. After Arduino IDE is set up properly, it will be very easy to do experiments

with NodeMCU Kit.

Download Arduino 1.8.2 IDE or the latest version from www.arduino.cc and install it on your

PC. Open Auduino, and you will see its title page:

Click File>Preferences to open the Preferences window.

Enter http://arduino.esp8266.com/stable/package_esp8266com_index.json into

Additional Board Manager URLs field:

Next, Click Tools>Board:xxxxxxx>Boards Manager. Scroll to the bottom of the display, and

click on the panel named esp8266 by ESP8266 Community to select it:

Click the Install button at bottom right to install the ESP8266 package.

After the install process, you should see that ESP8266 package is marked INSTALLED. Close

the Boards Manager window once the install process has completed.

Select NodeMCU 1.0 from the Tools->Board dropdown menu:

In the Tools menu, you will see the following selections:

Board: NodeMCU 1.0 (ESP-12E Module)

CPU frequency: 80 MHz

Flash Size: 4M (3M SPIFFS)

Upload Speed: 115200 baud

Port: COM port for your FTDI or USB-Serial cable

Arduino IDE is now set up properly. You can now proceed to do espForth or UDP Server

experiments.

Loading espForth

Forth is the simplest programming language, and has been widely used for industrial, scientific,

military, space, and embedded applications. eForth is the simplest Forth implementation for

microcontrollers. I ported it to ESP8266 under Arduino IDE as espForth. Once espForth is

loaded on NodeMCU, it allows you to explore this chip, and test its IO devices interactively.

Since espForth accepts input from both the USB-serial COM port, and UDP packets

simultaneously, you can turn its on-board LED on and off interactively through the Serial

Monitor in Arduino, or through UDP packets through a UDP terminal like Hercules SETUP

Utility.

Connect your NodeMCU Kit to your PC, with the MicroUSP-Serial cable.

Unzip espForth_44.zip, and place it in a folder like C:/espForth_44.

Open Arduino IDE. If it is the first time you do anything with Arduino, you will probably have

a default program template like this:

Click File>Open…, and select C: /espForth_44/espForth_44.ino, supplied in the espForth_44

project folder.

espForth is a file of 66 KB size, very small comparing to software of this age, but it is a

complete interactive operating system with a high level Forth programming language. Here in

this experiment, I will not bother you with its features and its capabilities. I just want to lead

you to meet our challenge in turning a LED on and off remotely.

Please note that espForth is connected to our local WiFi network, with a name of „SVFIG‟ and

a password of „12345678‟. All NodeMCU Kits and all PC‟s used in this experiment have to be

connected to this network, if they need to communicate with one another. Each NodeMCU are

assigned a unique local port number from 10001 and up, to avoid conflicts. If you have a

different network, change the name in ssid and password in pass at the beginning of your

espForth_44.ino program.

Click the Upload Button(→), the one with an arrow pointing to the right:

It takes a few minutes for Arduino IDE to compile the code and then upload the binary image

into the flash memory on NodeMCU Kit. Eventually, it will report „Done uploading‟, and

reports to you what it accomplished:

Test espForth

Click Tools>Serial Monitor. Be sure to select the correct COM port, and set baud rate to

115200. Press the RST (Reset) button on NodeMCU, and you will see espForth signing in:

Note the IP Address and the Local Port number. You will need these numbers to send UDP

packets. Now you can type in the following Forth commands in the text box on the top of Serial

Monitor window, (and click the Send button to the right), to exercise espForth system. After

entering one line, press the Send button to the right of the text box.

1 2 3 4

+

WORDS

espForth is case insensitive. WORDS and words are the same. After WORDS is entered, Serial

Monitor window looks like the following, showing all the Forth commands implemented in

espForth:

Now, try to turn the on-board LED on and off with these lines of commands:

1 2 pinSel

1 2 pinOut

0 2 pinOut

The commands „1 2 pinSel’ configure GPIO Pin 2 as an output pin. „0 2 pinOut’

commands turn the on-board LED on. „1 2 pinOut’ commands turns the LED off.

OK. You can turn the LED on and off, interactively, through USB-Serial cable. Now, try to do

it remotely.

Before you go, do this universal experiment:

: test cr .” Hello, World!” ;

test

And you will see something like the following:

espForth is up and running.

espForth UDP Interface

To control the LED remotely over WiFi, the server on NodeMCU is set up to receive UDP

packets, and acts on the payloads. We just want NodeMCU to turn its on-board LED on and off.

To send packets you need a client on the same WiFi network. A client can be programmed to

send many different packets, according to specific network protocols. Protocols can be very

complicated, and for this experiment, you are required to learn only the simplest protocol, UDP,

the User Datagram Protocol. It does not make sense to use complicated protocols to do such a

simple job, just turning a LED on and off.

There are infinite ways to send UDP packets. We picked the Hercules SETUP Utility to do it.

Open Hercules.exe, which is a network communication utility. Select UDP. Enter IP address

and Port number of the server that you set up on NodeMCU board:

Press the Listen button to create a UDP socket which you can use to send UDP packets to

NodeMCU.

At the bottom of UDP window, there are three text boxes. Enter three messages:

1 2 pinSel

0 2 pinOut

1 2 pinOut

into the text boxes.

Pressing a Send button to the left of a text box, you send the corresponding UDP packet from

Hercules to NodeMCU. You can see that the LED on NodeMCU is turned on and off, with the

pinOut packets.

espForth Experiments

WORDS is a command which dumps the dictionary of eForth. It shows the names of all Forth

commands assembled in the system. There are 185 of them. I assembled all the commonly

useful Forth commands in upper case, and all the infrequently used system commands in lower

case. espForth_44 system is case insensitive. You can type in commands in either upper or

lower case.

Commands in dictionary are linked backward. Therefore, the last command IMMEDIATE

appears first, and the first command HLD appears the last, as shown in the console window

above.

In the original 86eForth v1.0, there were 31 primitive commands and 183 high level compound

commands. In espForth_44, there are 83 primitive commands, derived from 67 byte code, and

102 compound commands. However, you cannot easily distinguish primitive commands from

compound commands, except reading the assembly source code or examining object code in

memory. Actually, a primitive command behaves identically as if written as compound

command, except it is faster and often shorter.

Dump Memory

A very useful tool command DUMP allows you to examine different areas of memory. For

example, the Forth dictionary starts at memory location 0x200. Type:
200 100 dump

and memory from 0x200 to 0x2FF is dumped on the console:

The memory is displayed in hexadecimal, and contents do not make much sense. However, you

might notice that the names of commands HLD, SPAN, >IN, #TIB, etc. appear in the ASCII

dump on the right hand side. Looking closely, you might be able to identify the link fields,

name fields, code fields, and parameter fields in these commands.

PEEK and POKE

espForth system is based on a Virtual Forth Machine written in C. The dictionary is in a data

array allocated somewhere in the memory of ESP8266. The address we discussed above are not

real addresses. They are addresses relative to the beginning of the data array. The C compiler

hides ESP8266 from you for your own good. If you messed up data in real memory, the

computer might crash.

As a Forth programmer in heart, I like to know where things are, especially the IO devices. It is

my computer. Why am I not allowed to mess around with the IO devices? I am sure that I can

make more IO devices run faster, if I have all the design information.

OK. I give you PEEK and POKE, to look at real memories, and real IO devices. PEEK takes an

absolute 32-bit address and replaces it with the 32-bit word stored in this absolute address.

POKE takes a 32-bit data and a 32-bit address, and stores that data into the address.

Have fun with PEEK to see what‟s stored where. But, be careful with POKE. Store wrong thing

in places might do permanent damages to your computer. Well, it is only a $3 loss.

PWM Tone Generater

I almost forget the speaker I mentioned in Preface. I attached a small speaker between D5 and

GND pins. The pins are next to each other. For some strange reasons, Arduino assigned D5 pin

to GPIO Port 14. You can send a square wave pulses out on D5 pin with the following

commands:

DECIMAL 14 440 1000 TONE

TONE configures GPIO Port 14 as a PWM output port, and sets the frequency of PWM wave at

440 Hz. The duration of this pulse train is 1000 ms, or 1 second. You can play with these

commands with different frequencies and duration. You can perhaps play a tune or two for fun.

Test Programs

When I implemented a eForth system, I always tested it by compiling and executing the

following new commands:

: TEST1 1 2 3 4 ;

: TEST2 IF 1 ELSE 2 THEN . ;

: TEST3 10 FOR R@ . NEXT ;

: TEST4 10 BEGIN DUP WHILE DUP . 1- REPEAT ;

: TEST5 100000 FOR NEXT ;

Chapter 2. espForth Virtual Forth Engine

espForth_44.ino

The file espForth_44.ino is a sketch (program) which can be compiled by Arduino IDE, and the

resulting program image is uploaded to a WiFi kit like NodeMCU, with an ESP8266 chip. This

file serves perfectly as a specification of a Virtual Forth Engine, in terms of a C language

functions.

Before diving directly into espForth, I would like to give you an overview of this (VFM) so you

can better understand how it is implemented.

I think the following topics are the most important in understanding Forth:

 VFM executes a set of commands.

 All commands are stored in a large data array, called a dictionary.

 Each command is a record in a searchable dictionary. All command records are

linked in the dictionary.

 Each command record contains 4 fields, a link field, a name field, a code field,

and a parameter field. The link field and name field allow the dictionary to be searched

for a command from its ASCII name. The code field contains executable byte code. The

parameter field contains optional data needed by the command.

 There are two types of commands: primitive commands containing executable

byte code, and compound command containing token lists. A token is a pointer pointing

to code fields of other commands.

 A finite state machine executes byte code sequences stored in code field of

primitive commands.

 An address interpreter executes nested lists in compound commands.

 A return stack is used to process nested token lists

 A data stack is used to pass parameters among commands

 A serial terminal is necessary to enter command lines, and to show results thus

produced.

 A WiFi network is necessary to send and receive UDP packets to/from this VFM,

in parallel with the serial terminal.

The simple goals of a VFM are to impose a Forth language processor on a real computer so that

it can interpret or execute a list of Forth commands, separated by spaces:
<list of commands>

and to create a new command to replace a list of commands:
: <name> <list of commands> ;

All computable problems can be solved by repeatedly creating new commands to replace lists

of existing commands. It is also the simplest and most efficient way to explore solution spaces

far and wide, and to arrive at optimized solutions.

Here let‟s read the source code in espForth_44.ino, to see how this VFM is actually

implemented.

Preamble

#include <ESP8266WiFi.h>

#include <WiFiUdp.h>

WiFiUDP Udp;

const char* ssid = "SVFIG";//type your ssid

const char* pass = "12345678";//type your password

unsigned int localPort = 10009; // local port to listen on

define FALSE 0

define TRUE -1

define LOGICAL ? TRUE : FALSE

define LOWER(x,y) ((unsigned long)(x)<(unsigned long)(y))

define pop top = stack[(unsigned char)S--]

define push stack[(unsigned char)++S] = top; top =

Arduino supplied libraries supporting ESP8266 chip and its WiFi capabilities. Information

needed by the C compiler are in the ESP8266WiFi.h header file. For WiFi communication, I

choose UDP protocol, which is the simplest way for computers to communicate with one

another over a WiFi network. espForth is a proof-of-concept implementation. Once you master

UDP protocol, other protocols will be straightforward, though more complicated. The UDP

utilities are included in WiFiUdp.h header file.

An object Udp is created with the command WiFiUDP. Henceforth, all UDP functions are

called with Udp object prefix.

espForth needs a WiFi network for communication with other computers and devices. For our

“IoT for Fun!” WiFi Worshop in the 2017 Bay Area Maker Faire, I used an independent router

with its ssid as “SVFIG” and its password as “12345678.” You will have to set up your own

router, or to use your existing router your PC is connected to. Use a large number like 10009

for the localPort for your NodeMCU Kit, so that it does not conflict with more popular

localPorts, which were generally assigned low numbers.

Default values of a FALSE flag is 0, and of TRUE is -1. espForth considers any non-zero

number as a TRUE flag. Nevertheless, all espForth commands which generate flags would

return a -1 for TRUE.

LOGICAL is the macro command enforcing the above policy for logic commands to return the

correct TRUE and FALSE flags.
define LOGICAL ? TRUE : FALSE

LOWER(x,y) returns a TRUE flag if x<y.
define LOWER(x,y) ((unsigned long)(x)<(unsigned long)(y))

pop is a macros which stream-line the often used operations to pop the data stack to a register

or a memory location. As the top element of the data tack is cached in register top, popping is

more complicated, and pop macro helps to clarify my intention.
define pop top = stack[(unsigned char)S--]

Similarly, push is a macro to push a register or contents in a memory location on the data stack.

Actually, the contents in top register must be pushed on the data stack, and the source data is

copied into top register.
define push stack[(unsigned char)++S] = top; top =

Registers and Arrays

espForth uses a large data array to hold it dictionary of commands. There are lots of variables

and buffers declared in this array. Besides this data array, the VFM needs many registers and

arrays to hold data to support all its operations. Here is the list of these registers and arrays:

long rack[256] = {0};

long stack[256] = {0};

unsigned char R, S, bytecode ;

long* Pointer ;

long P, IP, WP, top ;

char* cData ;

long long int d, n, m ;

The following table explains the functions of these registers and arrays:

Register/Array Functions

P Program counter, pointing to pseudo instructions in data[].

IP Interpreter pointer for address interpreter

WP Scratch register, usually pointing to parameter field

Rack[] Return stack, a 256 cell circular buffer

Stack[] Data stack, a 256 cell circular buffer

R One byte return stack pointer

S One byte data stack pointer

top Cached top element of the data stack

data[] An array containing Forth dictionary

bytecode A 8 bit register containing byte code to be executed

cCode A byte pointer to access data[] array in bytes

d,m,n Scratch register for 64 bit integers

Dictionary Array

All espForth commands are stored in a data[4096] array, as a linked list, and is generally

called a dictionary. Each record in this list contains 4 fields: a 32 bit link field, a variable length

name field, a 32 bit code field, and a variable length parameter field. In a primitive command,

the parameter field has additional byte code. In a high level compound command, the parameter

field contains a sequence of tokens which are pointers pointing to the code field of other Forth

commands.

The dictionary in data[] array is generated by a separated Forth program called a

metacompiler. It is discussed in the next chapter of this manual. This dictionary is saved in a

file rom_43.h. It is copied into the array data[].

long data[4096] = {

/* 00000000 */ 0x00000000,

/* 00000004 */ 0x00000000,

…

);

Later, I will go through the metacompiler, and explain how this dictionary is constructed.

VFM Functions

Then come all the VFM operations coded as C functions. Each function will be assigned a byte

code, and a finite state machine is designed to execute byte code placed in code fields of

primitive commands in the dictionary. Byte code are pseudo instructions of VFM, like machine

instructions in a real computer.

next() is the inner interpreter of the Virtual Forth Machine. Execute the next token in a token

list.
void next(void)

{ P = data[IP>>2];

 IP += 4;

 WP = P+4; }

accept (b u1 -- b u2) Accept u1 characters to b. u2 returned is the actual count of

characters received.
void accep()

/* UDP accept */

{ while (Udp.parsePacket()==0 && Serial.available()==0) {};

 int len;

 while (!Udp.available()==0) {

 len = Udp.read(cData, top); }

 while (!Serial.available()==0) {

 len = Serial.readBytes(cData, top); }

 if (len > 0) {

 cData[len] = 0; }

 top = len;

 }

qrx (-- c T|F) Return a character and a true flag if the character has been received. If no

character was received, return a false flag
void qrx(void)

 { while (Serial.available() == 0) {};

 push Serial.read(); push -1; }

audio (pin freq ms --) sends a PWM signal out on a GPIO output pin. Call Arduuino IO

library function tone(pin freq ms) to do the work. Freq is in Hz, ms is in milliseconds.
void audio(void)

{ cell ms=top; pop;

 cell freq=top; pop;

 cell pin=top; pop;

 tone(pin,freq,ms);

}

emit (c --) Send a character to the serial terminal, and the UDP output buffer. The UDP

packet will be send out when CR is executed.
void emit(void)

{ Serial.write((unsigned char) top);

 Udp.write((char) top);

 pop; }

docon (-- n) Return integer stores in the next cell in current token list.
void docon(void)

{ push data[WP>>2]; }

dolit (-- w) Push the next token onto the data stack as an integer literal. It allows numbers to

be compiled as in-line literals, supplying data to the data stack at run time.
void dolit(void)

{ push data[IP>>2];

 IP += 4;

 next(); }

dolist (--) Push the current Instruction Pointer (IP) the return stack and then pops the

Program Counter P into IP from the data stack. When next() is executed, the tokens in the list

are executed consecutively.
void dolist(void)

{ rack[(unsigned char)++R] = IP;

 IP = WP;

 next(); }

exitt (--) Terminate all token lists in compound commands. EXIT pops the execution

address saved on the return stack back into the IP register and thus restores the condition before

the compound command was entered. Execution of the calling token list will continue.
 void exitt(void)

{ IP = (long) rack[(unsigned char)R--];

 next(); }

execu (a --) Take the execution address from the data stack and executes that token. This

powerful command allows you to execute any token which is not a part of a token list.
void execu(void)

{ P = top;

 WP = P + 4;

 pop; }

donext (--) Terminate a FOR-NEXT loop. The loop count was pushed on return stack, and is

decremented by nonext. If the count is not negative, jump to the address following donext;

otherwise, pop the count off return stack and exit the loop.
void donext(void)

{ if(rack[(unsigned char)R]) {

 rack[(unsigned char)R] -= 1 ;

 IP = data[IP>>2];

 } else { IP += 4; (unsigned char)R-- ; }

 next(); }

qbran (f --) Test top element as a flag on data stack. If it is zero, branch to the address

following qbran; otherwise, continue execute the token list following the address. CODE
void qbran(void)

{ if(top == 0) IP = data[IP>>2];

 else IP += 4; pop;

 next(); }

bran (--) Branch to the address following bran.
void bran(void)

{ IP = data[IP>>2];

 next(); }

store (n a --) Store integer n into memory location a.
void store(void)

{ data[top>>2] = stack[(unsigned char)S--];

 pop; }

at (a -- n) Replace memory address a with its integer contents fetched from this location.
void at(void)

{ top = data[top>>2]; }

cstor (c b --) Store a byte value c into memory location b.
void cstor(void)

{ cData[top] = (unsigned char) stack[(unsigned char)S--];

 pop; }

cat (b -- n) Replace byte memory address b with its byte contents fetched from this location.
void cat(void)

{ top = (long) cData[top]; }

sendPacket(--) Send an UDP packet out to WiFi network. It is executed only by CR

command.
void sendPacket(void)

{ Udp.endPacket();

 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); }

pinSel(1/0 pin --) Select a GPIO pin for output of input. A 1 is for output, and a 0 is for

input.
void pinSel(void)

{ WP=top; pop;

 pinMode(WP,top);

 pop; }

rfrom (n --) Pop a number off the data stack and pushes it on the return stack.
void rfrom(void)

{ push rack[(unsigned char)R--]; }

rat (-- n) Copy a number off the return stack and pushes it on the return stack.
void rat(void)

{ push rack[(unsigned char)R]; }

tor (-- n) Pop a number off the return stack and pushes it on the data stack.
void tor(void)

{ rack[(unsigned char)++R] = top; pop; }

pinOut(1/0 pin --) Set or reset a GPIO output pin. 1 to pull high, and 0 to pull low.
void pinOut(void)

{ WP=top; pop;

 digitalWrite(WP,top);

 pop; }

pinIn(pin – n) Read an GPIO input pin.
void pinIn(void)

{ top = digitalRead(top); }

drop (w --) Discard top stack item.
void drop(void)

{ pop; }

dup (w -- w w) Duplicate the top stack item.
void dup(void)

{ stack[(unsigned char)++S] = top; }

swap (w1 w2 -- w2 w1) Exchange top two stack items.
void swap(void)

{ WP = top;

 top = stack[(unsigned char)S];

 stack[(unsigned char)S] = WP; }

over (w1 w2 -- w1 w2 w1) Copy second stack item to top.
void over(void)

{ push stack[(unsigned char)(S-1)]; }

zless (n – f) Examine the top item on the data stack for its negativeness. If it is negative,

return a -1 for true. If it is 0 or positive, return a 0 for false.
void zless(void)

{ top = (top < 0) LOGICAL; }

andd (w w -- w) Bitwise AND.
void andd(void)

{ top &= stack[(unsigned char)S--]; }

orr (w w -- w) Bitwise inclusive OR.
void orr(void)

{ top |= stack[(unsigned char)S--]; }

xorr (w w -- w) Bitwise exclusive OR.
void xorr(void)

{ top ^= stack[(unsigned char)S--]; }

uplus (w w -- w cy) Add two numbers, return the sum and carry flag.
void uplus(void)

{ stack[(unsigned char)S] += top;

 top = LOWER(stack[(unsigned char)S], top); }

nop (--) No operation.
void nop(void)

{ next(); }

qdup (w -- w w | 0) Dup top of stack if its is not zero.
void qdup(void)

{ if(top) stack[(unsigned char)++S] = top ; }

rot (w1 w2 w3 -- w2 w3 w1) Rot 3rd item to top.
void rot(void)

{ WP = stack[(unsigned char)(S-1)];

 stack[(unsigned char)(S-1)] = stack[(unsigned char)S];

 stack[(unsigned char)S] = top;

 top = WP; }

ddrop (w w --) Discard two items on stack.
void ddrop(void)

{ drop(); drop(); }

ddup (w1 w2 -- w1 w2 w1 w2) Duplicate top two items.
void ddup(void)
{ over(); over(); }

plus (w w -- sum) Add top two items.
void plus(void)
{ top += stack[(unsigned char)S--]; }

inver (w -- w) One's complement of top.
void inver(void)

{ top = -top-1; }

negat (n -- -n) Two's complement of top.
void negat(void)

{ top = 0 - top; }

dnega (d -- -d) Two's complement of top double.
void dnega(void)

{ inver();

 tor();

 inver();

 push 1;

 uplus();

 rfrom();

 plus(); }

subb (n1 n2 -- n1-n2) Subtraction.
void subb(void)

{ top = stack[(unsigned char)S--] - top; }

abss (n -- n) Return the absolute value of n.
void abss(void)

{ if(top < 0)

 top = -top; }

great (n1 n2 -- t) Signed compare of top two items. Return true if n1>n2.
void great(void)

{ top = (stack[(unsigned char)S--] > top) LOGICAL; }

less (n1 n2 -- t) Signed compare of top two items. Return true if n1<n2.
void less(void)

{ top = (stack[(unsigned char)S--] < top) LOGICAL; }

equal (w w -- t) Return true if top two are equal.
void equal(void)

{ top = (stack[(unsigned char)S--] == top) LOGICAL; }

uless (u1 u2 -- t) Unsigned compare of top two items.
void uless(void)

{ top = LOWER(stack[(unsigned char)S], top) LOGICAL; S--; }

ummod (udl udh u -- ur uq) Unsigned divide of a double by a single. Return mod and quotient.
void ummod(void)

{ d = (long long int)((unsigned long)top);

 m = (long long int)((unsigned long)stack[(unsigned char) S]);

 n = (long long int)((unsigned long)stack[(unsigned char) (S - 1)]);

 n += m << 32; pop;

 top = (unsigned long)(n / d);

 stack[(unsigned char) S] = (unsigned long)(n%d); }

msmod (d n -- r q) Signed floored divide of double by single. Return mod and quotient.
void msmod(void)

{ d = (signed long long int)((signed long)top);

 m = (signed long long int)((signed long)stack[(unsigned char) S]);

 n = (signed long long int)((signed long)stack[(unsigned char) S - 1]);

 n += m << 32; pop;

 top = (signed long)(n / d);

 stack[(unsigned char) S] = (signed long)(n%d); }

slmod (n1 n2 -- r q) Signed divide. Return mod and quotient.
void slmod(void)

{ if (top != 0) {

 w = stack[(unsigned char) S] / top;

 stack[(unsigned char) S] %= top;

 top = w; } }

mod (n n -- r) Signed divide. Return mod only.
void mod(void)

{ top = (top) ? stack[(unsigned char) S--] % top : stack[(unsigned char)

S--]; }

slash (n n -- q) Signed divide. Return quotient only.
void slash(void)

{ top = (top) ? stack[(unsigned char) S--] / top : (stack[(unsigned char)

S--], 0); }

umsta (u1 u2 -- ud) Unsigned multiply. Return double product.
void umsta(void)

{ d = (unsigned long long int)top;

 m = (unsigned long long int)stack[(unsigned char) S];

 m *= d;

 top = (unsigned long)(m >> 32);

 stack[(unsigned char) S] = (unsigned long)m; }

star (n n -- n) Signed multiply. Return single product.
void star(void)

{ top *= stack[(unsigned char) S--]; }

mstar (n1 n2 -- d) Signed multiply. Return double product.
void mstar(void)

{ d = (signed long long int)top;

 m = (signed long long int)stack[(unsigned char) S];

 m *= d;

 top = (signed long)(m >> 32);

 stack[(unsigned char) S] = (signed long)m; }

ssmod (n1 n2 n3 -- r q) Multiply n1 and n2, then divide by n3. Return mod and quotient.
void ssmod(void)

{ d = (signed long long int)top;

 m = (signed long long int)stack[(unsigned char) S];

 n = (signed long long int)stack[(unsigned char) (S - 1)];

 n += m << 32; pop;

 top = (signed long)(n / d);

 stack[(unsigned char) S] = (signed long)(n%d); }

stasl (n1 n2 n3 -- q) Multiply n1 by n2, then divide by n3. Return quotient only.
void stasl(void)

{ d = (signed long long int)top;

 m = (signed long long int)stack[(unsigned char) S];

 n = (signed long long int)stack[(unsigned char) (S - 1)];

 n += m << 32; pop; pop;

 top = (signed long)(n / d); }

pick (... +n -- ... w) Copy the nth stack item to top.
void pick(void)

{ top = stack[(unsigned char)(S-top)]; }

pstor (n a --) Add n to the contents at address a.
void pstor(void)

{ data[top>>2] += stack[(unsigned char)S--], pop; }

dstor (d a --) Store the double integer to address a.
void dstor(void)

{ data[(top>>2)+1] = stack[(unsigned char)S--];

 data[top>>2] = stack[(unsigned char)S--];

 pop; }

dat (a -- d) Fetch double integer from address a.
void dat(void)

{ push data[top>>2];

 top = data[(top>>2)+1]; }

count (b -- b+1 +n) Return count byte of a string and add 1 to byte address.
void count(void)

{ stack[(unsigned char)++S] = top + 1;

 top = cData[top]; }

dovar(-- a) Return address of the next cell in current token list
void dovar(void)

{ push WP; }

maxx (n1 n2 -- n) Return the greater of two top stack items.
void maxx(void)

{ if (top < stack[(unsigned char)S]) pop;

 else (unsigned char)S--; }

minn (n1 n2 -- n) Return the smaller of top two stack items.
void minn(void)

{ if (top < stack[(unsigned char)S]) (unsigned char)S--;

 else pop; }

poke (n a --) writes one word n to an absolute address a in ESP8266.
void poke(void)

{ Pointer = (long*)top; *Pointer = stack[(unsigned char)S--];

 pop; }

peeek (a – n) reads one word n from an absolute address a in ESP8266.
void peeek(void)

{ Pointer = (long*)top; top = *Pointer; }

Byte Code Array

There are 67 functions defined in VFM as shown before. Each of these functions are assigned a

unique byte code, which become the pseudo instructions of this VFM. In the dictionary, there

are primitive commands which have these byte code in their code field. The byte code may

spilled over into the subsequent parameter field, if a primitive command is very complicated.

VFM has a finite state machine, which will be discussed shortly, to execute byte code

sequences. The numbering of these byte code in the following primitives[] array does not

follow any perceived order.

Only 67 byte code are defined. You can extend them to 256 if you wanted. You have the

options to write more functions in C to extend the VFM byte code, or to assemble more

primitive commands using the metacompiler I will discuss later, or to compile more compound

commands in Forth, which is far easier. The same function defined in different ways should

behave identically. Only the execution speed might differ, inversely proportional to the efforts

in programming..
void (*primitives[67])(void) = {

 /* case 0 */ nop,

 /* case 1 */ accep,

 /* case 2 */ qrx,

 /* case 3 */ emit,

 /* case 4 */ docon,

 /* case 5 */ dolit,

 /* case 6 */ dolist,

 /* case 7 */ exitt,

 /* case 8 */ execu,

 /* case 9 */ donext,

 /* case 10 */ qbran,

 /* case 11 */ bran,

 /* case 12 */ store,

 /* case 13 */ at,

 /* case 14 */ cstor,

 /* case 15 */ cat,

 /* case 16 */ sendPacket,

 /* case 17 */ pinSel,

 /* case 18 */ rfrom,

 /* case 19 */ rat,

 /* case 20 */ tor,

 /* case 21 */ pinOut,

 /* case 22 */ pinIn,

 /* case 23 */ drop,

 /* case 24 */ dup,

 /* case 25 */ swap,

 /* case 26 */ over,

 /* case 27 */ zless,

 /* case 28 */ andd,

 /* case 29 */ orr,

 /* case 30 */ xorr,

 /* case 31 */ uplus,

 /* case 32 */ next,

 /* case 33 */ qdup,

 /* case 34 */ rot,

 /* case 35 */ ddrop,

 /* case 36 */ ddup,

 /* case 37 */ plus,

 /* case 38 */ inver,

 /* case 39 */ negat,

 /* case 40 */ dnega,

 /* case 41 */ subb,

 /* case 42 */ abss,

 /* case 43 */ equal,

 /* case 44 */ uless,

 /* case 45 */ less,

 /* case 46 */ ummod,

 /* case 47 */ msmod,

 /* case 48 */ slmod,

 /* case 49 */ mod,

 /* case 50 */ slash,

 /* case 51 */ umsta,

 /* case 52 */ star,

 /* case 53 */ mstar,

 /* case 54 */ ssmod,

 /* case 55 */ stasl,

 /* case 56 */ pick,

 /* case 57 */ pstor,

 /* case 58 */ dstor,

 /* case 59 */ dat,

 /* case 60 */ count,

 /* case 61 */ dovar,

 /* case 62 */ maxx,

 /* case 63 */ minn,

 /* case 64 */ audio,

 /* case 65 */ poke,

 /* case 66 */ peeek };

These byte code are executed by a special function execute(code), which passes the byte

code code to the byte code array primitives[code] to call the corresponding function:

void execute(unsigned char code)

{ if(code < 67) { primitives[code](); }

 else {

 Serial.print ("\n Illegal code= ") ;

 Serial.print (code) ;

 Serial.print (" Address= ") ;

 Serial.print (P) ;

 } }

VFM initialization

To start the VFM running, some of the registers have to be initialized in the setup() function

required by Arduino IDE:
void setup()

{

 P = 0x180;

 WP = 0x184;

 IP = 0;

 S = 0;

 R = 0;

 top = 0;

 cData = (char *) data;

setup() also initializes the USART0 to 115,200 bauds, and displays a sign-on message. It then

initialize the WiFi radio, and sets it up to receive and transmit UDP message. The program

counter P is initialized to a code segment stored in the dictionary location 0x180. This code

segment jumps COLD at location 0x1A38, which starts the Forth interpreter.
 Serial.begin(115200);

 delay(100);

// attempt to connect to Wifi network:

 WiFi.begin(ssid, pass);

 while (WiFi.status() != WL_CONNECTED) {

 delay(500);

 Serial.print(".");

 }

 Serial.println("");

 Serial.println("WiFi connected");

 Serial.print("SSID: ");

 Serial.println(WiFi.SSID());

 IPAddress ip = WiFi.localIP();

 Serial.print("IP Address: ");

 Serial.println(ip);

 long rssi = WiFi.RSSI();

 Serial.print("signal strength (RSSI):");

 Serial.print(rssi);

 Serial.println(" dBm");

 Serial.println("Starting connection to server...");

 // if you get a connection, report back via serial:

 Udp.begin(localPort);

 Serial.print("Local Port: ");

 Serial.println(localPort);

}

VFM Byte Code Sequencer

At the very end of espForth_44.ino file, and we have the familiar Arduino function of loop().

loop() is essentially a byte code sequencer in FVM to execute byte code or pseudo instructions

stored in the data[] array. It is simply:
void loop() {

 while (TRUE) {

 bytecode = (unsigned char)cData[P++];

 execute(bytecode);

 } }

This much simpler byte sequencer replaced the earlier Finite State Machine which reads a 32

bit word from dictionary, decodes the byte code in it, and then execute the byte code in

sequence. After the last byte code is executed, it reads the next word and processes it, etc. It is

much easier to read and execute byte code directly.

Chapter 3. Metacompilation of the espForth

Metacompilation

In Forth community, metacompilation means compiling a new Forth system using an existing

Forth system. As Forth system is generally consider an operating system supporting Forth

programming language, metacompilation is the highest level of art in Forth programming. For

people not converse in the art of Forth, it is black magic.

Metacompilation always reminds me of metamorphosis, transformation of a caterpillar into a

butterfly.

When Chuck Moore invented Forth in 1960‟s, he quickly found Forth was powerful enough to

regenerated itself and easily migrated to any computer in his sight. It was so mysterious to

others that he felt confident to release complete source code with his implementations, without

the fear that others might reverse-engineer his Forth system. He stores his source code in 1024

byte blocks of memory on tapes and disks. Without his Forth system and his block editor,

nobody could read his code. He was able to reprogram so many telescope computers, that the

International Astronomy Society adopted Forth as the official programming language for

observatory automation in 1974.

It was not until 1978 that the Forth Interest Group (FIG) in Silicon Valley engineered 6 figForth

systems for the then most popular microcomputers. FIG released figForth in the form of

assembly files so that non-Forth programmers could implement them on their own

microcomputers with various operating systems, and understand what was going on in these

Forth systems.

In 1990, Bill Muench and I developed eForth Model, with a very small set (33) of primitive

commands so that it could be ported easily to microcontrollers. It was implemented on 30 some

different microprocessors and microcontrollers by many volunteers. In the meantime, I also

worked with Chuck Moore on his new Forth chip, MuP21. He reduced its instructions to 25,

and fit a 20-bit microprocessor on a small die, with an NTSC video coprocessor and a DRAM

memory coprocessor. It was a marvelous design, but we ran out of money before it was

perfected.

I compared the designs of eForth and the MuP21, and found great similarity, in spite of the

completely different origins of these two designs. eForth is a software design and the MuP21 is

a hardware design. However, they both were based on primitive instruction sets with about 30

instructions. Many instructions were identical in these two instruction sets. Those instructions

which were different, were different because of hardware constraints. I was able to implement

eForth on the MuP21. A real Forth language on a real Forth chip. Chuck gave me a

metacompiler to compile eForth on MuP21.

After the MuP21, Chuck and I went our separate ways. He founded iTV, and Intellesys, and

Green Arrays to built multiprocessor chips based on the MuP21 core. I discovered FPGAs, and

developed scalable P-series microcontrollers based on the same core, implementing 16-, 24-

and 32-bit versions of the P-microcontrollers.

In 2000, a young fellow in Taiwan, Mr. Cheah-shen Yap, ported eForth to Windows to become

the F# system. It could call all Windows APIs to build applications running on a PC. I used it to

write metacompilers for P-microcontrollers, including P24, eP16 and eP32. For these

processors, F# metacompiler had assemblers to assemble, and then built Forth dictionary, which

was loaded into the memory to start Forth running on these machines. However, for the

espForth, I build a Virtual Forth Machine in C, and modified the F# metacompiler to compile a

dictionary to be incorporated into the C program. The C program is compiled as a sketch on

Arduino IDE, and causes NodeMCU Kit to run like a Forth machine.

In this Chapter, I will discuss how the F# metacompiler construct the Forth dictionary used in

espForth_44.ino. The discussion follows the source files in their loading sequence.

The immediate goal of espForth metacompiler is to build three defining commands: INST,

CODE, and :: (colon-colon). They are cookie cutters which create classes of commands to

build the target dictionary in a data array.

INST creates byte code assembly commands, which assembles byte code into the code fields

of primitive commands in target dictionary. Examples are:
0 INST nop,

1 INST accept, 2 INST qrx, 3 INST txsto, 4 INST docon,

5 INST dolit, 6 INST dolist, 7 INST exit, 8 INST execu,

CODE creates new primitive commands. It compiles the link field and name field of a new

primitive command in target dictionary. Its code field is now open to the byte code assemblers

to assemble byte code. Examples are:
CODE NOP next,

CODE ACCEPT accept, next,

CODE EMIT txsto, next,

CODE DOLIT dolit, next,

CODE DOLIST dolist, next,

CODE EXIT exit, next,

:: (colon-colon) creates new compound commands. It compiles the link field and name field

of a new compound command in target dictionary. It then adds a byte code dolist, to the

code field. Its parameter field is now ready to build a new token list. Examples are:
:: WITHIN (u ul uh -- t) \ ul <= u < uh

 OVER - >R - R> U< ;;

:: >CHAR (c -- c)

 $7F LIT AND DUP $7F LIT BL WITHIN

 IF DROP (CHAR _) $5F LIT THEN ;;

:: ALIGNED (b -- a) 3 LIT + FFFFFFFC LIT AND ;;

:: HERE (-- a) CP @ ;;

:: PAD (-- a) HERE 50 LIT + ;;

:: TIB (-- a) 'TIB @ ;;

CODE and :: (colon-colon) also mark the code field addresses of the new commands they

created. When these commands are later executed, they compile their respective code field

addresses into the token list under construction.

INST, CODE and :: (colon-colon) are defined in cefASMa_43.f.

Metacompiling espForth

All source code of the espForth eForth system is contained in the espForth_44.zip file. F#

system and its Windows utilities are also included here.

Unzip file espForth_44.zip and put all the files into a folder named “espForth_44”. Start F# by

double clicking F#.exe in the espForth_44 folder, and a file select window is opened:

F# organizes projects using .fex files. Each .fex file loads all the files needed in a project.

Metacompiler of espForth_43 is contained in the ceMETAa_43.fex. Click Open button to run it.

F# opens a console window, loads the espForth metacompiler and generates a new espForth

dictionary Lot of text scrolled up in this console window. Here is a picture of the lines scrolled

up:

The first number of lines show a number of files loaded. The last file loaded is cefMETAa_43.f,

which loads in the metacompiler, and start building espForth dictionary. The contents of

ceMETAa_43.fex are as following:

 (espForth_43, 28jun17cht)

\ cEFa 10sep09cht

\ Goal is to produce a dictionary file to be compiled by a C compiler

\ Assume 31 eForth primitives are coded in C

\ Each Forth word contains a link field, a name field, a code field

\ and a parameter field, as in standard eForth model

\ The code field contains a token pointing to a primitive word

\ Low level primitive Forth words has 1 cell of code field

\ High level Forth word has doList in code field and a address list

\ Variable has doVAR in code field and a cell for value

\ Array is same as variable, but with many cells in parameter field

\ User variable has doUSE in code, and an offset as parameter

\

\

 FLOAD .\init.f \ initial stuff

 FLOAD .\win32.f \ win32 system interface

 FLOAD .\consolei.f \ api and constant defination

 FLOAD .\ui.f \ user interface helper routine (reposition)

 FLOAD .\console.f \ the main program

 FLOAD .\ansi.f

 FLOAD .\fileinc.f

 FLOAD .\cefMETAa_43.f

cr .(Version FIX 12SEP09CHT)

Files loaded by ceMETAa_43.fex are for these purposes:

init.f Extend F# core to manage vocabulary and constants
win32.f WinAPI interface and CallBack
consolei.f API constants and prototypes
ui.f Windows user interface
console.f Create main console window
conmenu.f Windows console and menu
bufferio.f Buffered console input and output
ansi.f Add words for ANSI Forth compatibility
fileinc.f Windows file interface API
cefMETAa_43.f espForth metacompiler
cefASMa_43.f espForth assembler of byte code pseudo instructions
cefKERNa_43.f Compile espForth primitive commands
cEFa_43.f Compile espForth compound commands

cefMETAa_43.f allocates a large data array ram in F# memory, to host the dictionary target to

ESP8266 chip. The contents in the ram array will be saved as a text file rom_43.h, which will

eventually be copied into the data[] array in Arduino sketch espForth_44.ino to run espForth

on NodeMCU.

When cefKERNa_43.f is being loaded, new primitive commands are added to the ram array

dictionary. F# and espForth are derived from the same eForth Model, and they have much the

same command set. When a new command is added to the target dictionary, a new word is also

added to the F# dictionary, representing a new token in the target dictionary. The name of this

token is the same as the name of the new command in target, and the name of an existing word

in F#. We are in fact redefine a F# word. For example the first primitive command HLD causes

this line of message:
 HLD 208 redef HLD

It means that a new command HLD is defined in target dictionary, and its code field address is

0x208, which will be used to compile a token of 0x208 when HLD is encountered in the token

list of a compound command. Since HLD was an existing F# word, a warning message “redef

HLD” is issued. The list continues until all primitive commands are compiled, as shown here:

Then, cEFa_43.f file is loaded, and all the compound commands are compiled.

Finally, the system variable a compile, the entire target dictionary is finished, and is written out

in the rom_43.h file.

Copy the contents of rom_43.h into the data[4096] array in espForth_44.ino and you can build

and test espForth_44 on a NodeMCU Kit.

Metacompiler cefMETAa_43.f

Metacompiler is a term used by Forth programmers to describe the process of building a new

Forth system on an existing Forth system. The new Forth system may run on the same platform

as the old Forth system. It may be targeted to a new platform, or to a new CPU. The new Forth

system may share a large portion of Forth code with the old system, hence the term

metacompilation. In a sense, a metacompiler is very similar to a conventional cross

assembler/compiler.

The espForth metacompiler is contained in file cefMETAa_43.f. It allocates a data array ram,

and deposits records of primitive commands and compound commands to build a dictionary for

espForth. The Virtual Forth Machine (VFM) was programmed in espForth_43.ino in C

functions represented by a set of byte code. These byte code are assembled into the code fields

of primitive commands. The addresses of code fields become tokens compiled as token lists in

the parameter fields of compound commands

After setting up the environment to build a target dictionary, cefMETAa_43.f loads source code

from three other files to do specific jobs:

cefASMa_43.f espForth assembler

cefKERNa_43.f Assemble primitive commands

cEFa_43.f Compile compound commands

Source code in cefMETAa_43.f is lengthy, and it is best to comment each command to bring

out its function and meaning.

debugging? (-- a) A variable containing a switch to turn break points on and off. When

debugging? is set to -1, compilation will stop and the data stack is dumped when a “cr”

command is executed. Sprinkling “cr” commands in the source code file allows you to watch

the progress of metacompilation and even stops it when necessary.
variable debugging?

\ -1 debugging? !

.head (a – a) Display name of a command that is about to be compiled. It is used to display a

symbol table. You can look up the code field address of any command in this table.
: .head (addr -- addr)

 SPACE >IN @ 20 WORD COUNT TYPE >IN !

 DUP .

 ;

cr (--) Stop metacompilation if debugging? is -1, and dump data stack. If you press control-A,

metacompilation is aborted. Otherwise, metacompilation continues. It is a NOP if debugging? is

0.
: CR CR

 debugging? @

 IF .S KEY 0D = IF ." DONE" QUIT THEN

 THEN

 ;

break (--) Pause metacompilation and dump data stack. If you press Return,

metacompilation is aborted. Otherwise, metacompilation continues. It sets a break point.
: BREAK CR

 .S KEY 0D = IF ." DONE" QUIT THEN

 ;

During metacompilation, Forth commands will be redefined so that they compile tokens or

assemble byte code into the target dictionary. There are numerous occasions where the original

behavior of a Forth command must be exercised. To preserve the original behavior of a Forth

command, it is assigned a different name. Thereby after a command is redefined, we can still

exercise its original behavior by invoking the alternate name.

For example, “+” is a Forth command that adds the top two numbers on the data stack in the F#

system. Then in the cefKERNa_43.f file, a new “DUP” command is defined to assemble a dup,

instruction in the target espForth system. If you still need to duplicate a number, you must use

the alternate command “forth_dup” as shown below. All the F# commands you need to use

later must be redefined as “forth_xxx” commands. If you neglect to redefine them, you will find

that the system behaves very strangely.

: forth_dup DUP ;

: forth_drop DROP ;

: forth_over OVER ;

: forth_swap SWAP ;

: forth_@ @ ;

: CRR cr ;

The espForth executes commands and accesses data in the dictionary, range 0-1FFF. In F# we

allocate a 32k byte memory array, “ram”, to hold the espForth target dictionary. This array

contains code and data to be copied into espForth data[] arry, to be executed on the ESP8266

chip.

RAM (-- a) Memory array in F# for the espForth target dictionary. It has a logical base address of 0 for

the espForth. Commands and data words in the target are stored in this array.
CREATE ram 8000 ALLOT

RESET (--) Clear “ram” image array, preparing it to receive code and data for the espForth.
: RESET ram 8000 0 FILL ; RESET

RAM@ (a – n) Replace a logical address on stack with data stored in “ram” dictionary.
: RAM@ ram + @ ;

RAMC@ (a – c) Replace a logical address on stack with byte data stored in “ram” dictionary.
: RAMC@ ram + C@ ;

RAM! (a n --) Store second integer on stack into logical address of “ram” dictionary.
: RAM! ram + ! ;

RAM! (a c --) Store second byte on stack into logical address of “ram” dictionary.
: RAMC! ram + C! ;

FOUR (a --) Display four consecutive words in target dictionary.
: FOUR (a --) 4 FOR AFT DUP RAM@ 9 U.R 4 + THEN NEXT ;

SHOW (a – a+128) Display 128 words in target from address “a”. It also returns a+128 to

“show” the next block of 128 words.
: SHOW (a) 10 FOR AFT CR DUP 7 .R SPACE

 FOUR SPACE FOUR THEN NEXT ;

SHOWRAM (--) Display the entire espForth dictionary of 2K words.
: showram 0 0C FOR AFT SHOW THEN NEXT DROP ;

The espForth metacompiler builds a target dictionary for the ESP8266 chip in “ram. This dictionary

eventually will be imported to the espForth_44.ino so that this dictionary will be incorporated in

espForth. Arduino IDE requires that the dictionary be written in a file conforming to its long data[] array

format, which consists of a header with a body containing memory information in hexadecimal numbers.

The header and first few lines of the body are as follows:

This dictionary is written to a text file rom_43.h. Here are the commands to open this file,

writing data to it, and closing it.

hFile (-- handle) A variable holding a file handle.
VARIABLE hFile

CRLF-ARRAY (-- a) A byte array containing CR and LF characters.
CREATE CRLF-ARRAY 0D C, 0A C,

CRLF (--) Insert a carriage return and a line feed into the currently opened file.
: CRLF

 hFile @

 CRLF-ARRAY 2

 PAD (lpWrittenBytes)

 0 (lpOverlapped)

 WriteFile

 IF ELSE ." write error" QUIT THEN

 ;

open-mif-file (--) Open a file named rom_43.h for writing.
: open-mif-file

 Z" rom_43.h"

 $40000000 (GENERIC_WRITE)

 0 (share mode)

 0 (security attribute)

 2 (CREATE_ALWAYS)

 $80 (FILE_ATTRIBUTE_NORMAL)

 0 (hTemplateFile)

 CreateFileA hFile !

 ;

write-mif-header (--) Write a header required by Arduino into current file.
: write-mif-header

 CRLF

 hFile @

 $" long data[4096] = {"

 PAD (lpWrittenBytes)

 0 (lpOverlapped)

 WriteFile

 IF ELSE ." write error" QUIT THEN

 ;

write-mif-trailer (--) Write last line of text into current file.
: write-mif-trailer

 CRLF

 hFile @

 $" 0 } ; "

 PAD (lpWrittenBytes)

 0 (lpOverlapped)

 WriteFile

 IF ELSE ." write error" QUIT THEN

 ;

write-mif-data (--) Write a 4K word image of the espForth dictionary from memory

array “ram” to the rom_43.h file.
: write-mif-data

 0 (initial ram location)

 $800 FOR AFT

 CRLF

 hFile @

 OVER (4 /) (byte address)

 <# 2F HOLD 2A HOLD 20 HOLD

 7 FOR # NEXT

 20 HOLD 2A HOLD 2F HOLD #>

 PAD (lpWrittenBytes)

 0 (lpOverlapped)

 WriteFile

 IF ELSE ." write error" QUIT THEN

 hFile @

 OVER ram@

 <# 2C HOLD 7 FOR # NEXT 78 HOLD 30 HOLD 20 HOLD #>

 PAD (lpWrittenBytes)

 0 (lpOverlapped)

 WriteFile

 IF ELSE ." write error" QUIT THEN

 CELL+

 THEN NEXT

 DROP (discard ram location)

 ;

close-mif-file (--)Close rom_43.h file.
: close-mif-file

 hFile @ CloseHandle DROP

 ;

write-mif-file (--) open rom_43.h file, write a header, write data, write trailer, and then

closes the file. rom_43.h containing 4K words of the espForth dictionary.
: write-mif-file

 open-mif-file

 write-mif-header

 write-mif-data

 write-mif-trailer

 close-mif-file

 ;

The espForth metacompiler continues to load the byte code assembler in cefASM_43.f. In the

assembler, all byte code of VFM are defined, and the ways they are assembled into code fields

of primitive commands. Means to compile link fields and name fields to form headers of

commands are also defined. It is now almost ready to assemble primitive commands for

espForth.
CR .(include assembler)

FLOAD cefASMa_43.f

After the assembler is built, we are ready to build the kernel part of espForth dictionary. All

primitive commands are assembled. The kernel starts at location 0x200, leaving rooms for the

Terminal Input Buffer TIB in the area 0-0x17F. System variables from 0x180-0x1FF.
$200 ORG

CR .(include kernel)

FLOAD cefKERNa_43.f

With the kernel in place, high level compound commands are compiled immediately after the

kernel, by loading cEFa_43.f. The top espForth dictionary is at 0x1DAC so far. It is pushed on

data stack by the commands „H forth_@‟, to be used later to initialize the system variable CP.

With 4096 words allocated in data[] array, the space is about half full. You can compile

substantial application in this dictionary. If you need more space, just allocate a bigger array.
CRR .(include eforth)

FLOAD cEFa_43.f

H forth_@

ceASMa_43.f, cdKERNa_43.f, and cEFa_43.f files will be discussed in separate chapters.

Finally, several system variables must be initialized properly so that the Forth interpreter can

work properly on boot.

When ESP8266 boots up, the IP register is initialized to 0x180, so we have to have some valid

byte code at this. The espForth boot up routine is the command COLD. Therefore, in memory

location 0x180, we assemble a dolist, COLD instruction.

CRR

$180 ORG

dolist, aanew

COLD

System variables are in the area between 0x1A0-0x1BF. They contain vital information for the

espForth system to work properly. Only the following system variables have to be initialized:

$1A0 ORG $0 #, \ TIB

$1A4 ORG $10 #, \ BASE

$1A8 ORG lastH forth_@ #, \ CONTEXT

$1AC ORG #, \ CP

$1B0 ORG lastH forth_@ #, \ LAST

$1B4 ORG forth_' $INTERPRET >body forth_@ #, \ 'EVAL

$1B8 ORG forth_' QUIT >body forth_@ #, \ 'ABORT

$1BC ORG 0 #, \ tmp

System

Variable

Address Initial

Value

Function

'TIB 0x1A0 0 Pointer to Terminal Input Buffer.
BASE 0x1A4 0x10 Number base for hexadecimal numeric

conversions.
CONTEXT 0a1A8 0x1DDC Pointer to name field of last command in

dictionary.
CP 0x1AC 0x1DE8 Pointer to top of dictionary, first free memory

location to add new commands. It is saved by "h

forth_@" on top of the source code page.
LAST 0x1B0 0x1DDC Pointer to name field of last command.
'EVAL 0x1B4 0x13D4 Execution vector of text interpreter, initialized to

point to $INTERPRET. It may be changed to point

to $COMPILE in compiling mode.
'ABORT 0x1B8 0x1514 Pointer to QUIT command to handle error

conditions.
tmp 0x1BC 0 Scratch pad.

At last, write the contents of dictionary to rom_43.h.
write-mif-file

Done.

Chapter 4. espForth Assembler

Byte Code Assembler

The cefASM_43.f file contains a byte code assembler for espForth. It packs up to 4 byte code

into one 32-bit program word. It first clears a program location pointed to by a variable “hw”,

initiating to 4 byte code of NOP‟s. Assembly commands are executed to insert byte code into

consecutive bytes, from right to left. Unused bytes contain NOP. Assembly commands make

necessary decisions as to whether to add more byte code to the current program word, or start a

new program word.

espForth has 32-bit long words and 8-bit byte code. Byte code are executed from right to left,

Byte code 1 to Byte code 4, as shown below:

31---------24 23---------16 15----------8 7------------0

Byte code 4 Byte code 3 Byte code 2 Byte code 1

Assembly commands for byte code are defined by a defining word INST. Defining words in

Forth makes this optimizing assembler very simple and very efficient.

The espForth system is based on the Direct Threading Model, in which a primitive command

has byte code in its code field and parameter field. To assemble a primitive command, the

assemble first build a header, with a link field and a name field. After that, the assembler simply

pack consecutive bytes with byte code until the primitive commands is completed.

H (-- a)A variable pointing to the next free memory cell at the top of the target dictionary.
VARIABLE H

LASTH (-- a)A variable pointing to the name field of the current target command under

construction.
variable lastH 0 lastH ! \ init linkfield address lfa

NAMER! (d --)Compile a 32-bit value, “d”, to the top of the target dictionary.
: nameR! (d --)

 H @ RAM! \ store double to code buffer

 4 H +! \ bump nameH

 ;

COMPILE-ONLY (--) Patch Bit 6 in first word of name field in current target command.

Text interpreter checks it to avoid executing compiler commands.
: compile-only 40 lastH @ RAM@ XOR lastH @ RAM! ;

IMMEDIATE (--)Patch Bit 7 in first word of name field in current target command.

Compiler checks it to execute commands while compiling.
: IMMEDIATE 80 lastH @ RAM@ XOR lastH @ RAM! ;

HW (-- a)A variable pointing to a new program word being constructed.

HI (-- a)A variable pointing to a slot to pack the next byte code.

BI (-- a)A variable pointing to a byte to pack the next ASCII character.
VARIABLE Hi VARIABLE Hw VARIABLE Bi (for packing)

ALIGN (--)Initialize pointer “hi” to start assembling a new program word.
: ALIGN 10 Hi ! ;

ORG (a --)Initialize pointer “h” to a new address to start assembling.
: ORG DUP . CR H ! ALIGN ;

MASK (-- a) An array of 4 masks to isolate one 6-bit machine instruction from a 32-bit

instruction pattern. A byte code can be assembled in one of 4 bytes selected by “hi”.
CREATE mask FF , FF00 , FF0000 , FF000000 ,

#, (d --) Compile “d” to top of target dictionary. It is the most primitive assembler and

compiler. The espForth assembler is an extension of this primitive assembly command.
: #, (d) H @ RAM! 4 H +! ;

,W (d --) OR “d” to the program word pointed to by “hw”. It generally fills the address

field in the current program word.
: ,w (d) Hw @ RAM@ OR Hw @ RAM! ;

,I (d --) Use “hi” to select one machine instruction in “d” and assemble it into the

program word selected by “hw”.
: ,I (d) Hi @ 10 = IF 0 Hi ! H @ Hw ! 0 #, THEN

 Hi @ mask + @ AND ,w 4 Hi +! ;

SPREAD (b – d) Repeat 8-bit byte code “b” in all 4 bytes to form a 32-bit word. “mask”

uses it to select a byte for assembling.
: spread (b - d) DUP 100 * DUP 100 * DUP 100 * + + + ;

,B (b --) Pack byte “b” into current program word. Pointer “bi” determines which byte

field to pack.
: ,B (c) Bi @ 0 = IF 1 Bi ! H @ Hw ! 0 #, ,w EXIT THEN

 Bi @ 1 = IF 2 Bi ! 100 * ,w EXIT THEN

 Bi @ 2 = IF 3 Bi ! 10000 * ,w EXIT THEN

 0 Bi ! 1000000 * ,w ;

INST (b --) Define byte code assembly commands. It creates a byte code assembly

command like a constant. When a byte code assembly command is later executed, this byte “b”

is retrieved and a byte code is assembled into the current program word by command “,I”.
: INST CONSTANT DOES> R> @ spread ,I ;

nop, (--) First byte code assembly command defined by “INST”.
0 INST nop,

aanew (--) Fill current program word with nop, and initialize hi and hw to assemble

new byte code in the next program word.

: aanew BEGIN Hi @ 10 < WHILE nop, REPEAT 0 Bi ! ;

begin (– a) Mark the current top of dictionary. This is where new tokens will be

compiled.
: begin aanew H @ ;

espForth Byte Code

Here are all the byte code assembly commands to be used to assemble byte code in primitive

commands to build espForth kernel.

decimal

\ 0 INST nop,

1 INST accept, 2 INST qrx, 3 INST txsto, 4 INST docon,

5 INST dolit, 6 INST dolist, 7 INST exit, 8 INST execu,

9 INST donext, 10 INST qbran, 11 INST bran, 12 INST store,

13 INST at, 14 INST cstor, 15 INST cat, 16 INST sendPacket,

17 INST pinSel, 18 INST rfrom, 19 INST rat, 20 INST tor,

21 INST pinOut, 22 INST pinIn, 23 INST drop, 24 INST dup,

25 INST swap, 26 INST over, 27 INST zless, 28 INST andd,

29 INST orr, 30 INST xorr, 31 INST uplus, 32 INST next,

33 INST qdup, 34 INST rot, 35 INST ddrop, 36 INST ddup,

37 INST plus, 38 INST inver, 39 INST negat, 40 INST dnega,

41 INST subb, 42 INST abss, 43 INST equal, 44 INST uless,

45 INST less, 46 INST ummod, 47 INST msmod, 48 INST slmod,

49 INST mod, 50 INST slash, 51 INST umsta, 52 INST star,

53 INST mstar, 54 INST ssmod, 55 INST stasl, 56 INST pick,

57 INST pstor, 58 INST dstor, 59 INST dat, 60 INST count,

61 INST dovar, 62 INST max, 63 INST min, 64 INST audio,

65 INST poke, 66 INST peek,

Command Headers

In espForth, all commands are compiled in a target dictionary, and linked as a list. Each

command has a link field of one 32-bit word, a variable length name field in which the first

byte contains a length followed by the ASCII code of the name, null filled to a 32-bit word

boundary, a one word code field, and a variable-length parameter field containing 32-bit tokens

or byte code. A primitive command has byte code in its code field. A compound command has

a dolist, byte code in its code field, and a token list in its parameter field. Here are

commands to build headers, which include link and name fields.

(makehead) (--) Build a header for a new target command. The header includes a link

field and a name field. The address of the name field in the last target command is stored in

“lasth”, and is compiled into the link field. “h” points to the name field of the new command,

and is copied into “lasth”. Now, the following string is packed into the name field, starting

with its length byte, and null filled to the word boundary. Now, “h” points to the code field of

this new target command.
: (makeHead)

 aanew 20 word \ get name of new definition

 lastH @ nameR! \ fill link field of last word

 H @ lastH ! \ save nfa in lastH

 DUP c@ ,B \ store count

 count FOR AFT

 count ,B \ fill name field

 THEN NEXT

 DROP aanew

 ;

makehead (--) Build a header with (makehead) and save the name string to define a

compiler command in metacompiler. It displays the name and code field address. A string can

be used repeatedly by saving and restoring its pointer in “>IN”.
: makeHead

 >IN @ >R \ save interpreter pointer

 (makeHead)

 R> >IN ! \ restore word pointer

 ;

$LIT (--) Compile a packed string for a string literal inside a token list. It works similarly

as (makehead). However, the name string is delimited by space character (ASCII 0x20), while

a string literal is delimited by a double-quote character (ASCII 0x22).
: $LIT (--)

 aanew 22 WORD

 DUP c@ ,B (compile count)

 count FOR AFT

 count ,B (compile characters)

 THEN NEXT DROP aanew ;

Compilers for Primitive and Compound Commands

We are now at the peak of our metacompiler. We built all the tools to compile new commands

into the target dictionary, which will eventually run ESP8266 chip. All commands have a link

field and a name field. Primitive commands have an additional code field. Compound

commands have a code field and a parameter field. Two defining commands are now created to

build the primitive and compound commands. CODE creates a header for a primitive

commands, and its following code field can now be packed with byte code. :: (colon-

colon) creates a header for a compound command, and its following parameter field can be

stuffed with a token list.

CODE (--) Create a new primitive command in espForth target dictionary. It creates a new

header with a link field and a name field, and is ready to assemble byte code in the following

code field. It also creates an assembly command in the metacompiler, storing its code field

address. When this assembly command is encountered by metacompiler, it compiles its code

field address as a token to extend the token list currently under construction.
: CODE makeHead begin .head CONSTANT DOES> R> @ #, ;

:: (--) Create a new compound command in espForth target dictionary. It creates a link field and

a name field, and then add a byte code dolist, in the code field. Now, a token list can be built in its

parameter field, to become a new compound command in target dictionary. It also creates an assembly

command in the metacompiler, storing its code field address. When this assembly command is

encountered by metacompiler, it compiles its code field address as a token to extend the token list

currently under construction.
: :: makeHead begin .head CONSTANT dolist, aanew DOES> R> @ #, ;

Chapter 5. espForth Kernel

The kernel of espForth_44 is defined in file cefKERNa_43.f. The byte code it refers to are

defined in espForth_44.ino.

In Forth dictionary, each command has a record containing 4 fields: a link field pointing to the

name field of its prior command, a name field containing ASCII characters for the name of this

command, a code field pointing to executable byte code of this command, and a parameter field

containing data used by this command. There are two types of commands used in eForth: low

level primitive commands whose parameter field contains more byte code; and high level

compound commands whose parameter fields contain tokens lists. In this espForth_44

implementation, a token is the code field address of a command in dictionary. Tokens are 4

bytes in length. The length of a parameter field varies depending upon the complexity of the

command.

In the code field of a primitive commands, there are 4 byte code in the code field. The

parameter field may have more byte code. A byte code sequence is terminated by a special byte

code named next(). The function of next() is to fetch the token pointed to by the Interpreter

Pointer IP, increment IP to point to the next token in a token list, and execute the token just

fetched. Since a token points to a code field containing executable byte code, executing a token

means jumping indirectly to the code field pointed to by the token. next() thus allows the

Virtual Forth Engine to execute a token list with very little CPU overhead. In espForth_44,

next() is defined as:
void next(void)

{ P = data[IP>>2];

 IP += 4;

 WP = P+4; }

In a compound command, the code field contains one byte code (6) which executes a function

dolist(),which processes the token list in the parameter field following the code field.

dolist() pushes the contents in IP onto the return stack, copies the address of the first token

in its code field into IP and then calls next(). next() then executes the token list in the

parameter field:
void dolist(void)

{ rack[(unsigned char)++R] = IP;

 IP = WP;

 next(); }

The last token in the token list of a compound command must be a primitive command EXIT.

It executes exitt(), and thus undoes what dolist() accomplished. exitt() pops the top

item on the return stack into the IP register. Consequently, IP points to the token following the

compound command just executed. exitt() then invokes next() which continues processing of

the calling token list, briefly interrupted by the last compound command in this token list.
CODE EXIT exitt, next,

void exitt(void)

{ IP = (long) rack[(unsigned char)R--];

 next(); }

next() is the inner interpreter of primitive words, and dolist() is the interpreter of

compound command and are often referred to as an address interpreter. They are the foundation

of a Virtual Forth Engine.

The collection of primitive commands is generally called the kernel of a Forth system. These

primitive commands contain byte code, which cause C function in the Virtual Forth Machine to

be executed to perform atomic operations by the host computer.

In the kernel of espForth_44, most primitive commands have one byte code followed by the

inner interpreter next(), which has a byte code of 0x20. However, primitive commands may

have one byte code, or as many byte code as necessary. The assembler in espForth_44 uses a

special command COLD to construct the header of a primitive command, which includes a link

field and a name field. After the header is constructed, byte code are added at will. The names

of assembly instructions are simply the names of the corresponding C functions, terminated

with a , (comma) character.

To show you clearly the relationship between a primitive command and the corresponding C

function in VFM, I will put them together, as much as I can. Hopefully, you can bridge the gap

between a VFM and a Forth machine that you can interact with.

System Variables

 A set of system variables are implemented as constants pointing to specific addresses in the

variable area, allocated in the beginning of the dictionary.

HLD (-- a) Return a pointer to a buffer below PAD to build a numeric output string.
CODE HLD 190 docon, next, #, \ scratch

SPAN (-- a) Hold a character count received by EXPECT.
CODE SPAN 194 docon, next, #, \ #chars input by EXPECT

>IN (-- a) Hold the current character pointer while parsing input stream.
CODE >IN 198 docon, next, #, \ input buffer offset

#TIB (-- a) Hold the current character count in terminal input buffer. Terminal Input Buffer is

in the next variable „TIB.
CODE #TIB 19C docon, next, #, \ #chars in the input buffer

‘TIB (-- a) Hold the current address of terminal input buffer.
CODE 'TIB 1A0 docon, next, #, \ ptr to TIB

BASE (-- a) Store the current radix base for numeric I/O. Default to 0x10.
CODE BASE 1A4 docon, next, #, \ number base

CONTEXT (-- a) Return a pointer to the last name field in Forth dictionary.
CODE CONTEXT 1A8 docon, next, #, \ first search vocabulary

CP (-- a) Point to the top of the Forth dictionary. New commands are compiled here.
CODE CP 1AC docon, next, #, \ dictionary code pointer

LAST (-- a) Return a pointer to the last name field in Forth dictionary. It is updated only when

a valid new command is compiled successfully.
CODE LAST 1B0 docon, next, #, \ ptr to last name compiled

‘EVAL (-- a) Hold the execution vector for EVAL. Default to $INTERPRET while

interpreting commands. It is changed to $COMPILE while compiling a new compound

command.
CODE 'EVAL 1B4 docon, next, #, \ interpret/compile vector

‘ABORT (-- a) Hold the execution vector for error handler. Default to QUIT.
CODE 'ABORT 1B8 docon, next, #, \ ptr to error handler

tmp (-- a) A temporary storage location used in parsing and searching commands.
CODE tmp 1BC docon, next, #, \ ptr to converted # string

System Interface Commands

ACCEPT (b u1 -- b u2) Accept u1 characters to b. u2 returned is the actual count of

characters received.
CODE ACCEPT accept, next,

void accep()

/* UDP accept */

{ while (Udp.parsePacket()==0 && Serial.available()==0) {};

 int len;

 while (!Udp.available()==0) {

 len = Udp.read(cData, top); }

 while (!Serial.available()==0) {

 len = Serial.readBytes(cData, top); }

 if (len > 0) {

 cData[len] = 0; }

 top = len;

 }

EMIT (c --) Send a character to the serial terminal, and the UDP output buffer. The UDP

packet will be send out when CR is executed.
CODE EMIT txsto, next,

void txsto(void)

{ Serial.write((unsigned char) top);

 Udp.write((char) top);

 pop; }

sendPacket() Send an UDP packet out to WiFi network. It is executed only by CR

command.
CODE sendPacket sendPacket, next,

void sendPacket(void)

{ Udp.endPacket();

 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); }

pinSel(1/0 pin --) Select a GPIO pin for output of input. A 1 is for output, and a 0 is for

input.
CODE pinSel pinSel, next,

void pinSel(void) { w=top; pop; pinMode(w,top); pop; }

pinOut(1/0 pin --) Set or reset a GPIO output pin. 1 to pull high, and 0 to pull low.
CODE pinOut pinOut, next,

void pinOut(void) { w=top; pop; digitalWrite(w,top); pop; }

pinIn(pin – n) Read an GPIO input pin.
CODE pinIn pinIn, next,

void pinIn(void) { top = digitalRead(top); }

audio (pin freq ms --) sends a PWM signal out on a GPIO output pin. Call Arduuino IO

library function tone(pin freq ms) to do the work. Freq is in Hz, ms is in milliseconds.
CODE TONE audio, next,

void audio(void)

{ cell ms=top; pop;

 cell freq=top; pop;

 cell pin=top; pop;

 tone(pin,freq,ms);

}

POKE (n a --) writes one word n to an absolute address a in ESP8266.
CODE POKE poke, next,

void poke(void) { Pointer = (cell*)top; *Pointer = stack[(unsigned

char)S--]; pop; }

PEEK (a – n) reads one word n from an absolute address a in ESP8266.
CODE PEEK peek, next,

void peeek(void) { Pointer = (cell*)top; top = *Pointer; }

Inner Interpreter

next() is the inner interpreter of the Virtual Forth Machine. Execute the next token in a token

list.
void next(void) { P = data[IP>>2]; IP += 4; jump(); }

NOP (--) No operation.
CODE NOP next,

void nop(void) { jump(); }

DOLIT (-- w) Push the next token onto the data stack as an integer literal. It allows numbers to

be compiled as in-line literals, supplying data to the data stack at run time.
CODE DOLIT dolit, next,

void dolit(void) { push data[IP>>2]; IP += 4; next(); }

DOLIST (--) Push the current Instruction Pointer (IP) the return stack and then pops the

Program Counter P into IP from the data stack. When next() is executed, the tokens in the list

are executed consecutively. Dolist, is in the code field of all compound commands. The

token list in a compound command must be terminated by EXIT.
CODE DOLIST dolist, next,

void dolist(void) { rack[(unsigned char)++R] = IP; IP = P; next(); }

EXIT (--) Terminate all token lists in compound commands. EXIT pops the execution address

saved on the return stack back into the IP register and thus restores the condition before the

compound command was entered. Execution of the calling token list will continue.
CODE EXIT exit, next,

void exitt(void) { IP = (cell) rack[(unsigned char)R--]; next(); }

EXECUTE (a --) Take the execution address from the data stack and executes that token. This

powerful command allows you to execute any token which is not a part of a token list.
CODE EXECUTE execu, next,

void execu(void) { rack[(unsigned char)++R] = IP; P = top; pop; jump(); }

DONEXT (--) Terminate a FOR-NEXT loop. The loop count was pushed on return stack, and is

decremented by DONEXT. If the count is not negative, jump to the address following DONEXT;

otherwise, pop the count off return stack and exit the loop. DONEXT is compiled by NEXT.
CODE DONEXT donext, next,

void donext(void)

{ if(rack[(unsigned char)R]) { rack[(unsigned char)R] -= 1 ; IP =

data[IP>>2]; }

 else { IP += 4; (unsigned char)R-- ; }

 next(); }

QBRANCH (f --) Test top element as a flag on data stack. If it is zero, branch to the address

following QBRANCH; otherwise, continue execute the token list following the address.

QBRANCH is compiled by IF, WHILE and UNTIL.
CODE QBRANCH qbran, next,

void qbran(void)

{ if(top == 0) IP = data[IP>>2];

 else IP += 4; pop;

 next(); }

BRANCH (--) Branch to the address following BRANCH. BRANCH is compiled by AFT, ELSE,

REPEAT and AGAIN.
CODE BRANCH bran, next,

void bran(void) { IP = data[IP>>2]; next(); }

Memory Access Commands

! (n a --) Store integer n into memory location a.
CODE ! store, next,

void store(void) { data[top>>2] = stack[(unsigned char)S--]; pop; }

@ (a -- n) Replace memory address a with its integer contents fetched from this location.

CODE @ at, next,

void at(void) { top = data[top>>2]; }

C! (c b --) Store a byte value c into memory location b.
CODE C! cstor, next,

void cstor(void) { cData[top] = (unsigned char) stack[(unsigned char)S--];

pop; }

C@ (b -- n) Replace byte memory address b with its byte contents fetched from this location.
CODE C@ cat, next,

void cat(void) { top = (cell) cData[top]; }

+! (n a --) Add n to the contents at address a.
CODE +! pstor, next,

void pstor(void) { data[top>>2] += stack[(unsigned char)S--], pop; }

2! (d a --) Store the double integer to address a.
CODE 2! dstor, next,

void dstor(void)

{ data[(top>>2)+1] = stack[(unsigned char)S--];

 data[top>>2] = stack[(unsigned char)S--]; pop; }

2@ (a -- d) Fetch double integer from address a.
CODE 2@ dat, next,

void dat(void) { push data[top>>2]; top = data[(top>>2)+1]; }

COUNT (b -- b+1 +n) Return count byte of a string and add 1 to byte address.
CODE COUNT count, next,

void count(void) { stack[(unsigned char)++S] = top + 1; top =

cData[top]; }

Stack Commands

>R (n --) Pop a number off the data stack and pushes it on the return stack.
CODE R> rfrom, next,

void rfrom(void) { push rack[(unsigned char)R--]; }

R@ (-- n) Copy a number off the return stack and pushes it on the return stack.
CODE R@ rat, next,

void rat(void) { push rack[(unsigned char)R]; }

>R(-- n) Pop a number off the return stack and pushes it on the data stack.
CODE >R tor, next,

void tor(void) { rack[(unsigned char)++R] = top; pop; }

DROP (w --) Discard top stack item.
CODE DROP drop, next,
void drop(void) { pop; }

DUP (w -- w w) Duplicate the top stack item.
CODE DUP dup, next,

void dup(void) { stack[(unsigned char)++S] = top; }

SWAP (w1 w2 -- w2 w1) Exchange top two stack items.
CODE SWAP swap, next,

void swap(void) { w = top; top = stack[(unsigned char)S];

 stack[(unsigned char)S] = w; }

OVER (w1 w2 -- w1 w2 w1) Copy second stack item to top.
CODE OVER over, next,

void over(void) { push stack[(unsigned char)(S-1)]; }

?DUP (w -- w w | 0) Dup top of stack if its is not zero.
CODE ?DUP qdup, next,

void qdup(void) { if(top) stack[(unsigned char)++S] = top ; }

ROT (w1 w2 w3 -- w2 w3 w1) Rot 3rd item to top.
CODE ROT rot, next,

void rot(void)

{ w = stack[(unsigned char)(S-1)];

 stack[(unsigned char)(S-1)] = stack[(unsigned char)S];

 stack[(unsigned char)S] = top;

 top = w; }

2DROP (w w --) Discard two items on stack.
CODE 2DROP ddrop, next,

void ddrop(void) { drop(); drop(); }

2DUP (w1 w2 -- w1 w2 w1 w2) Duplicate top two items.
CODE 2DUP ddup, next,

void ddup(void) { over(); over(); }

PICK (... +n -- ... w) Copy the nth stack item to top.
CODE PICK pick, next,

void pick(void) { top = stack[(unsigned char)(S-top)]; }

Logic Commands

0< (n – f) Examine the top item on the data stack for its negativeness. If it is negative, return

a -1 for true. If it is 0 or positive, return a 0 for false.
CODE 0< zless, next,

void zless(void) { top = (top < 0) LOGICAL; }

= (w w -- t) Return true if top two are equal.
CODE = equal, next,

void equal(void) { top = (stack[(unsigned char)S--] == top) LOGICAL; }

U< (u1 u2 -- t) Unsigned compare of top two items.
CODE U< uless, next,

void uless(void) { top = LOWER(stack[(unsigned char)S], top) LOGICAL; S--

; }

< (n1 n2 -- t) Signed compare of top two items.
CODE < less, next,

void less(void) { top = (stack[(unsigned char)S--] < top) LOGICAL; }

NOT (w -- w) One's complement of top.
CODE NOT inver, next,

void inver(void) { top = -top-1; }

AND (w w -- w) Bitwise AND.
CODE AND andd, next,

void andd(void) { top &= stack[(unsigned char)S--]; }

OR (w w -- w) Bitwise inclusive OR.
CODE OR orr, next,

void orr(void) { top |= stack[(unsigned char)S--]; }

XOR (w w -- w) Bitwise exclusive OR.
CODE XOR xorr, next,

void xorr(void) { top ^= stack[(unsigned char)S--]; }

MAX (n1 n2 -- n) Return the greater of two top stack items.
CODE MAX max, next,

void maxx(void)

{ if (top < stack[(unsigned char)S]) pop;

 else (unsigned char)S--; }

MIN (n1 n2 -- n) Return the smaller of top two stack items.
CODE MIN min, next,

void minn(void)

{ if (top < stack[(unsigned char)S]) (unsigned char)S--;

 else pop; }

Math Commands

UM+ (w w -- w cy) Add two numbers, return the sum and carry flag.
CODE UM+ uplus, next,

void uplus(void)

{ stack[(unsigned char)S] += top;

 top = LOWER(stack[(unsigned char)S], top); }

+ (w w -- sum) Add top two items.
CODE + plus, next,

void plus(void) { top += stack[(unsigned char)S--]; }

NEGATE (n -- -n) Two's complement of top.
CODE NEGATE negat, next,

void negat(void) { top = 0 - top; }

DNEGATE (d -- -d) Two's complement of top double.
CODE DNEGATE dnega, next,

void dnega(void) { inver(); tor(); inver(); push 1;

 uplus(); rfrom(); plus(); }

- (n1 n2 -- n1-n2) Subtraction.
CODE - subb, next,

void subb(void) { top = stack[(unsigned char)S--] - top; }

ABS (n -- n) Return the absolute value of n.
CODE ABS abss, next,

void abss(void) { if(top < 0) top = -top; }

UM/MOD(udl udh u -- ur uq) Unsigned divide of a double by a single. Return mod and quotient.
CODE UM/MOD ummod, next,

void ummod(void)

{ d = (long long int)((unsigned long)top);

 m = (long long int)((unsigned long)stack[(unsigned char) S]);

 n = (long long int)((unsigned long)stack[(unsigned char) (S - 1)]);

 n += m << 32; pop;

 top = (unsigned long)(n / d);

 stack[(unsigned char) S] = (unsigned long)(n%d); }

M/MOD (d n -- r q) Signed floored divide of double by single. Return mod and quotient.
CODE M/MOD msmod, next,

void msmod(void)

{ d = (signed long long int)((signed long)top);

 m = (signed long long int)((signed long)stack[(unsigned char) S]);

 n = (signed long long int)((signed long)stack[(unsigned char) S - 1]);

 n += m << 32; pop;

 top = (signed long)(n / d);

 stack[(unsigned char) S] = (signed long)(n%d); }

/MOD (n1 n2 -- r q) Signed divide. Return mod and quotient.
CODE /MOD slmod, next,

void slmod(void)

{ if (top != 0) {

 w = stack[(unsigned char) S] / top;

 stack[(unsigned char) S] %= top;

 top = w; } }

MOD (n n -- r) Signed divide. Return mod only.
CODE MOD mod, next,

void mod(void)

{ top = (top) ? stack[(unsigned char) S--] % top : stack[(unsigned char)

S--]; }

/ (n n -- q) Signed divide. Return quotient only.
CODE / slash, next,

void slash(void)

{ top = (top) ? stack[(unsigned char) S--] / top : (stack[(unsigned char)

S--], 0); }

UM* (u1 u2 -- ud) Unsigned multiply. Return double product.
CODE UM* umsta, next,

void umsta(void)

{ d = (unsigned long long int)top;

 m = (unsigned long long int)stack[(unsigned char) S];

 m *= d;

 top = (unsigned long)(m >> 32);

 stack[(unsigned char) S] = (unsigned long)m; }

* (n n -- n) Signed multiply. Return single product.
CODE * star, next,

void star(void) { top *= stack[(unsigned char) S--]; }

M* (n1 n2 -- d) Signed multiply. Return double product.
CODE M* mstar, next,

void mstar(void)

{ d = (signed long long int)top;

 m = (signed long long int)stack[(unsigned char) S];

 m *= d;

 top = (signed long)(m >> 32);

 stack[(unsigned char) S] = (signed long)m; }

*/MOD (n1 n2 n3 -- r q) Multiply n1 and n2, then divide by n3. Return mod and quotient.
CODE */MOD ssmod, next,

void ssmod(void)

{ d = (signed long long int)top;

 m = (signed long long int)stack[(unsigned char) S];

 n = (signed long long int)stack[(unsigned char) (S - 1)];

 n += m << 32; pop;

 top = (signed long)(n / d);

 stack[(unsigned char) S] = (signed long)(n%d); }

*/ (n1 n2 n3 -- q) Multiply n1 by n2, then divide by n3. Return quotient only.
CODE */ stasl, next,

void stasl(void)

{ d = (signed long long int)top;

 m = (signed long long int)stack[(unsigned char) S];

 n = (signed long long int)stack[(unsigned char) (S - 1)];

 n += m << 32; pop; pop;

 top = (signed long)(n / d); }

Miscellaneous Commands

BL (– 0x20) Push blank character on stack.
CODE BL 20 docon, next, #,

CELL (– 4) Push cell size on stack.
CODE CELL 4 docon, next, #,

CELL+ (a -- a) Add cell size in byte to address.
CODE CELL+ 4 docon, plus, next, #,

void cellp(void) { top += 4; }

CELL- (a -- a) Subtract cell size in byte from address.
CODE CELL- 4 docon, subb, next, #,

void cellm(void) { top -= 4; }

CELLS (n -- n) Multiply top by cell size in bytes.
CODE CELLS 4 docon, star, next, #,

void cells(void) { top *= 4; }

CELL/ (n -- n) Divide top by cell size in bytes.
CODE CELL/ 4 docon, slash, next, #,

void cellsl(void) { top /= 4; }

1+ (a – a+1) Increment top.
CODE 1+ 1 docon, plus, next, #,

1- (a – a-1) Decrement top.
CODE 1- 1 docon, subb, next, #,

Control Structure Commands

Above we have all the primitive commands in the kernel of espForth. Many of the primitive

commands are not used in programming, but are used to construct branching and looping

control structures in token lists of compound commands. They compile integer and address

literals in token lists, and resolve the address fields in address literals. They allow Forth to

incorporate nested structures in simple linear token lists to solved complex problems.

;; (--) Terminate a token list in Compound commands by compiling the token EXIT.
: ;; EXIT ;

BEGIN Mark current location in target for later address resolution.
: BEGIN (-- a) begin ;

AGAIN Terminate a begin-again loop, and assemble a BRANCH instruction to “begin”.
: AGAIN (a --) BRANCH #, ;

UNTIL Terminate a begin-until loop if top is not zero.
: UNTIL (a --) QBRANCH #, ;

IF Start a conditional branch structure. Assemble a QBRANCH instruction.
: IF (-- a) QBRANCH BEGIN 0 #, ;

ELSE Resolve branch instruction at “IF”, and start a branch structure. Assemble a BRANCH

instruction.
: ELSE (a1 -- a2) BRANCH BEGIN 0 #, forth_swap

 BEGIN forth_swap RAM! ;

THEN Terminate a conditional branch structure by resolving the branch instruction at “IF” or

“ELSE”.
: THEN (a --) BEGIN forth_swap RAM! ;

WHILE Start a conditional branch structure in a begin-while-repeat loop. Assemble a

QBRANCH instruction.
: WHILE (a1 -- a2 a1) IF forth_swap ;

REPEAT Terminate a begin-while-repeat loop, and assemble a BRANCH instruction to

“begin”.
: REPEAT (a --) BRANCH #, THEN ;

AFT Branch the THEN in a FOR-NEXT loop to skip this branch the first time through the loop.
: AFT (a1 -- a3 a2) forth_drop BRANCH BEGIN 0 #, BEGIN forth_swap ;

FOR Start a finite FOR-NEXT loop.
: FOR (-- a) >R BEGIN ;

NEXT Terminate a FOR-NEXT loop.
: NEXT (a --) DONEXT #, ;

LIT Compile an integer literal in a token list..
: LIT (n --) DOLIT #, ;

Chapter 6. espForth Compound Commands

The dictionary of espForth system contains records of all Forth commands. The low level

primitive commands are discussed in the Kernel section. The high level compound commands

are discussed here. All compound commands are defined in the file cEFa_43.f. They are

discussed in their loading order. The loading order is very important in the espForth

metacompiler, because forward referencing is not allowed. All assembling and compiling

processes are accomplished in a single pass.

espForth metacompiler behaves very similar to a regular Forth system. However, to compile

primitive commands into a target dictionary, the command CODE was changed to accomplish

this goal. To compile high level compound commands to the target dictionary, as we do in this

cEFa_43.f file, a new set of commands :: (colon-colon) and :: (semicolon-semicolon) are used

instead of the Forth commands : (colon) and ; (semicolon). Unlike : (colon), :: (colon-colon)

does not change to a compiling state, and the metacompiler remains in the interpretive state

throughout. New commands defined by the metacompiler would just add new tokens to the

target dictionary.

Control structure commands like IF, ELSE, THEN, BEGIN, WHILE, REPEAT, etc, are all

redeined in the metacompiler so they can construct control structures properly in the target

dictionary. The only exception is the handling of literals. An integer encountered by

metacompiler would remain of the data stack. If you intended to compiler it as a literal in the

target dictionary, you would have to use the special command LIT. If you are familiar with

Forth language, you would notice that the compound commands in cEFa_43.f read identically

like regular Forth code, except that integer literals have to be handled explicitly.

Common Commands

WITHIN checks whether the third item on the data stack is within the range as specified by the

top two numbers on the data stack. The range is inclusive as to the lower limit and exclusive to

the upper limit. If the third item is within range, a true flag is returned on the data stack.

Otherwise, a false flag is returned. All numbers are assumed to be unsigned integers.
:: WITHIN (u ul uh -- t) \ ul <= u < uh

 OVER - >R - R> U< ;;

>CHAR is very important in converting a non-printable character to a harmless 'underscore'

character (ASCII 95). As eForth is designed to communicate with you through a serial I/O

device, it is important that eForth will not emit control characters to the host and causes

unexpected behavior on the host computer. >CHAR thus filters the characters before they are

sent out by TYPE.
:: >CHAR (c -- c)

 $7F LIT AND DUP $7F LIT BL WITHIN

 IF DROP (CHAR _) $5F LIT THEN ;;

ALIGNED changes the address to the next cell boundary so that it can be used to address 32 bit

word in memory.

:: ALIGNED (b -- a) 3 LIT + FFFFFFFC LIT AND ;;

HERE returns the address of the first free location above the code dictionary, where new

commands are compiled.
:: HERE (-- a) CP @ ;;

PAD returns the address of the text buffer where numbers are constructed and text strings are

stored temporarily.
:: PAD (-- a) HERE 50 LIT + ;;

TIB returns the terminal input buffer where input text string is held.
:: TIB (-- a) 'TIB @ ;;

@EXECUTE is a special command supporting the vectored execution commands in eForth. It

fetches the code field address of a token and executes the token.
:: @EXECUTE (a --) @ ?DUP IF EXECUTE THEN ;;

CMOVE copies a memory array from one location to another. It copies one byte at a time.
:: CMOVE (b b u --)

 FOR AFT OVER c@ OVER c! >R 1+ R> 1+ THEN NEXT 2DROP ;;

MOVE copies a memory array from one location to another. It copies one word at a time.
:: MOVE (b b u --)

 CELL/ FOR AFT OVER @ OVER ! >R CELL+ R> CELL+ THEN NEXT 2DROP ;;

FILL fills a memory array with the same byte.
:: FILL (b u c --)

 SWAP FOR SWAP AFT 2DUP c! 1+ THEN NEXT 2DROP ;;

Numeric Output

DIGIT converts an integer to an ASCII digit.
:: DIGIT (u -- c)

 9 LIT OVER < 7 LIT AND +

 (CHAR 0) 30 LIT + ;;

EXTRACT extracts the least significant digit from a number n. n is divided by the radix in BASE

and returned on the stack.
:: EXTRACT (n base -- n c)

 0 LIT SWAP UM/MOD SWAP DIGIT ;;

<# initiates the output number conversion process by storing PAD buffer address into variable

HLD, which points to the location next numeric digit will be stored.
:: <# (--) PAD HLD ! ;;

HOLD appends an ASCII character whose code is on the top of the parameter stack, to the

numeric output string at HLD. HLD is decremented to receive the next digit.
:: HOLD (c --) HLD @ 1- DUP HLD ! C! ;;

(dig) extracts one digit from integer on the top of the parameter stack, according to radix

in BASE, and add it to output numeric string.
:: # (u -- u) BASE @ EXTRACT HOLD ;;

#S (digs) extracts all digits to output string until the integer on the top of the parameter

stack is divided down to 0.
:: #S (u -- 0) BEGIN # DUP WHILE REPEAT ;;

SIGN inserts a - sign into the numeric output string if the integer on the top of the parameter

stack is negative.
:: SIGN (n --) 0< IF (CHAR -) 2D LIT HOLD THEN ;;

#> terminates the numeric conversion and pushes the address and length of output numeric

string on the parameter stack.
:: #> (w -- b u) DROP HLD @ PAD OVER - ;;

str converts a signed integer on the top of data stack to a numeric output string.
:: str (n -- b u) DUP >R ABS <# #S R> SIGN #> ;;

HEX sets numeric conversion radix in BASE to 16 for hexadecimal conversions.
:: HEX (--) 10 LIT BASE ! ;;

DECIMAL sets numeric conversion radix in BASE to 10 for decimal conversions.
:: DECIMAL (--) 0A LIT BASE ! ;;

Numeric Input

wupper converts 4 bytes in a word to upper case characters.
:: wupper (w -- w') 5F5F5F5F LIT AND ;;

>upper converts a character to upper case.
:: >upper (c -- UC)

 dup 61 LIT 7B LIT WITHIN IF 5F LIT AND THEN ;;

DIGIT? converts a digit to its numeric value according to the current base, and NUMBER?

converts a number string to a single integer.
:: DIGIT? (c base -- u t)

 >R (CHAR 0) >upper 30 LIT - 9 LIT OVER <

 IF 7 LIT - DUP 0A LIT < OR THEN DUP R> U< ;;

NUMBER? converts a string of digits to a single integer. If the first character is a $ sign, the

number is assumed to be in hexadecimal. Otherwise, the number will be converted using the

radix value stored in BASE. For negative numbers, the first character should be a - sign. No

other characters are allowed in the string. If a non-digit character is encountered, the address of

the string and a false flag are returned. Successful conversion returns the integer value and a

true flag. If the number is larger than 2**n, where n is the bit width of a single integer, only the

modulus to 2**n will be kept.
:: NUMBER? (a -- n T | a F)

 BASE @ >R 0 LIT OVER COUNT (a 0 b n)

 OVER c@ (CHAR $) 24 LIT =

 IF HEX SWAP 1+ SWAP 1- THEN (a 0 b' n')

 OVER c@ (CHAR -) 2D LIT = >R (a 0 b n)

 SWAP R@ - SWAP R@ + (a 0 b" n") ?DUP

 IF 1- (a 0 b n)

 FOR DUP >R c@ BASE @ DIGIT?

 WHILE SWAP BASE @ * + R> 1+

 NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP

 ELSE R> R> (b index) 2DROP (digit number) 2DROP 0 LIT

 THEN DUP

 THEN R> (n ?sign) 2DROP R> BASE ! ;;

Character Output

SPACE outputs a blank space character.
:: SPACE (--) BL EMIT ;;

CHARS outputs n characters c.
:: CHARS (+n c --)

 SWAP 0 LIT MAX

 FOR AFT DUP EMIT THEN NEXT DROP ;;

SPACES outputs n blank space characters.
:: SPACES (+n --) BL CHARS ;;

TYPE outputs n characters from a string in memory. Non ASCII characters are replaced by a

underscore character.
:: TYPE (B U --)

 FOR AFT DUP C@ >CHAR EMIT 1+ THEN NEXT DROP ;;

CR outputs a carriage-return and a line-feed. Prior output characters are accumulated in a UDP

packet buffer. This packet is sent out by sendPacket.
:: CR (--) (=CR)

 0A LIT 0D LIT EMIT EMIT sendPacket ;;

do$ retrieves the address of a string stored as the second item on the return stack. do$ is a bit

difficult to understand, because the starting address of the following string is the second item on

the return stack. This address is pushed on the data stack so that the string can be accessed. This

address must be changed so that the address interpreter will return to the token right after the

compiled string. This address will allow the address interpreter to skip over the string literal and

continue to execute the token list as intended. Both $"| and ."| use the command do$,
:: do$ (-- $adr)

 R> R@ R> COUNT + ALIGNED >R SWAP >R ;;

$”| push the address of the following string on stack. Other commands can use this address to

access data stored in this string. The string is a counted string. Its first byte is a byte count.
:: $"| (-- a) do$;;

”| displays the following string on stack. This is a very convenient way to send helping

messages to you at run time.

:: ."| (--) do$ COUNT TYPE ;;

.R displays a signed integer n , the second item on the parameter stack, right-justified in a

field of +n characters. +n is on the top of the parameter stack.
:: .R (n +n --)

 >R str R> OVER - SPACES TYPE ;;

U.R displays an unsigned integer n right-justified in a field of +n characters.
:: U.R (u +n --)

 >R <# #S #> R> OVER - SPACES TYPE ;;

U. displays an unsigned integer u in free format, followed by a space.
:: U. (u --) <# #S #> SPACE TYPE ;;

. (dot) displays a signed integer n in free format, followed by a space.
:: . (n --)

 BASE @ 0A LIT XOR

 IF U. EXIT THEN str SPACE TYPE ;;

? displays signed integer stored in memory a on the top of the parameter stack, in free format

followed by a space.
:: ? (a --) @ . ;;

Parser

(parse) (b1 u1 c --b2 u2 n) From the source string starting at b1 and of u1 characters long,

parse out the first word delimited by character c. Return the address b2 and length u2 of the

word just parsed out and the difference n between b1 and b2. Leading delimiters are skipped

over. (parse) is used by PARSE.
:: (parse) (b u c -- b u delta ; <string>)

 tmp c! OVER >R DUP \ b u u

 IF 1- tmp c@ BL =

 IF \ b u' \ 'skip'

 FOR BL OVER c@ - 0< NOT

 WHILE 1+

 NEXT (b) R> DROP 0 LIT DUP EXIT \ all delim

 THEN R>

 THEN OVER SWAP \ b' b' u' \ 'scan'

 FOR tmp c@ OVER c@ - tmp c@ BL =

 IF 0< THEN WHILE 1+

 NEXT DUP >R

 ELSE R> DROP DUP 1+ >R

 THEN OVER - R> R> - EXIT

 THEN (b u) OVER R> - ;;

PACK$ copies a source string (b u) to target address at a. The target string is null filled to the

cell boundary. The target address a is returned.
:: PACK$ (b u a -- a) \ always word-aligned

 DUP >R

 2DUP + $FFFFFFFC LIT AND 0 LIT SWAP ! \ LAST WORD FILL 0 1ST

 2DUP C! 1+ SWAP CMOVE R> ;;

PARSE scans the source string in the terminal input buffer from where >IN points to till the end

of the buffer, for a word delimited by character c. It returns the address and length of the word

parsed out. PARSE calls (parse) to do the dirty work.
:: PARSE (c -- b u ; <string>)

 >R TIB >IN @ +

 #TIB @ >IN @ -

 R> (parse) >IN +! ;;

TOKEN parses the next word from the input buffer and copy the counted string to the top of the

name dictionary. Return the address of this counted string.
:: TOKEN (-- a ;; <string>)

 BL PARSE $1F LIT MIN

 HERE CELL+ \ S D N

 PACK$;;

WORD parses out the next word delimited by the ASCII character c. Copy the word to the top of

the code dictionary and return the address of this counted string.
:: WORD (c -- a ; <string>)

 PARSE HERE CELL+ PACK$;; \ BM+

Dictionary Search

NAME> (nfa – cfa) Return a code field address from the name field address of a command.
:: NAME> (a -- xt) COUNT 1F LIT AND + ALIGNED ;;

SAME? (a1 a2 n – a1 a2 f) Compare n/4 words in strings at a1 and a2. If the strings are the

same, return a 0. If string at a1 is higher than that at a2, return a positive number; otherwise,

return a negative number. FIND compares the 1
st
 word input string and a name. If these two

words are the same, SAME? is called to compare the rest of two strings
:: SAME? (a a u -- a a f \ -0+)

 $1F LIT AND CELL/

 FOR AFT OVER R@ 4 LIT * + @ wupper

 OVER R@ 4 LIT * + @ wupper

 - ?DUP IF R> DROP EXIT THEN

 THEN NEXT

 0 LIT ;;

find (a va --cfa nfa, a F) searches the dictionary for a command. A counted string at a is the

name of a token to be looked up in the dictionary. The last name field address of the dictionary

is stored in location va. If the string is found, both the code field address and the name field

address are returned. If the string is not the name a token, the string address and a false flag are

returned.
:: find (a va -- xt na | a 0)

 SWAP \ va a

 DUP @ tmp ! \ va a \ get cell count

 DUP @ >R \ va a \ #XOR --- count and 1st 3 char

 cell+ SWAP \ a' va a'=a(#XOR)+4

 BEGIN @ DUP \ a' na na

 IF DUP @ $FFFFFF3F LIT AND wupper

 R@ wupper XOR \ ignore lexicon bits

 IF cell+ -1 LIT

 ELSE cell+ tmp @ SAME?

 THEN

 ELSE R> DROP SWAP cell- SWAP EXIT \ a 0

 THEN

 WHILE cell- cell- \ a' la

 REPEAT R> DROP SWAP DROP

 cell- DUP NAME> SWAP ;;

:: NAME? (a -- cfa na | a 0)

 CONTEXT find ;;

Text Interpreter

EXPECT (b u1 --) accepts u1 characters to b. Number of characters accepted is stored in SPAN.
:: EXPECT (b u --) accept SPAN ! DROP ;;

QUERY is the command which accepts text input, up to 80 characters, from an input device and

copies the text characters to the terminal input buffer. It also prepares the terminal input buffer

for parsing by setting #TIB to the received character count and clearing >IN.
:: QUERY (--)

 TIB 50 LIT ACCEPT #TIB !

 DROP 0 LIT >IN ! ;;

ABORT resets system and re-enters into the text interpreter loop QUIT. It actually executes

QUIT stored in ‘ABORT. This avoids forward-referencing to QUIT, as QUIT is yet to be

defined.
:: ABORT (--) 'ABORT @EXECUTE ;;

abort”| (f --) A runtime string command compiled in front of a string of error message. If

flag f is true, display the following string and jump to ABORT. If flag f is false, ignore the

following string and continue executing tokens after the error message.
:: abort" (f --)

 IF do$ COUNT TYPE ABORT THEN do$ DROP ;;

ERROR displays an error message at a with a ? mark, and ABORT.
:: ERROR (a --)

 space count type $3F LIT EMIT

 $1B LIT (ESC) EMIT

 CR ABORT

$INTERPRET executes a command whose string address is on the stack. If the string is not a

command, convert it to a number. If it is not a number, ABORT.
:: $INTERPRET (a --)

 NAME? ?DUP

 IF C@ $40 LIT AND

 abort" $LIT compile only" (?even) EXECUTE EXIT

 THEN

 NUMBER? IF EXIT ELSE ERROR THEN ;;

[(left-paren) activates the text interpreter by storing the execution address of

$INTERPRET into the variable 'EVAL, which is executed in EVAL while the text interpreter

is in the interpretive mode.
:: [(--) DOLIT $INTERPRET 'EVAL ! ;; IMMEDIATE

.OK used to be a command which displays the familiar 'ok' prompt after executing to the end

of a line. In espForth_44, it displays the top 4 elements on data stack so you can see what is

happening on the stack. It is more informative than the plain ‘ok’, which only give you a

warm and fuzzy feeling about the system. When text interpreter is in compiling mode, the

display is suppressed.
:: .OK (--) CR

 DOLIT $INTERPRET 'EVAL @ =

 IF >R >R >R DUP . R> DUP . R> DUP . R> DUP . ."| $LIT fg>"

 THEN ;;

EVAL has a loop which parses tokens from the input stream and invokes whatever is in 'EVAL

to process that token, either execute it with $INTERPRET or compile it with $COMPILE. It

exits the loop when the input stream is exhausted.
:: EVAL (--)

 BEGIN TOKEN DUP @

 WHILE 'EVAL @EXECUTE \ ?STACK

 REPEAT DROP .OK ;;

QUIT is the operating system, or a shell, of the eForth system. It is an infinite loop eForth will

not leave. It uses QUERY to accept a line of text from the terminal and then let EVAL parse out

the tokens and execute them. After a line is processed, it displays the top of data stack and wait

for the next line of text. When an error occurred during execution, it displays the command

which caused the error with an error message. After the error is reported, it re-initializes the

system by jumping to ABORT. Because the behavior of EVAL can be changed by storing either

$INTERPRET or $COMPILE into 'EVAL, QUIT exhibits the dual nature of a text interpreter

and a compiler.
:: QUIT (--) [BEGIN QUERY EVAL AGAIN

Command Compiler

, (comma) adds the execution address of a token on the top of the data stack to the code

dictionary, and thus compiles a token to the growing token list of the command currently under

construction.

:: , (w --) HERE DUP CELL+ CP ! ! ;;

LITERAL compiles an integer literal to the current compound command under construction.

The integer literal is taken from the data stack, and is preceded by the token DOLIT. When this

compound command is executed, DOLIT will extract the integer from the token list and push it

back on the data stack. LITERAL compiles an address literal if the compiled integer happens to

be an execution address of a token. The address will be pushed on the data stack at the run time

by DOLIT.
:: LITERAL (n --) DOLIT DOLIT , , ;; IMMEDIATE

ALLOT allocates n bytes of memory on the top of the dictionary. Once allocated, the compiler

will not touch the memory locations. It is possible to allocate and initialize this array using the

command‟, (comma)‟.
:: ALLOT (n --) ALIGNED CP +! ;;

:: $," (--) (CHAR ") 22 LIT WORD COUNT + ALIGNED CP ! ;;

?UNIQUE is used to display a warning message to show that the name of a new command

already existing in dictionary. eForth does not mind your reusing the same name for different

commands. However, giving many commands the same name is a potential cause of problems

in maintaining software projects. It is to be avoided if possible and ?UNIQUE reminds you of it.
:: ?UNIQUE (a -- a)

 DUP NAME?

 ?DUP IF COUNT 1F LIT AND SPACE TYPE ."| $LIT reDef "

 THEN DROP ;;

$,n builds a new name field in dictionary using the name already moved to the top of

dictionary by PACK$. It pads the link field with the address stored in LAST. A new token can

now be built in the code dictionary.
:: $,n (a --)

 DUP @ IF ?UNIQUE

 (na) DUP NAME> CP !

 (na) DUP LAST ! \ for OVERT

 (na) CELL-

 (la) CONTEXT @ SWAP ! EXIT

 THEN ERROR

' (tick) searches the next word in the input stream for a token in the dictionary. It returns

the code field address of the token if successful. Otherwise, it displays an error message.
:: ' (-- xt)

 TOKEN NAME? IF EXIT THEN

 ERROR

[COMPILE] acts similarly, except that it compiles the next command immediately. It causes

the following command to be compiled, even if the following command is usually an

immediate command which would otherwise be executed.
:: [COMPILE] (-- ; <string>)

 ' , ;; IMMEDIATE

COMPILE is used in a compound command. It causes the next token after COMPILE to be

added to the top of the code dictionary. It therefore forces the compilation of a token at the run

time.
:: COMPILE (--) R> DUP @ , CELL+ >R ;;

$COMPILE builds the body of a new compound command. A complete compound command

also requires a header in the name dictionary, and its code field must start with a dolist,

byte code. These extra works are performed by : (colon). Compound commands are the

most prevailing type of commands in eForth. In addition, eForth has a few other defining

commands which create other types of new commands in the dictionary.

:: $COMPILE (a --)

 NAME? ?DUP

 IF @ $80 LIT AND

 IF EXECUTE

 ELSE ,

 THEN EXIT

 THEN

 NUMBER?

 IF LITERAL EXIT

 THEN ERROR

OVERT links a new command to the dictionary and thus makes it available for dictionary

searches.
:: OVERT (--) LAST @ CONTEXT ! ;;

] (right paren) turns the interpreter to a compiler.
::] (--) DOLIT $COMPILE 'EVAL ! ;;

: (colon) creates a new header and start a new compound command. It takes the following

string in the input stream to be the name of the new compound command, by building a new

header with this name in the name dictionary. It then compiles a dolist, byte code at the

beginning of the code field in the code dictionary. Now, the code dictionary is ready to accept a

token list.] (right paren) is now invoked to turn the text interpreter into a compiler,

which will compile the following words in the input stream to a token list in the code dictionary.

The new compound command is terminated by ;, which compiles an EXIT to terminate the

token list, and executes [(left paren) to turn the compiler back to text interpreter.
:: : (-- ; <string>) TOKEN $,n] 6 LIT , ;;

; (semi-colon) terminates a compound command. It compiles an EXIT to the end of the

token list, links this new command to the dictionary, and then reactivates the interpreter.
:: ; (--) DOLIT EXIT , [OVERT ;; IMMEDIATE

Debugging Tools

dm+ dumps u bytes starting at address b to the terminal. It dumps 8 words. A line begins with

the address of the first byte, followed by 8 words shown in hex, and the same data shown in

ASCII. Non-printable characters by replaced by underscores. A new address b+u is returned to

dump the next line.
:: dm+ (b u -- b)

 OVER 6 LIT U.R

 FOR AFT DUP @ 9 LIT U.R CELL+

 THEN NEXT ;;

DUMP dumps u bytes starting at address b to the terminal. It dumps 8 words to a line. A line

begins with the address of the first byte, followed by 8 words shown in hex. At the end of a line

are the 32 bytes shown in ASCII code.
:: DUMP (b u --)

 BASE @ >R HEX 1F LIT + 20 LIT /

 FOR AFT CR 8 LIT 2DUP dm+

 >R SPACE CELLS TYPE R>

 THEN NEXT DROP R> BASE ! ;;

>NAME finds the name field address of a token from its code field address. If the token does not

exist in the dictionary, it returns a false flag. >NAME is the mirror image of the command

NAME>, which returns the code field address of a token from its name field address. Since the

code field is right after the name field, whose length is stored in the lexicon byte, NAME> is

trivial. >NAME is more complicated because we have to search the dictionary to acertain the

name field address.
:: >NAME (xt -- na | F)

 CONTEXT

 BEGIN @ DUP

 WHILE 2DUP NAME> XOR

 IF 1-

 ELSE SWAP DROP EXIT

 THEN

 REPEAT SWAP DROP ;;

.ID displays the name of a token, given its name field address. It also replaces non-printable

characters in a name by under-scores.
:: .ID (a --)

 COUNT $01F LIT AND TYPE SPACE ;;

WORDS displays all the names in the dictionary. The order of commands is reversed from the

compiled order. The last defined command is shown first.
:: WORDS (--)

 CR CONTEXT

 0 LIT TMP !

 BEGIN @ ?DUP

 WHILE DUP SPACE .ID CELL-

 TMP @ 10 LIT <

 IF 1 LIT TMP +!

 ELSE CR 0 LIT TMP ! THEN

 REPEAT ;;

FORGET searches the dictionary for a name following it. If it is a valid command, trim

dictionary below this command. Display an error message if it is not a valid command.
:: FORGET (--)

 TOKEN NAME? ?DUP

 IF CELL- DUP CP !

 @ DUP CONTEXT ! LAST !

 DROP EXIT

 THEN ERROR

COLD is a high level word executed upon power-up. It sends out sign-on message, and then

falls into the text interpreter loop through QUIT.
:: COLD (--)

 CR ."| $LIT espForth V4.3, 2017 " CR

 QUIT ;;

Control Structures

THEN terminates a conditional branch structure. It uses the address of next token to resolve the

address literal at A left by IF or ELSE.
:: THEN (A --) HERE SWAP ! ;; IMMEDIATE

FOR starts a FOR-NEXT loop structure in a colon definition. It compiles >R, which pushes a

loop count on return stack. It also leaves the address of next token on data stack, so that NEXT

will compile a DONEXT address literal with the correct branch address.
:: FOR (-- a) COMPILE >R HERE ;; IMMEDIATE

BEGIN starts an infinite or indefinite loop structure. It does not compile anything, but leave the

current token address on data stack to resolve address literals compiled later.
:: BEGIN (-- a) HERE ;; IMMEDIATE

NEXT Terminate a FOR-NEXT loop structure, by compiling a DONEXT address literal, branch

back to the address A on data stack.
:: NEXT (a --) COMPILE DONEXT , ;; IMMEDIATE

UNTIL terminate a BEGIN-UNTIL indefinite loop structure. It compiles a QBRANCH address

literal using the address on data stack.
:: UNTIL (a --) COMPILE QBRANCH , ;; IMMEDIATE

AGAIN terminate a BEGIN-AGAIN infinite loop structure. . It compiles a BRANCH address

literal using the address on data stack.
:: AGAIN (a --) COMPILE BRANCH , ;; IMMEDIATE

IF starts a conditional branch structure. It compiles a QBRANCH address literal, with a 0 in the

address field. It leaves the address of this address field on data stack. This address will later be

resolved by ELSE or THEN in closing the true clause in the branch structure.
:: IF (-- A) COMPILE QBRANCH HERE 0 LIT , ;; IMMEDIATE

AHEAD starts a forward branch structure. It compiles a BRANCH address literal, with a 0 in the

address field. It leaves the address of this address field on data stack. This address will later be

resolved when the branch structure is closed.
:: AHEAD (-- A) COMPILE BRANCH HERE 0 LIT , ;; IMMEDIATE

REPEAT terminates a BEGIN-WHILE-REPEAT indefinite loop structure. It compiles a

BRANCH address literal with address a left by BEGIN, and uses the address of next token to

resolve the address literal at A.
:: REPEAT (A a --) AGAIN THEN ;; IMMEDIATE

AFT jumps to THEN in a FOR-AFT-THEN-NEXT loop the first time through. It compiles a

BRANCH address literal and leaves its address field on stack. This address will be resolved by

THEN. It also replaces address A left by FOR by the address of next token so that NEXT will

compile a DONEXT address literal to jump back here at run time.
:: AFT (a -- a A) DROP AHEAD HERE SWAP ;; IMMEDIATE

ELSE (A--A) starts the false clause in an IF-ELSE-THEN structure. It compiles a BRANCH

address literal. It uses the current token address to resolve the branch address in A, and replace

A with the address of its address literal.
:: ELSE (A -- A) AHEAD SWAP THEN ;; IMMEDIATE

WHILE (a--Aa) compiles a QBRANCH address literal in a BEGIN-WHILE-REPEAT loop. The

address A of this address literal is swapped with address a left by BEGIN, so that REPEAT will

resolve all loose ends and build the loop structure correctly.
:: WHILE (a -- A a) IF SWAP ;; IMMEDIATE

String Literals

ABORT" compiles an error message. This error message is display if top item on the stack is

non-zero. The rest of the commands in the command is skipped and eForth resets to ABORT. If

top of stack is 0, ABORT” skips over the error message and continue executing the following

token list.
:: ABORT" (-- ; <string>) DOLIT abort" HERE ! $," ;; IMMEDIATE

$" compiles a character string. When it is executed, only the address of the string is left on the

data stack. You will use this address to access the string and individual characters in the string

as a string array.
:: $" (-- ; <string>) DOLIT $"| HERE ! $," ;; IMMEDIATE

." (dot-quot) compiles a character string which will be displayed when the command

containing it is executed in the runtime. This is the best way to present messages to the user.
:: ." (-- ; <string>) DOLIT ."| HERE ! $," ;; IMMEDIATE

Defining Commands

CODE creates a command header, ready to accept byte code for a new primitive command.

Without a byte code assembler, you can use the command , (comma) to add words with byte

code in them.
:: CODE (-- ; <string>) TOKEN $,n OVERT align ;;

CREATE creates a new array without allocating memory. Memory is allocated using ALLOT.
:: CREATE (-- ; <string>) CODE $203D LIT , ;;

VARIABLE creates a new variable, initialized to 0.
:: VARIABLE (-- ; <string>) CREATE 0 LIT , ;;

CONSTANT creates a new constant, initialized to the value on top of stack.
:: CONSTANT CODE $2004 LIT , , ;;

Immediate Commands

.((dot-paren) types the following string till the next). It is used to output text to the

terminal.
(makeHead) .((--) dolist, aanew 29 LIT PARSE TYPE ;; IMMEDIATE

\ (back-slash) ignores all characters till end of input buffer. It is used to insert comment

lines in text.
(makeHead) \ (--) dolist, aanew $A LIT WORD DROP ;; IMMEDIATE

((paren) ignores the following string till the next). It is used to place comments in source

text.
(makeHead) (dolist, aanew 29 LIT PARSE 2DROP ;; IMMEDIATE

COMPILE-ONLY sets the compile-only lexicon bit in the name field of the new command just

compiled. When the interpreter encounters a command with this bit set, it will not execute this

command, but spit out an error message. This bit prevents structure commands to be executed

accidentally outside of a compound command.
 (makeHead) COMPILE-ONLY dolist, aanew $40 LIT LAST @ +! ;;

IMMEDIATE sets the immediate lexicon bit in the name field of the new command just

compiled. When the compiler encounters a command with this bit set, it will not compile this

command into the token list under construction, but execute the token immediately. This bit

allows structure commands to build special structures in a compound command, and to process

special conditions when the compiler is running.
 (makeHead) IMMEDIATE dolist, aanew $80 LIT LAST @ +! ;;

Chapter 7. Implementation Notes

Byte Code Sequencer vs Finite State Machine

A Finite State Machine (FSM) was adopted from eP32 chip design to run VFM in ceForth. This

FSM assumed that we had a 32 bit machine, running on 32 bit memory. It used 6 phases to

execute code stored in memory. In phase 0, it read a 32 bit program word, and decoded 4 byte

code in it. In phase 1 to 4 it executes these 4 byte code in sequence. In phase 5, it resets the

phase counter to 0, so it will fetch the next program word from memory, and run through the

phases again. This FSM is described completely in the loop() routine:

void loop() {

 phase = clk & 7;

 switch(phase) {

 case 0: fetch_decode(); yield(); break;

 case 1: execute(I1); break;

 case 2: execute(I2); break;

 case 3: execute(I3); break;

 case 4: execute(I4); break;

 case 5: jump(); break;

 case 6: jump(); break;

 case 7: jump();

 }

 clk += 1;

}

In espForth, the dictionary is an array of 32 bit words. However, this array can be read either in

32 bit words, or in 8 bit bytes. Therefore, byte code in the dictionary can be fetched directly and

executed without a FSM. A much simpler byte code sequencer can be coded as follows:

void loop() {

 while (TRUE) {

 bytecode = (unsigned char)cData[P++];

 execute(bytecode);

 } }

The sequence has only two steps: fetching next byte from memory, and execute the byte code.

It is just like a hardware computer, sequencing through its memory to execute machine

instructions.

In the design of espForth VFM, byte code are packed into code fields of primitive commands,

and can be accessed either by 32 bit words, or by byte sequence. The same dictionary

accommodates both design equally well. No modification in ceForth dictionary is necessary.

Stacks

Stacks are big headaches in operating systems, and in application programs. In C programming,

stacks are hidden from you to prevent you from messing them up. However, in Forth

programming, the data stack and the return stacks are open to you, and most of the times, the

data stack becomes the focus of your attention. Both stacks have to work perfectly. There is no

margin of error.

With stacks implemented in memory of finite size, the most obvious problems are stack

overflow and stack underflow. Generally, operating systems allocate large chucks of memory

for stacks, and impose traps on overflow and underflow conditions. With these traps, you can

write interrupt routines to handle these error conditions in your software. These traps are very

difficult to handle, especially for those without advanced computer science degrees.

The most prevalent problem in Forth programming is underflow of data stack, when you try to

access data below the memory allocated to data stack. After Forth interpreter finished

interpreting a sequence of Forth words, it always check the stack pointer. If the stack point is

below mark, Forth interpreter executes the ABORT command, and reinitialized the stacks.

In designing eP32 chip, I put both stacks in the CPU. I allowed 32 levels of stack space, and the

system seems to be happy. I checked often the water marks on both stacks, and the water marks

were mostly about 12 levels. 32 levels are adequate for most applications, and do not impose a

big burden on CPU designs. The stacks used 5 bit stack pointers, and behaved like circular

buffers. I also found that it was not really necessary to check the stack pointers. Using circular

buffers, underflow and overflow are really not life-threatening error conditions. If useful data

were actually overwritten, the system would not behave correctly, but in no danger of crashing.

The stack pointers need not be reset. The system would restart with the present pointers.

In espForth_44, I allocated 1KB memory for each stack, and used one byte for each stack

pointer. The stacks are 256 cell circular buffers, and will never underflow or overflow.

However, the C compiler needs to be reminder constantly that the stack pointers have 8-bit

values and must not be leaked to integer or long number. R and S pointers must always be

prefixed with (unsigned char) specification. I struggled with data stack underflow

conditions for half a year, until I found that the stack pointers tended to overshot the byte

boundary in my back.

espForth interpreter always displays top 4 elements on data stack. Always seeing these 4

elements, you do not need utility to dump or examine data stack. I believe this is the best way to

use data stack, and relieve you from the anxiety of worrying your misusing it.

MetaCompiler

Conceptually, metacompilation is not much different that the ordinary Forth compiler. Forth

compiler compiles new commands on top of its dictionary. CP is the pointer to top of dictionary.

If we change CP to point to another memory location, like the target dictionary array we

allocated for a target system, then we can compile a new dictionary for the target.

Of course, the devil is in the details. The target memory is a virtual memory. Addresses used by

the target machine are virtual addresses relative to the beginning of the dictionary array, not the

absolute addresses used in the host Forth system. The target machine may have a different

machine instruction set. Byte addressable machine vs word addressable machine. Different

linking schemes. On and on.

The art of metacompilation had been practices since Chuck Moore invented Forth. I

documented it for polyForth, F83, and FPC, three of the most popular Forth implementations.

They all used vocabularies to segregate names of same commands used at various stages of

metacompilation. For example, + (plus) command had 3 different behaviors: a regular + (plus)

version to add two integers in text interpreter, a version defined in target dictionary which will

be used by a target system to add two integers, which is never executed during metacompilation,

and one version used by metacompiler to compile a + (plus) token in the body (token list) of a

compound command in tart dictionary.

A dictionary is a linked list of command records. A vocabulary is a branch of a dictionary,

which can be searched independent of the main dictionary. Vocabularies allow a command to

be redefined multiple times, and different behavior is selected by specifying search order of

vocabularies.

In the original eForth Model, Bill Muench reserved system variables to allow building up to 8

vocabularies. However, over the years I had not used this feature in all my applications, and

decided to rid of it. Without vocabularies, I could still do metacompilation by carefully

arranging the sequence in defining commands to build target dictionary correctly. As

commands are redefined, the Forth system morphs and shows unexpected behavior. All eForth

commands are redefined to compile tokens. At the end of metacompilation, you can type in any

valid eForth command, and the system responds with „ok‟, but does not seem to do anything.

The data stack does not change. All the commands do is to add a token to the top of target

dictionary, which you cannot observed without great efforts.

After the metacompiler finishes building the target dictionary, it is useless for any other

purposes. Close F# and use the rom_43.h file to build espForth on Arduino IDE.

Byte Code

I use byte code to bridge the Virtual Forth Machine and the eForth system. The dictionary is

stored is an integer array data[]. This data array can be addressed either by 32 bit words or

by bytes. When addressing by bytes, the array is referred as cData[].

Command records and the fields in them are all word aligned. The link field is a 32 bit word.

The name field has a length byte followed by variable length name string, null-filled to the

word boundary. In a primitive command, the code field contains byte code, and is null-filled to

word boundary. In a compound command, the code field is a 32 bit word, containing the

dolist, byte code. The parameter field contains a token list. All tokens are 32 bit words.

This dictionary design was copied from eP32, which was a 32 bit microcontroller. There I used

6 bit machine instructions, and a 32 bit word contained up to 5 machine instructions. In one of

the earlier designs, I used 5 bit machine instruction, and I could pack 6 machine instructions to

a word. The assembler was designed so that it could pack as many instructions as a program

word could allow. In espForth, I already had 67 machine instructions, and 6-bit fields were not

enough for them. For convenience, I just allocate 8 bits for instructions, and give you the

possibility of using 256 byte code for machine instructions.

I was not particularly concerned about the numbering of byte code. They were assign

consecutive numbers as I coded them. However, there is no reason that the numbering could not

follow some preconceived order, like Java Byte Code. In fact, there is no reason that you could

not build a Virtual Java Machine with this espForth design.

Socket Programming

As far as WiFi is concerned, I started at ground zero. I had no idea what these terms meant:

access point, client side programming, server side programming, etc. I heard of TCP/IP, HTTP,

HTTPS, but really did not know what they were good for.

Playing with NodeMCU, I saw this example on Arduino IDE, WebLED.ino, to turn its LED on

and off. It was on almost every website tutorial talking about ESP8266:

#include <ESP8266WiFi.h>

const char* ssid = "SVFIG";

const char* password = "12345678";

int ledPin = 2; // GPIO2 of ESP8266

WiFiServer server(80);

void setup() {

 Serial.begin(115200);

 pinMode(ledPin, OUTPUT);

 WiFi.begin(ssid, password);

 while (WiFi.status() != WL_CONNECTED) { delay(500); Serial.print("."); }

 server.begin();

}

void loop() {

 WiFiClient client = server.available();

 if (!client) { return; }

 while(!client.available()){ delay(1); }

 String request = client.readStringUntil('\r');

 client.flush();

 int value = HIGH;

 if (request.indexOf("/LED=ON") != -1) {

 digitalWrite(ledPin, LOW); value = LOW; }

 if (request.indexOf("/LED=OFF") != -1){

 digitalWrite(ledPin, HIGH); value = HIGH; }

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println(""); // do not forget this one

 client.println("<!DOCTYPE HTML>");

 client.println("<html>");

 client.print("Led pin is now: ");

 if(value == HIGH) { client.print("On"); }

 else { client.print("Off"); }

 client.println("

");

 client.println("Click here turn the LED on pin 2

ON
");

 client.println("Click here turn the LED on pin 2

OFF
");

 client.println("</html>");

 delay(1);

}

It created a Web client by opening a http webpage with two buttons LED=ON, and LED=OFF.

When you click one of the buttons, the client sent back a messages with either „LED=ON‟ or

„LED=OFF‟ string embedded. The server examined the message and turned the LED on or off

accordingly.

I was fairly confused by this example. Does my server have to manage a client to communicate

with myself? I like to send an arbitrary message or command to my server and order it to do

something I want to do. I didn‟t even know what server and client were. But, I knew what I

wanted. I liked to have a WiFi network to replace the serial cable to send commands to my

computer, and receive responses from it.

I googled WiFi, and checked out all the WiFi books for dummies, and kept myself confused for

some months. Then I saw Auduino had another example wifiSoftAP.ino and tried it. It showed

that you could turned NodeMCU Kit into a Soft Access Point. It meant that you could build a

local network with NodeMCU. That was interesting.

Amid random searches on Google, I hit a pdf book on Socket Programming from IBM, of all

the companies. Sockets made lots of sense, and much of the fog and clouds started to lift. After

I learnt how to configure sockets for UDP protocol, all my problems were solved. UDP was all

I needed. Never mind TCP.

UDP is all I need, because espForth receives commands in packets, and it sends out responses

after commands are executed. If there were errors in transmission, espForth would let me know.

Everything worked out fine, until we went to Maker Faire. Things worked while we set up the

benches and workstations. When the crowd moved in, many students just could not turn the

LED on and off over WiFi, because network traffic was so intense, even we had our own local

router. We had to give away kits, when students demonstrated that they had controlled the LED

through serial cable.

Serial Monitor and UDP Packets

To communication with espForth over WiFi, I substantially modified the serial IO design in

espForth. Original eForth Model assumed a serial IO system sending and receiving ASCII

characters. However, WiFi communication generally assumes sending and receiving packets, a

sequence of characters. To make espForth receiving packets, The IO commands are actually

significantly simplified. Instead of relying on KEY and ?KEY to receive characters, I use

ACCEPT to receive packets, and all the input commands below ACCEPT are eliminated.

eForth provides a line editor so you can edit your input line by backing up and erasing mistyped

characters. In WiFi, a client sends packets of characters, and the client always gives you the

opportunity to edit the packet before you send it out.

If I could receive a packet directly into the Terminal Input Buffer, then ACCEPT would simple

wait for the arrival of a packet and return with the number of characters received.

Where should I place the Terminal Input Buffer? It seems that the best place is the beginner of

data[] array. Forth historical reasons, I leave 512 bytes empty at the beginning of the

dictionary. Many microcontrollers use this space for reset and interrupt vectors. When data[]

is used as a byte array, it is referenced as cData[].

ACCEPT waits for the serial monitor or the UDP receiver to send a packet of characters. If

either gets a packets, ACCEPT returns with a character count. Then the text interpreter scans the

characters and interprets them.

accept (b u1 -- b u2) Accept u1 characters to b. u2 returned is the actual count of

characters received.
void accep()

/* UDP accept */

{ while (Udp.parsePacket()==0 && Serial.available()==0) {};

 int len;

 while (!Udp.available()==0) {

 len = Udp.read(cData, top); }

 while (!Serial.available()==0) {

 len = Serial.readBytes(cData, top); }

 if (len > 0) {

 cData[len] = 0; }

 top = len;

 }

On the transmitter side, EMIT send a character to the serial terminal and the UDP transmitter.

However, the UDP transmitter only adds the character to its output buffer. The whole output

packet is only transmitted when espForth executes CR command. It does not make sense to ship

each character out in a separate UDP packet. The transmitter involves the following commands:

sendPacket(--) Send an UDP packet out to WiFi network. It is executed only by CR

command.
CODE sendPacket sendPacket, next,

void sendPacket(void)

{ Udp.endPacket();

 Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); }

CR outputs a carriage-return and a line-feed. Prior output characters are accumulated in a UDP

packet buffer. This packet is sent out by sendPacket.
:: CR (--) (=CR)

 0A LIT 0D LIT EMIT EMIT sendPacket ;;

	espForth for ESP8266
	Preface—IoT For Fun!
	Chapter 1. Running espForth
	Install Arduino IDE
	Loading espForth
	Test espForth
	espForth UDP Interface
	espForth Experiments
	Dump Memory
	PEEK and POKE
	PWM Tone Generater
	Test Programs

	Chapter 2. espForth Virtual Forth Engine
	espForth_44.ino
	Preamble
	Registers and Arrays
	Dictionary Array
	VFM Functions
	Byte Code Array
	VFM initialization
	VFM Byte Code Sequencer

	Chapter 3. Metacompilation of the espForth
	Metacompilation
	Metacompiling espForth
	Metacompiler cefMETAa_43.f

	Chapter 4. espForth Assembler
	Byte Code Assembler
	espForth Byte Code
	Command Headers
	Compilers for Primitive and Compound Commands

	Chapter 5. espForth Kernel
	System Variables
	System Interface Commands
	Inner Interpreter
	Memory Access Commands
	Stack Commands
	Logic Commands
	Miscellaneous Commands
	Control Structure Commands

	Chapter 6. espForth Compound Commands
	Common Commands
	Numeric Output
	Numeric Input
	Character Output
	Parser
	Dictionary Search
	Text Interpreter
	Command Compiler
	Debugging Tools
	Control Structures
	String Literals
	Defining Commands
	Immediate Commands

	Chapter 7. Implementation Notes
	Byte Code Sequencer vs Finite State Machine
	Stacks
	MetaCompiler
	Byte Code
	Socket Programming
	Serial Monitor and UDP Packets

