
 1

eForth as an Arduino Sketch

Last year I decided to retire from electronics and microcontrollers, because after two
glaucoma and cataracts operations, I could not see small objects and narrow lines and
there was no way that I could work on the surface mounted parts with very narrow
line spacing. So I cleaned out my study and my garage, gave away all my tools and
spare parts. I realized that I should not be a hardware engineer. I am only a
programmer, and should just work on software.

Then when I visited my brother in Denver last summer, I saw that my niece was
working on a couple of Arduino Boards. On an Arduino board, there was a
microcontroller in a DIP socket! That was very interesting. When I came back, I
bought a couple of Arduino Uno Boards, and have been working on them since. I
had to buy back tools and many electronic parts and ate my vow to stay away from
hardware.

Arduino Uno is a lovely, small, cheap, and readily accessible microcontroller board.
The operating system and the programming environment Arduino 0022 is a good
match to the Arduino Uno Board. Through a single USB cable, you can upload
programs from a PC to Arduino Uno, and then communicate with Uno through the
same cable using RS232 protocol. You write programs in C language as sketches in
Arduino 0022, and the sketches are compiled and then uploaded to the ATmega328P
microcontroller on Arduino Uno for execution. Sketches are C programs greatly
simplified to the point that you just have to fill lines of code in the two following
routines:
 setup()
 loop()
All intricacies and complications in the C language and its associated compiler and
linker are taking care of by Arduino 0022 system. No wonder Arduino is such a
huge success.

FORTH is a programming language much better suited for microcontrollers than C.
FORTH is really a programming language with a built-in operating system. It has an
interpreter and a compiler so that you can write programs in small modules and
interactively test and debug them. You can build large applications quickly and
debug them thoroughly. FORTH also gives you access to all the hardware
components in the microcontroller and all the IO devices connected to the
microcontroller.

So, I ported a very simple FORTH model, 328eForth, over to the ATmega328P
microcontroller. It was written in AVR assembly language, and had to be assembled
in the AVR Studio 4 IDE from Atmel Corp, and then uploaded to ATmega328P
through a separated AVRISP mkll programming cable. Once 328eForth is uploaded
to ATmega328P, it can communicate with the PC through the Arduino USB cable.
328eForth cannot be uploaded through the USB cable, because Arduino 0022 requires
a bootloader pre-loaded in ATmega328P to upload sketches, and 328eForth must use
the bootloader section of flash memory in ATmega328P to store commands which
writes new code into the application section of the flash memory at run-time.

 2

For the serious FORTH programmers, 328eForth system give you the ultimate control
over the ATmega328P microcontroller. For the much larger Arduino user community,
we need a FORTH implementation which is compatible with the Arduino 0022 system.
Here is my solution: ceForth_328. It is written in C as a sketch. It can be compiled
and uploaded by Arduino 0022. Once it is uploaded to the Atmega328P
microcontroller, it communicates with the PC through the Arduino USB cable.
However, new FORTH commands are compiled only into the RAM memory in
ATmega328P. You have only about 1.5 KB of RAM memory to stored new
commands, and when you turn off Arduino Uno, these new commands are lost.

In spite of these limitations, ceForth_328 is still a very useful system. You can learn
FORTH and use if to evaluate Arduino Uno for various applications. You can also
use it to learn about the ATmega328P microcontroller, because it allows you to read
and to write all the IO registers. I specifically added two commands PEEK and
POKE to read and write RAM memory, which includes all the IO registers. The
AVR Family Data Book is a huge 566 page documents, and the best way to read it is
opening one chapter on an I/O device, reading the register descriptions, using PEEK
to look at a register, and using POKE the change the register.

 3

Part One ceForth_328 for Arduino Uno

1. Introduction

Since 1990, I have been promoting a simple FORTH language model called eForth.
This model consists of a kernel of 30 primitive commands which have to be
implemented in machine instructions of a host microcontroller, and 190 compound
commands constructed from the primitive commands and other compound commands.
By isolating machine dependent commands from machine independent commands,
the eForth model can be ported to any microcontroller very easily.

This FORTH system, ceForth_328 is derived from the cEF Version 1.0 system written
in C, which follows closely the original eForth model, with only 30 primitive. cEF
1.0 system was compiled by gcc in the cygwin environment. ceForth_328 is a
eForth implementation for the ATmega328P microcontroller from Atmel as a sketch
on the Arduino 0022 system. It can be compiled and uploaded to the Arduino Uno
Board to give you a taste of FORTH. Because the limitations imposed by Arduino
0022, you can add only 1.5 KB of new commands to the RAM memory. It sounds
like a severe limitation. However, because of the compactness of FORTH
commands, you can still compile a substantial application into the small RAM
memory. Another serious limitation is that you cannot save the application in the
flash memory because Arduino 0022 system does not provide tools to write new code
to the flash memory at run time.

If you really need to develop large applications and to have the complete control over
the underlying microcontroller, you can use the native FORTH system I built for
ATmega328P, the 328eForth system. In the 328eForth system, new FORTH
commands are compiled directly into the flash memory, and you can make the full use
of the 32 KB of flash memory, as well as the 2 KB RAM memory. The drawback of
the 328eForth system is that you have to have a separated programming device, like
AVRISP mkll, to upload it into the flash memory, and it overwrites the Arduino 0022
bootloader section of the flash memory so that it can add new commands to the
application section of the flash memory. In essence, 328eForth is not compatible
with Arduino 0022. This is the reason why I developed this ceForth_328 system,
which is basically a teaser introducing you to the FORTH language, and perhaps to
the real FORTH implementation of 328eForth.

2. From Harvard to Princeton

The first large scale, working computer in the US was the Harvard Mark I, designed
by Howard Aiken at Harvard University and built by IBM. It was an
electromechanical monster completed in May 1944, with programs stored on paper
tape. Then came ENIAC built by J. Presper Eckert and John Mauchly at University
of Pennsylvania in July 1946. It was based on vacuum tubes, and programmed by
patch cords and switches. In these computers, programs were entered through media
completely different from mechanisms performing computation, and were called the
Harvard Architecture.

In 1945, John von Neumann, then at Princeton University, was invited to visit ENIAC,
and then wrote the classic "First Draft of a Report on the EDVAC", in which he

 4

proposed the stored program computer, where programs and data resided on the same
memory medium. It was then called the Princeton Architecture or the von Neumann
Architecture, and had been adopted by most computer designers, but not all of them.

The AVR family of microcontrollers from Atmel happened to follow the Harvard
Architecture, against the common practice in the industry. The reason was that they
use a large flash memory to store programs and a small RAM memory to store data.
The flash memory is organized in 16-bit words and the RAM memory is organized in
8-bit bytes. The two memories are very different in their timing and read/write
behaviors, and it warrants two different memory buses and separated instructions to
access them.

The Arduino 0022 system used on Arduino boards requires that you write application
programs in 'sketches', which are based on the C programming language. The C
language hides the underlying microcontroller from you. Instead, it present to you a
computing model which is essentially a Harvard Architecture. Programs are placed
in location hidden from you. Data are placed in locations you have to declare, and
then are secretly assigned by the compiler and the linker. Functions and data are
accessed by assigned names so that you are prevented to make serious mistakes which
may cause the computer to crash. For casual users, Arduino 0022 matches very well
with Atmega328P microcontroller, sharing the same Harvard Architecture, and this
undoubtedly is one of the reasons why the Arduinos are such a huge success.

The FORTH programming language definitely belongs to the Princeton Architecture.
It assumes that you have free access to all parts of a microcontroller, and that
programs and data share the same memory space. Therefore, new commands and
new data structures can be added freely so that you have an interactive and extensible
system to develop and debug your applications.

The Harvard Architecture in the ATmega328P microcontroller is not a big problem for
me. In assembly language, I have the complete control over the instructions,
RAM/flash memory spaces, and all the IO devices, and I can impose a FORTH
Virtual Machine on the ATmega328 chip. This is 328eForth. An interesting feature
of ATmega328 is that if you have to write into the application section of the flash
memory, that part of your code must reside in the bootloader section of the flash
memory. Therefore, I have to take over the bootloader section, and the resulting
328eForth system can not peacefully co-exist with the Arduino 0022 bootloader.

In the Silicon Valley Forth Interest Group, we've had active discussions on Arduino in
the monthly meetings over the year. I was challenged to build an Arduino 0022
compatible FORTH system. My first response was that I could only build a FORTH
language interpreter on Arduino. I could not build a FORTH compiler, because
Arduino 0022 would not let me write new code into the flash memory. So I built a
FORTH interpreter on Arduino Uno Board, and presented it to the SVFIG in the
October meeting. One member suggested: "Why don't you use the RAM memory to
store new code? You could not save the compiled new code, but at least you would
be able to add new code and exercise them."

Thinking it through, it's not a bad idea. In ATmega328P, there are 2 KB of RAM,
and at least 1.5 KB are free. I cannot store machine instructions in RAM, because

 5

ATmega328P only executes machine instructions stored in the flash memory.
However, I can design a FORTH Virtual Machine with pseudo instructions, which are
pure data as far as ATmega328P is concerned. These pseudo instructions can be
stored either in flash or in RAM. All I need is a scheme to unify these two different
memories so that I can use the same set of read/write pseudo instructions to read the
flash and RAM memories, and to write the RAM memory.

This is my way of building a Princeton Architecture on a Harvard microcontroller
with a Harvard programming language. The FORTH Virtual Machine (FVM) has 30
pseudo instructions as byte codes. The pseudo instructions are written as C routines,
and a simple Finite State Machine (FSM), also written in C, executes these byte codes,
which can be stored either in the flash or RAM memory. The complete FORTH
operating system, including an interpreter, a compiler and other programming and
debugging tools are contained in a big data structure called a dictionary. This
dictionary contains a set of records linked into a searchable linked list. Each record
is the embodiment of a FORTH command, and consists of a link field, a name field
and a code field. A FORTH command is called externally by a name which is an
ASCII string, and internally by a token, which is the address of its code field. There
are two types of FORTH commands: the primitive commands having lists of pseudo
instructions in their code fields, and the compound commands having lists of tokens
in their code fields.

The FORTH dictionary is a large and rather complex data structure, because the name
fields and the code fields are of variable length. My very limited experience in C is
not sufficient for me to build this data structure in C, although very experienced C
programmers in SVFIG assured me that it can be done. I fell back to FORTH to
build this dictionary and then imported it into the ceForth_328 sketch as a code array.

The dictionary code array is 8 KB in size, and is allocated and initialized by C in the
flash memory. However, the lowest 2304 bytes of this code array is mapped to the
RAM memory space in ATmega328P. In ATmega328P, the RAM memory space is
divided into two parts. The lowest 256 bytes are mapped to the CPU and IO
registers, and the rest of the 2048 bytes are RAM memory. The read/write pseudo
instructions are smart in that they use RAM memory instructions when the memory
address is below 2304, and they use flash memory instructions otherwise. Therefore,
the dictionary spans across the flash and RAM memory spaces, so that I can add new
commands to the dictionary branch in RAM, while Arduino 0022 thinks I am just
writing harmless data into the RAM memory.

This is how you can impose a Princeton Architecture on a Harvard Architecture.

The limitations are that you have only 1.5 KB to compile new FORTH commands,
and that you lose these new commands when you lose power.

As I said before, this ceForth_328 system is a teaser, allowing you to experience
FORTH within the confines of Arduino 0022. If you are ready for serious
application programming, move on to the 328eForth system.

3. What Good is ceForth_328?

 6

With the limitations I talked about above, you may ask: "Why should I bother with
ceForth_328?"

Well, I had seen lots of discussions in the Arduino community on the Internet that
people missed the PEEK and POKE functions in the BASIC language that were very
popular in the early microprocessor days. PEEK allows you to examine the contents
in a memory location, and POKE allows you to change them. They are very useful
in debugging an application, especially if the IO registers are mapped into the
memory space.

I give you PEEK and POKE in ceForth_328. Here are a few examples to show you
what you can do with PEEK and POKE.

I assume that you have your Arduino Board set up and connected to your PC through
the USB cable. I use an Arduino Uno. First bring up Arduino 0022, and click
File/Open button, then select ceForth_328.pde file, wherever you last left it.
Compile and upload it to Arduino Uno. The Arduino window looks like this:

Open HyperTerminal, and configure it to 115,200 baud, 1 start bit, 8 data bits, 1 stop
bit, no parity, and no flow control. You will see the following HyperTerminal
console. If not, check to see if you have the right COM port settings. You can use
other terminal emulator programs, and I assume that they behave similarly.

 7

Press the Return key a couple of times, and the ok> messages echo on the console.
Type in the following commands to exercise the ceForth_328 system:

 WORDS
 1 2 3 4
 +
 *
 : TEST1 CR ." HELLO, WORLD!" ;
 TEST1
 : TEST2 IF 1 ELSE 2 THEN . ;
 1 TEST2
 0 TEST2
 : TEST3 10 FOR R@ . NEXT ;
 TEST3

ceForth_328 is case insensitive. You can type commands in either upper or lower
case. Note that ceForth_328 is in the hexadecimal base when it starts.

The first time you get an Arduino Board, the first thing you do is to turn that on-board
LED on and off. The LED is connected to the Digital IO Line D13. With the
following POKE commands, you can turn the LED on and off:
 20 24 POKE
 20 23 POKE
 20 23 POKE
(After POKE, press Return key to send one line of commands to ATmega328P to be
executed.)

The Digital I/O Line D13 on Arduino Uno is connected to bit-5 of GPIO Port B, PB-5.
Port B is a general purpose I/O device which has the following registers:

 8

Address Register Name Function

$23 PINB Input register Status of input pins
$24 DDRB Direction register 1: output; 0: input
$25 PORTB Data register Output data, pull-up resistor

Setting a bit in DDRB register makes the corresponding pin an output pin. This is
what the commands
 20 24 POKE
do. Then, writing this bit in PINB register toggles the output pin. This is done by
the commands
 20 23 POKE
The command POKE takes two arguments in front of it: the first argument is one byte
of data, and the second argument is the address of memory location where the byte
data is deposited. Alternatively, you can POKE the PORTB register to set or clear
the bit at PB-5, and respectively turn the LED on or off:
 20 25 POKE
 0 25 POKE

See? When you can poke the IO registers, you can control the ATmega328P chip
directly, without writing a sketch.

Type the above commands. Press Enter key at the end of each line. You will see
how ceForth_328 responds to your commands as show in the following console
display:

The zero's to the left of the prompt ok> at the beginning of this session show the top
4 elements on the parameter stack of the FORTH Virtual Machine. After you

 9

execute the commands
 23 PEEK
the value returned from register 23 is pushed on the parameter stack as the number 10.
Subsequently, the value returned by commands
 24 PEEK
is 20, and that returned by
 25 PEEK
is 0. You can use PEEK to see the contents of any memory location, including all
the CPU registers, all the IO registers, all the RAM memory, and all the flash memory.
You can use POKE to change the contents of registers and RAM memory. You
cannot change the contents of flash memory, though.

Type in the above command lines to verify that you get the same results as show in
the above console display.

Just these two commands PEEK and POKE, make it worthwhile for you to look at
ceForth_328 seriously.

Now. Heed this warning!

Use the POKE command carefully. There is no protection against your poking into
sensitive locations which might cause trouble. You have to stay away, absolutely
and positively, from locations 0 to $1F (decimal 0-31), because they map directly into
the CPU registers. Only God knows what data are stored there, and they change
dynamically. You are encouraged to poke into the IO registers from $20 to $FF, but
you have to study carefully the AVR Family Data Book so that you know exactly
what the consequences are, before you try it. If you do the poking correctly, you can
make all the IO devices to do what you want. However, incorrectly poking the IO
register may have no ill consequences, or may crash the system at the worst.

The C compiler uses RAM locations from $100 to $2FF. ceForth_328 uses the
RAM locations from $300 to $8FF. If you did not compile new commands into the
RAM memory, locations from $380 to $87F are free, and you can poke these
locations without any problem.

PEEK allows you to examine memory contents one byte at a time. I give you a
much more powerful command DUMP to display 256 bytes of contiguous memory
locations. DUMP takes one argument as an address, and displays the contents of the
next 256 bytes in a nicely formatted table. For example, the commands
 0 DUMP
displays the contents of all the CPU registers and all the IO registers, as show in the
following:

 10

Here, you see the contents of the CPU registers from location 0 to $1F, and those of
the IO registers from $20 to $FF. The locations showing data of $62 are those not
implemented as IO registers. The locations showing data other than $62 are
generally valid registers. Poke them carefully after you study their functions in the
AVR Family Data Book. ceForth_328 is the best companion of the AVR Family
Data Book as you read about the ATmega328 microcontroller.

Another example is the commands
 900 DUMP
and the results are shown in the following:

 11

It shows the first 256 bytes of the ceForth_328 dictionary with 19 complete records of
FORTH commands. The data dumped in bytes may not make any sense to you at
this point, but you should recognize the names of these commands in the ASCII dump
on the right hand side of the display.

The dictionary covers the flash memory locations from $900 to $1C9B. You can
POKE or DUMP this area at will. You cannot change the contents and POKE has no
effect on them.

Do you like PEEK and POKE? As a matter of fact, PEEK and POKE are actually
aliases of the commands C@ and C! , which are native FORTH command common to
most FORTH systems. It is kind of cheating, but I hope you are a good sport.

4. FORTH Virtual Machine

A FORTH Virtual Machine (FVM) is a program which makes a real microcontroller
behave like a FORTH language processor. The FVM has a set of pseudo instructions
which supports the primitive FORTH commands and also the token lists in the
compound FORTH commands. All FORTH commands operates on parameters
stored on a parameter stack. Compound commands use a separated return stack to
process nested token lists.

The ceForth_328 FVM is implemented as a Arduino sketch in a file named
ceForth_328.pde. It is compiled by Arduino 0022 compiler and the results are
uploaded to Arduino Uno for execution. Here I will go through the source code in
ceForth_328.pde to explain how this FVM works.

4.1. FORTH Virtual Machine in C

 12

The source code is in ceForth_328.pde. It is compiled as a sketch by Arduino 0022.
The first section has a set of macros as #define statements:

#include <avr/pgmspace.h>
#define LOGICAL ? 0xFFFF: 0
#define LOWER(x,y) ((unsigned int)(x)<(unsigned int)(y))
#define pop top = *S--
#define push *++S = top; top =
#define data ((unsigned int*) (0))
#define cData ((unsigned char*) (0))

We have to include avr/pgmspace.h library to access arrays in the flash memory.

The following macros are defined to simply coding.

Macro Function
LOGICAL Return a -1 for TRUE condition and a 0 for FALSE condition.
LOWER Used by UM+ pseudo instruction to generate a carry.
push Push the contents in the top register to the parameter stack.
pop Pop the parameter stack back into the top register.
data Pointer to the RAM memory space to access 16-bit data.
cData Pointer to the RAM memory space to access byte data.

We need to access directly the entire physical RAM memory space, and the
mechanism to do it is in declaring two macros data and cData as shown in above.

Declaration of FVM data registers and arrays include the following

unsigned char* cCode;
int n;
int I, P, IP, top ;
unsigned char I1, I2;
int w, clock;
int phase;
int rack[32] = {0};
int stack[32] = {0};
int* R = rack;
int* S = stack;
int code[] PROGMEM = {

The functions of these registers and arrays are listed below:

Register/Array Functions
I Instruction latch
P Program counter, pointing to pseudo instructions in code[].
IP Interpreter pointer for address interpreter
top Top elements of the parameter stack
I1 Instruction register for the first byte code in a 16 bit word

 13

I2 Instruction register for the second byte code in a 16 bit word
clock Clocking register for a 4 phase clock in FVM
phase Phase register
n Scratch register
w Scratch register
rack Return stack
stack Data stack
R Return stack pointer
S Data stack pointer
cCode A byte pointer to access eForth dictionary in bytes
code An 8 Kbytes array to host eForth dictionary

Contents of the code array is generated by a separated FORTH program called a
metacompiler. It is discussed in Part Two of this manual. This code array is placed
in the flash memory by the attribute PROGMEM. Special functions in the
pgmspace.h library file are called to address this array in the flash memory.

4.2. FORTH Finite State Machine

Skip over the code array, and we have the familiar Arduino routines of setup()
and loop() . loop() is the Finite State Machine (FSM) in FVM to execute
pseudo instructions stored in the code array.

void setup()
{
 Serial.begin(115200);
 clock = 0;
 P = pgm_read_word(&code[0x480]);
 IP = 0;
 S = stack;
 R = rack;
 top = 0;
 phase = 0;
 cCode = (unsigned char *) code;
 Serial.println("");
 Serial.println("Start Arduino");
 Serial.println("");
}

setup() initializes all the registers in FVM. It also initializes the USART0 to
115,200 bauds, and displays a sign-on message. The program counter is initialized
to an address stored in the flash memory location $900. As a 16 bit word is fetch out
of this location, the actual word address is $480, half of $900. This address points to
the FORTH command COLD at location $1ACC, which further initializes the FVM
and then starts the FORTH interpreter.

The routine loop() is a Finite State Machine (FSM) as computer hardware
designers would call it.

 14

void loop()
{ phase = clock & 3;
 switch(phase) {
 case 0: fetch_decode(); break;
 case 1: execute(I1); break;
 case 2: execute(I2); break;
 case 3: jump(); break;
 }
 clock += 1;
}

The simplicity of loop() is deceptive. It is an infinite loop, and every cycle
through it is a FSM clock cycle, and the clock register is incremented. The least
significant two bits in the clock register is copied into the phase register, which
runs the 4-state FSM. In Phase 0, fetch_code fetches a new program word from
a location pointed to by the P register, and the two byte codes in this program word
are stored into I1 and I2 registers. In the next cycle, the phase register is 1, and in
Phase 1, the byte code in I1 is executed by the routine execute(I1). In the next
cycle, execute(I2) does just that, executing the byte code in I2. In Phase 3, the
routine jump() does nothing and the FSM is ready to go to Phase0 to fetch the next
program word.

This simple FSM executes all primitive FORTH commands which contain pseudo
instructions in their code fields. As we will see later, a special pseudo instruction
dolist which is the first byte in the code field of a compound FORTH command,
starts processing a nested list of tokens.

There are two versions of loop() . The one I show above is the regular one. The
second one is for debugging. You may need it when you make changes to the code,
or to the dictionary in the code array. Using this version, you can single step
through the code, and observe changes in the registers and in the stacks. It was very
helpful for me in developing this sketch. I only commented this part out, in case you
will need it when you revise this sketch and start crashing the system.

void loop()
{ phase = clock & 3;
 if (Serial.available()>0)
 {
 n = Serial.read();
 switch(phase) {
 case 0: fetch_decode(); break;
 case 1: execute(I1); break;
 case 2: execute(I2); break;
 case 3: jump(); break;
 }
 Serial.println(n, HEX);
 Serial.print("clock=");
 Serial.print(clock,HEX);
 Serial.print(" IP=");

 15

 Serial.print(IP,HEX);
 Serial.print(" P=");
 Serial.print(P,HEX);
 Serial.print(" I=");
 Serial.print(I,HEX);
 Serial.print(" I1=");
 Serial.print(I1,HEX);
 Serial.print(" I2=");
 Serial.println(I2,HEX);
 dumpStack();
 clock += 1;
 }
}
void dumpStack(void)
{ int n;
 Serial.print("S=");
 for (n = 0; n <= (S-stack) ; n++)
 { Serial.print(stack[n],HEX);
 Serial.print(" "); }
 Serial.println(top,HEX);
 Serial.print("R=");
 for (n = 0; n <= (R-rack) ; n++)
 { Serial.print(rack[n],HEX);
 Serial.print(" "); }
 Serial.println("");
}

DumpStack displays the contents of the parameter stack with the top register, and
the return stack.

4.3. Pseudo Instructions

Following are the routines which implement the pseudo instructions in the FVM.

void jump(void) { clock |= 3; }
void fetch_decode(void)
{ if (P < 0x900) { I = data[P>>1]; }
 else { I = pgm_read_word(&code[P>>1]); }
 P += 2;
 I1= (unsigned char) (I & 0xFF);
 I2= (unsigned char) (I >> 8);
}
void next(void)
{ if (IP < 0x900) { P = data[IP>>1]; }
 else { P = pgm_read_word(&code[IP>>1]); }
 IP += 2; jump(); }
void bye() { exit(0); }

Instruction Function
jump It sets the two least significant bits in the clock register, and forces

 16

the next phase to Phase 0 in the next execution cycle, to fetch the
next program word. If jump is executed in Phase 1, the byte code
which would be execute in Phase 2 is skipped.

fetch_decode It is always executed in Phase 0. It fetches the next program word
pointed to by P, decode the bytes codes in this word and stores them
in I1 and I2 registers. The program word can be in the flash
memory or in the RAM memory. Since the program word is a
16-bit integer, the program pointer P must be divided by 2, and the
word is fetched using word arrays data or code .

next Inner Interpreter. It terminates all primitive FORTH commands.
When FORTHis running, it is always interpreting or processing a
token list in a compound FORTH command. The interpreter
pointer IP is always pointing to the next token in that token list.
next fetches the token pointed to by IP, and store it in the program
counter P. IP is incremented, pointing to the next token to be
processed. Then, jump is called to execute the first word in this
token. If this token points to a primitive FORTH command, the
pseudo instructions in its code field are executed in sequence, until
the next at the end. If this token points to a compound FORTH
command, the first pseudo code to be executed is dolist , causing
the following token list to be nested and processed.

bye It is used to terminate a C program and return to the host operating
system. In embedded system, you have no place to return and bye
is not used.

void qrx(void)
 { if (Serial.available() == 0) { push 0; }
 else { push Serial.read(); push 0xFFFF; }
 }
void txsto(void) { Serial.write((char) top); pop; }
void emit(void) { txsto(); }
void docon(void)
{ if (P < 0x900) { push data[P>>1]; }
 else { push pgm_read_word(&code[P>>1]); }
 P += 2; }
void dolit(void)
{ if (IP < 0x900) { push data[IP>>1]; }
 else { push pgm_read_word(&code[IP>>1]); }
 IP += 2; next(); }
void dolist(void) { *++R = IP; IP = P; next(); }
void exitt(void) { IP = *R--; next(); }
void execu(void) { *++R = IP; P = top; pop; jump(); }
void donext(void)
 { if(*R) { *R -= 1 ;
 { if (IP < 0x900) { IP = data[IP>>1]; }
 else { IP = pgm_read_word(&code[IP>>1]); }
 }}
 else { IP += 2; R-- ; } next(); }
void qbran(void)
 { if(top == 0)

 17

 { if (IP < 0x900) { IP = data[IP>>1]; }
 else { IP = pgm_read_word(&code[IP>>1]); }
 }
 else IP += 2; pop; next(); }
void bran(void)
{ if (IP < 0x900) { IP = data[IP>>1]; }
 else { IP = pgm_read_word(&code[IP>>1]); }
 next(); }

Instruction Function
qrx If USART0 receiver receives a character, push it and a TRUE flag on

parameter stack. Otherwise, push a FALSE flag on stack.
txsto Send a character on top of stack to USART0 transmitter.
emit Same as txsto
docon Fetch next word pointer to by P and push it on stack. Increment P.
dolit Fetch next word pointed to by IP and push it on stack. Increment IP.
dolist Address Interpreter. Push IP on return stack. Copy P into IP, and

execute next to start processing this new token list pointed to by the
original IP. This pseudo instruction starts a token list in a compound
command.

exitt Pop return stack back to IP. Execute next to continue processing the
token list interrupted by a compound command. It terminates a token
list.

execu Push IP on return stack. Pop stack into P, and start executing the
pseudo instructions starting at P.

donext If top of return stack is not 0, decrement it and then copy the next word
into IP, thus repeating a loop. If top of return stack is 0, pop it off
return stack, and increment IP, leaving this loop.

qbran If top of stack is 0, copy the next program word into IP, and then
execute next to branch to a new token list. If top of stack is not 0,
just increment IP, and then execute next to continue processing the
current token list. It is used to start a conditional branch in a token list.

bran Copy the next program word into IP, and then execute next to branch
to a new token list.

void store(void)
 { data[top>>1] = *S--; pop; }
void cstore(void)
 { cData[top] = (char) *S--; pop; }
void at(void)
{ if (top < 0x900) { top = data[top>>1]; }
 else { top = pgm_read_word(&code[top>>1]); }
 }
void cat(void)
 { if (top < 0x900) top = (int) cData[top];
 else top = (int) pgm_read_byte(&cCode[top]); }
void icat(void) { top = (int) pgm_read_byte(&cCode[top]); }
void iat(void) { top = pgm_read_word(&code[top]); }
void istore(void) { pop; pop; }

 18

void icstore(void) { pop; pop; }
void rfrom(void) { push *R--; }
void rat(void) { push *R; }
void tor(void) { *++R = top; pop; }
void rpsto(void) { R = rack; }
void spsto(void) { S = stack; }
void drop(void) { pop; }
void dup(void) { *++S = top; }
void swap(void) { w = top; top = *S; *S = w; }
void over(void) { push S[-1]; }
void zless(void) { top = (top & 0X8000) LOGICAL ; }
void andd(void) { top &= *S--; }
void orr(void) { top |= *S--; }
void xorr(void) { top ^= *S--; }
void uplus(void) { *S += top; top = LOWER(*S, top) ; }
void nop(void) { jump(); }
void dovar(void) { push P; }

Instruction Function
store Store the second element on stack to a location whose address is on

top of stack. Pop both elements.
cstore Store the second element as a byte on stack to a location whose

address is on top of stack. Pop both elements.
at An address is on top of stack. Fetch the contents in this location and

store it on top of stack.
cat An address is on top of stack. Fetch a byte from this location and

store it on top of stack.
icat An address is on top of stack. Fetch a byte from this location in the

flash memory and store it on top of stack. Not used in this
implementation.

iat An address is on top of stack. Fetch a word from this location in the
flash memory and store it on top of stack. Not used in this
implementation.

istore Store the second element on stack to a location in the flash memory
whose address is on top of stack. Pop both elements. Not used in
this implementation.

icstore Store the second element as a byte on stack to a location in the flash
memory whose address is on top of stack. Pop both elements. Not
used in this implementation.

rfrom Pop the return stack and push its top element on stack.
rat Copy the top element on the return stack and push it on stack.
tor Pop stack and push its top element on return stack.
rpsto Initialize the return stack.
spsto Initialize the parameter stack.
drop Pop the parameter stack.
dup Duplicate top of stack.
swap Swap the top two elements on stack.
over Duplicate and push the second element on stack.
zless If top of stack is negative, replace it with a TRUE flag; else replace it

 19

with a FALSE flag.
andd Pop top of stack and AND it to the new top element.
orr Pop top of stack and OR it to the new top element.
xorr Pop top of stack and XOR it to the new top element.
uplus Add top two elements on stack, replace them with a double integer

sum.
nop No operation.
dovar Push the address in P on stack.

In the other implementation 328eForth, I followed the Harvard Architecture of AVR
and addressed the RAM memory and flash memory with separated pseudo
instructions. The RAM memory was addressed by the pseudo instructions store ,
cstore , at and cat . The flash memory was addresses by the pseudo instructions
istore , icstore , iat and icat . With the new unified memory model of the
Princeton Architecture, the pseudo instructions store . cstore , at and cat are
enhanced to address both RAM and flash memories. I allocated 8 KB to the code
array. The first 2304 bytes are mapped to the RAM memory, and the rest are
mapped to the flash memory. This unified memory model allows me to extend the
FORTH dictionary in the flash memory to the RAM memory. I use the same
FORTH commands to read and write both RAM and flash memory. Of course, I
cannot write new code into the actual flash memory, and the write commands do not
change contents in the flash memory. Logically, I could write new data into the flash
memory, if tools were provided by the Arduino 0022 system.

4.4. Executing Pseudo Instructions

After 33 pseudo instructions are coded in C routines, execution pointers of these 33
instructions are collected in an execution pointer array *primitives[64] . The
routine execute uses a byte value code to select and execute one of the 33 pseudo
instructions. Only 30 pseudo instructions are actually used.

void (*primitives[64])(void) = {
 /* case 0 */ nop,
 /* case 1 */ bye,
 /* case 2 */ qrx,
 /* case 3 */ txsto,
 /* case 4 */ docon,
 /* case 5 */ dolit,
 /* case 6 */ dolist,
 /* case 7 */ exitt,
 /* case 8 */ execu,
 /* case 9 */ donext,
 /* case 10 */ qbran,
 /* case 11 */ bran,
 /* case 12 */ store,
 /* case 13 */ at,
 /* case 14 */ cstore,
 /* case 15 */ cat,
 /* case 16 */ icat,

 20

 /* case 17 */ iat,
 /* case 18 */ rfrom,
 /* case 19 */ rat,
 /* case 20 */ tor,
 /* case 21 */ dovar,
 /* case 22 */ next,
 /* case 23 */ drop,
 /* case 24 */ dup,
 /* case 25 */ swap,
 /* case 26 */ over,
 /* case 27 */ zless,
 /* case 28 */ andd,
 /* case 29 */ orr,
 /* case 30 */ xorr,
 /* case 31 */ uplus,
 /* case 32 */ icat
};

void execute(unsigned char icode)
{ if(icode < 33) {
 primitives[icode]();
 } else {
 Serial.println ("");
 Serial.print ("Illegal code=");
 Serial.print(icode, HEX) ;
 Serial.print(" P=") ;
 Serial.println(P, HEX) ;
 }
}

5. Examples

ceForth_328 has about 1.5 KB of RAM memory free to compile new FORTH
commands. It is not very big, but enough to compile substantial applications. Here
I will show you a few examples to get you started.

5.1. Compiler Tests

When I implement a new FORTH system, there are a few new commands I always
use to test the system, and to verify that the compiler works correctly. These test
commands are show in the TESTS.TXT file. Get the Auduino 0022 up and upload
ceForth_328.pde. Then get the HyperTerminal up. You will see the
HyperTerminal console as follows:

 21

Select Transfer/Transfer Text File and you get a file selection window. Navigate to
the folder where ceForth_328 sits, and you see these text files:

Double click the TESTS.TXT file, and its contents are send to ceForth_328, as shown
in the following:

 22

Now, types these commands to test these commands:
 test1
 0 test2
 1 test2
 test3
 test4

5.2. BLINK

Blink.pde is generally the first sketch people would try which they first get an
Arduino Board. I showed you before how to turn the D13 LED on and off in an
earlier section. Here I will show you the FORTH program which blinks the LED.
The commands are in the file Blink.txt. Assuming you have the Arduino Board
ready with ceForth_328, and with HyperTerminal active, click Transfer/Transfer Text
File. In the file selection window, select Blink.txt file, and the following commands
are compiled:

(Blink Line D13, 01nov11cht)
HEX
: MS (n --) FOR AFT $40 FOR NEXT THEN NEXT ;
: BLINK 20 24 C! BEGIN 20 23 C! 400 MS ?KEY UNTIL ;

The MS command causes a delay. You give the number of milliseconds before MS.
In the BLINK command, we first initialize the D13 line as an output port, and then
fall into an infinite loop. In the loop, the LED is toggled, and there is a delay by the
commands:
 400 MS
400 in hexadecimal is 1024 in decimal. Therefore, the delay lasts about 1000
milliseconds. After that, ?KEY looks at the USART0 receiver. If there is no input

 23

character, the loop is repeated. If you hit any key on the keyboard, the loop will be
terminated.

Type in the command BLINK with a Return, the D13 LED will blink. On for 1
second and off for 1 second, until you hit a key, and ceForth_328 returns to the text
interpreter, showing the ok> prompt.

5.3. TONE

This example allows you to generate a tone on the D6 digital output line. Why D6?
Because D6 connects to one of the outputs from the Timer/Counter0 in ATmega328P.
We will thus use Timer/Counter0 to produce a square wave on D6. If you connect
one lead of a speaker or a buzzer to D6, and the other lead to the ground, you will
hear a tone.

The commands to generate a tone are in the file Tone.txt, as shown below:

(Tone generator, 09nov11cht)

HEX
: SETUP
 40 2A C! \ make OC0A (I/O Line 6, PD-6) an output pin
 42 44 C! \ toggle OC0A on compare match, select C TC mode
 FF 47 C! \ maximum count in OCR0A to compare
 3 45 C! \ select /64, prescaler=3, start counter
 ;
: PRESCALER (0-5 --)
 45 C! ;
: TUNING (c --)
 47 c! ;

Load this file in HyperTerminal as show before. Then type in
 SETUP
If you had a speaker connected to D6, you will hear a tone.

The Timer/counter0 has a prescaler which scales the master clock and uses the slowed
oscillator to drive the counter. The command PRESCALER takes one argument from
0 to 5. Changing the prescaler, you will generate a different tone according to the
following table:

Prescaler Base Frequency
0 Stop oscillator
1 31.2 KHz
2 7.81 KHz
3 980 Hz
4 244 Hz
5 61 Hz

The command TUNING allows you to fine-tune the frequency of the tone more

 24

accurately. TUNING takes one argument from 0 to $FF. A smaller argument
produces a higher pitch.

An exercise you may want to do is to write a command which plays a short song.
Use a text editor to edit Tone.txt file. Add some commands to play a song.

5.4. Servo Motors

Are you into robotics? How about using your Arduino Board to drive 6 servo
motors?

ATmega328P has three timer/counters. Timeer/Counter0 and Timer/Counter2 are 8
bit timer/counters, and Timer/Counter 1 is a 16-bit timer/counter. Timer/Counter1 is
more complicated, naturally, but you can run it in the 8-bit mode, so that all three
behave similarly. Each Timer/Counter has two outputs which can be programmed to
generate two different PWM waves driving two servo motors. The commands are in
the file Servo.txt, as shown below:

(Servo Motors on Arduino Uno)
(Chen-Hanson Ting, 5/18/2011)
(OC1A: $88, PB1, Pin 9)
(OC1B: $8a, PB2, Pin 10)
(OC2A: $b3, PB3, Pin 11)
(OC2B: $b4, PD3, Pin 3)
(OC0B: $47, PD5, Pin 5)
(OC0A: $48, PD6, Pin 6)
(Master clock 16 MHz, prescaler 1024)
(3 Counter/Timers, fast PWM mode, 8 bit counter)
(PWM wave frequency 60 Hz, period 16 ms)
(PWM control code: $10, 1 ms; $18, 1.5 ms; $20, 2 ms)

hex

: init-ports
 E 24 c! 68 2a c! \ output ports
 a3 44 c! 5 45 c! \ TCCR0A, TCCR0B
 18 47 C! 18 48 C! \ OCR0A, OCR0B
 a1 80 c! d 81 c! \ TCCR1A, TCCR1B
 18 88 c! 18 8a C! \ OCR1A, OCR1B
 a3 b0 c! 7 b1 c! \ TCCR2A, TCCR2B
 18 b3 C! 18 b4 C! \ OCR2A, OCR2B
 ;

: s1 (n --) 88 c! ;
: s2 (n --) 8a c! ;
: s3 (n --) b3 c! ;
: s4 (n --) b4 c! ;
: s5 (n --) 47 c! ;
: s6 (n --) 48 c! ;

 25

The command init-ports is a bit complicated, and you have to read the three
chapters in the AVR Family Data Book on Timer/Counter1, 2 and 3 to fully
understand it. However, I just summarized the most important information on these
timer/counters in the comment lines at the beginning of Servo.txt file shown above.

Six servo motors are connected to Digital lines D3, D5, D6, D9, D10, and D11. D3,
D5, and D6 are driven by three lines in Port PD as PD3, PD5 and PD6, respectively.
D9, D10, and D11 are driven by three lines in Port PB as PB1, PB2 and PB3,
respectively. The commands in init-ports
 E 24 c! 68 2a c! \ output ports
assigned these 6 lines as output lines.

Relevant IO registers, their addresses, and their basic functions are summarized in the
following table:

Register Timer/Co

unter0
Timer/C
ounter1

Timer/C
ounter2

Function

TCCRnA 44 80 B0 Timer control register A
TCCRnB 45 81 B1 Timer control register B
OCRnA 47 88 B3 Output compare register A
OCRnB 48 8A B4 Output compare register B

To drive a servo motor you give it a PWM wave at 50 Hz, with the turn-on period
varying from 1 ms to 2 ms. This range is controlled by writing a value from $10 to
$20 into the corresponding output compare register. An initial value of $18 written
into the output compare registers sets the servo motors at their mid points. The
commands S1 to S6 allow you to change the set points of these 6 motors.

If you examine the output lines with an oscilloscope, you will see that the output
PWM waves have a frequency of 60 Hz instead of the required frequency of 50 Hz.
This is due to the fact that the ATmega328P is driven by a 16 MHz crystal clock, and
60 Hz comes out the prescalers naturally. If you want to drive servos at exactly 50
Hz, you can use one timer/counter to drive a second one and tune the first
timer/counter accurately for 50 Hz operation. But then, you could only drive 3 servo
motors. However, most servo motors do not really care about the base frequency of
the PWM waves, and 60 Hz works just fine.

5.5. Traffic Controller

A traffic controller is my favorite demo application. I often challenge people to
write the simplest and the most efficient program to control traffic lights at a highway
intersection. In each of the north, south, east and west directions, I place two sensors
to sense forward and left-turn cars, and 4 lights to indicate go, left-turn, caution, and
stop signals. On the Arduino Boards, there are not enough output lines to drive 16
traffic signals, so I give the north and south directions the same 4 signals, and the east
and west directions another 4 signals.

The commands are in the Traffic.txt file, as shown below:

(Traffic Controller on Arduino Uno)

 26

(Chen-Hanson Ting, 5/10/2011)
(Switches: PC: 0, N; 1, NL; 2, S; 3, SL; 4, W; 5, WL)
(PB: 2: E; 3, EL)
(LEDs: PD: 2, nsG; 3, nsY; 4, nsR, 5, nsL; 6, ewG; 7,ewY)
(PB: 0, ewR; 1,ewL)

hex

: init-ports
 fc 2a c! 3 24 c! \ output ports
 3f 28 c! c 25 c! ; \ input ports, pullup resistors

: seconds for aft 100 for 100 for next next then ne xt ;

: lights (n --)
 dup 2b c! \ PD outputs
 100 / C or 25 c! ; \ PB outputs, maintain pullups

: switches (-- n)
 23 c@ 100 * \ PB inputs
 26 c@ or \ PC inputs
 dup cr . ;

: N-S begin 104 lights 5 seconds
 switches c3a and if 108 lights 2 seconds then
 switches a and if 130 lights 3 seconds then
 switches c30 and until
 ;

: E-W begin 50 lights 5 seconds
 switches 82f and if 90 lights 2 seconds then
 switches 820 and if 310 lights 3 seconds then
 switches f and until
 ;

: go init-ports
 begin N-S E-W ?key until drop ;

I am very proud of this program, as I have revised it several times and now it is in its
best shape. The IO port assignments are as follows:

Port IO Line IO Device Function
D2 PD2 Green LED North-South Go
D3 PD3 Yellow LED North-South Caution
D4 PD4 Red LED North-South Stop
D5 PD5 Green LED North-South Left-Turn
D6 PD6 Green LED East-west Go
D7 PD7 Yellow LED East-west Caution
D8 PB0 Red LED East-west Stop
D9 PB1 Green LED East-west Left-Turn

 27

A0 PC0 Switch North Forward
A1 PC1 Switch North Left-Turn
A2 PC2 Switch South Forward
A3 PC3 Switch South Left-Turn
A4 PC4 Switch West Forward
A5 PC5 Switch West Left-Turn
D10 PB2 Switch East Forward
D11 PB3 Switch East Left-Turn

Commands are explained in the following table:

Command Function
init-ports Initialize the three IO ports PA, PC and PD. The input ports do not

have to be initialized, except that their pull-up resistors are activated for
the proper operation of external switches. It is very satisfying that the
ATmega328P can drive LED's directly with its output lines without
current limiting resistors, and that it has optional pull-up resistors to
simplify input circuitry. The actual layout of the traffic controller is
therefore extremely simple.

seconds Delay a number of seconds.
lights From a 16 bit value, turn on/off 8 LEDs. The lower byte controls PD

port, and the upper byte controls PB port.
switches From a 16 bit value, read 8 switches. The lower byte reads PC port,

and the upper byte controls PB port.
N-S A loop managing north-south traffic. If either forward switches in the

north or south direction are active, turn on North-South Go LED for 5
seconds. Next, if there are activity in other directions, turn on
North-South Stop and Caution LEDs for 2 seconds. Then, if either
left-turn switches in the north or south direction are active, turn on
North-South Stop and Left-turn LED for 3 seconds. Then, if there are
activity in the East-West direction, turn off North-South Caution LED's
and exit this command so that E-W command has a chance to run.
Otherwise, repeat N-S loop.

E-W A loop managing east-west traffic. If either forward switches in the
east or west direction are active, turn on East-West Go LED for 5
seconds. Next, if there are activity in other directions, turn on
East-West Caution LED for 2 seconds. Then, if either left-turn
switches in the east or west direction are active, turn on East-West Stop
and Left-turn LEDs for 3 seconds. Then, if there are activity in the
East-West direction, turn off East-west Caution LEDs and exit this
command so that N-S command has a chance to run. Otherwise,
repeat E-W loop.

go Initialize IO ports and enter a loop repeating N-S and E-W commands.
Exit this loop if the user hit any key on the keyboard.

This program is simple because I realized that it is a Finite State Machine with two
major states, which are coded as N-S and S-W commands. There are three minor
states in either major states and they are sequenced through under the appropriate
conditions. You can treat it as a 6-state Finite State Machine, but the transition rules

 28

would be much more complicated.

5.6. More Lessons

There are 17 lessons in files lesson1.txt to lesson17.txt. Take a look at these files
and enter the commands as exercises to learn eForth. You can also download these
files through the Transfer/Transfer text file button. However, remember that you
have only about 1.5 KB of RAM space to compile new commands. When you
compile too many commands, ceForth_328 will crash and stop talking to you. Push
the reset button on Arduino Uno to start over.

If you think you are about to crash, the can use the command COLD to start over, or
use the commands:
 FORGET <name>
to trim the dictionary back to a command you compiled earlier. COLD or FORGET
allow you to reclaim the dictionary space so that you can compile more commands.

6. Conclusion

I can bore you to death with more examples, but this seems a good point to stop.
What I want to show you is that within the confines of Arduino 0022, it is possible to
build a FORTH programming environment to let people explore this simple yet
powerful programming language. Although the small RAM memory in
ATmega328P limits the number of new commands you can add to the FORTH system,
and Arduino 0022 does not allow you to save the commands ceForth_328 compiles, it
is a useful environment for you to explore this interesting microcontroller while you
are reading the huge 566 page AVR Family Data Book.

PEEK and POKE are aliases of the native FORTH commands C@ and C!. They
clearly demonstrate the power and the usefulness of FORTH as a programming
language.

ATmega328P is a much more powerful microcontroller than what Arduino 0022
allows it to be. The roots of Arduino 0022 are in the UNIX operating system and in
the C programming Language. I admire the developers of Arduino in simplifying
the operating system and the language to the point that you are presented with only
two routines:
 setup();
 loop()
Most of the complications in the operating system and in the language are hidden
from you so that you can go immediately doing useful things. However, the
operating system and the language still insulate you from the underlying
microcontroller, and prevent you from exploit the microcontroller to its full capacity.

FORTH is an operating system and a programming language which are transparent
between you and the microcontroller you own. At the very low end, it allows you to
push the microcontroller to the bare metal, giving you complete control over the
registers, the IO devices and the memory. At the other end, it allows you to express
you programming intentions at the highest conceptual level, in building nested lists to
arbitrary depth, much like LISP albeit simpler, easier and without the irritating

 29

parentheses.

The ceForth_328 system is a teaser to give you some hands-on experience with
FORTH on an Arduino Board. It introduces you to a real FORTH system 328eForth
which give you access to the entire ATmega328P microcontroller, and allows you to
build complete turnkey applications for Arduino Boards and even for bare
ATmega328P chips. I hope to convince you that there is a better way to develop
turnkey applications than Arduino 0022.

You see. The Arduino 0022 system comes in a zipped file of 87,587 KB. It
expands to fill 245 MB on your hard disk. You really don't know what's happening
behind your back when you compile a sketch in Arduino 0022. It always amazes me
that the results uploaded to the Arduino Uno Board actually works. It is a long and
tedious task to learn about all the library routines provided in the Arduino 0022
system. Very often, it is difficult to find utilities and tools that you need to do your
job. The huge Arduino community helps, but only to an extend. You are on your
own in the end.

In contrast, the assembly source code of 328eForth system has only 54,472 bytes.
This is 1/500th the size of the Arduino 0022 system, and it is within a single person's
intelligence. However, this 54 KB of source code, describe a complete operating
system , a programming language and a whole bunch of tools embedded inside a
microcontroller, independent of a host computer or a supporting operating system. It
give you complete freedom in developing your specific applications.

Last but not least, actually, ATmega328P and the AVR family of microcontrollers, in
my humble opinion, are great chips but of very poor design. Most microcontroller
designers really don't know what they are doing. They just throw things together
and called them microcontrollers. Not much thought were really put into the
architecture, the instruction sets, and the peripheral devices. There were very few
visions behind the microcontroller designs. And, hardware designers really do not
understand software. They just throw the chip over the fence, and let software
engineers make things work. On this side of the fence, software designers really do
not understand software either, and they build clumsy, bulky, inefficient systems,
plagued with bugs. So, we get a mess. Microcontrollers can be designed simpler
and better, if the designers really understand hardware and software. In this respect,
probably you should look at my 32-bit FORTH microcontroller design in eP32. But,
that's a different story.

 30

Part Two Metacompilation of ceForth_328

7. Metacompilation

In 1990, Bill Muench and I developed a very simple FORTH model called eForth and
it was ported to 30 some different microprocessors and microcontrollers by many
volunteers. A young fellow in Taiwan, Mr. Cheah-shen Yap, ported eForth to
Windows to become the weForth system. He further enhanced it and released it as
the F# system. It is the simplest FORTH implementations for Windows, but can call
all Windows APIs to build very sophisticated applications for a PC.

Most of the eForth systems were written in assembly languages native to the
underlying microcontrollers. Because the hardware dependencies were contained in
a small set of primitive FORTH commands, eForth is very easy to port. You rewrite
the primitive commands in an assembler, provided usually free by the microcontroller
manufacturer, and copy the source code of all the compound commands over. A new
eForth generally can be built in about 2 weeks.

When I worked with Chuck Moore to develop the MuP21 microcontroller, he wrote a
metacompiler in the then very popular FORTH system FPC on a PC, to produce
testing routines for the new microcontroller. In MuP21 Chuck designed 25 machine
instructions, and these machine instructions matched very well with the primitive
command in eForth. I used Chuck's metacompiler to build a eForth system for
MuP21, and it worked quit well. Then I went on developing a series of
microcontrollers P8, P16, and P24, using Chuck's metacompiler to build eForth
systems for them. When I moved on to a 32-bit microcontroller, I called it eP32 to
remind people that the software for it was eForth.

Recently I implemented eForth in the C language, to give C programmers a taste of
the FORTH language and perhaps develop applications based on it. It took me half a
year to figure out how to convince C to speak FORTH. These two languages are
very different in their architecture, primitive instructions, memory management,
syntax, and expressions of arithmetic-logic operations. In the end, I took the
hardware design of the eP32 microcontroller, and emulate it in C routines as a
FORTH Virtual Machine (FVM). The primitive FORTH commands are encoded in a
set of pseudo instructions in FVM, and the compound FORTH commands are
encoded in a giant data structure call a dictionary. I could not express this rather
complicated data structure in C. So, I used Chuck's metacompiler to build it in F#,
and then imported it into the C program as a data array. I called it the cEF system.

To build a FORTH system for Arduino Uno Board, based on the C compiler in
Arduino 0022 system, it is natural to port the cEF system over as an Arduino sketch.
The FORTH Virtual Machine (FVM) in cEF was copied into an Arduino sketch. The
FORTH dictionary was metacompiled by F#, and imported to the Arduino sketch as a
data array. The result is ceForth_328, which runs smoothly on my Arduino Uno
now.

In the FORTH terminology, a metacompiler is a FORTH program which produces an
a dictionary as a data array, which can be copied into the memory of a target computer.
When the target computer powers up, a FORTH system in the dictionary is booted up,

 31

and you can type FORTH commands to interact with it.

The new FORTH system may run on the same platform as the old FORTH system.
It may be targeted to a new platform, or to a new microcontroller. The new FORTH
system may share a large portion of FORTH code with the old system, hence the term
“metacompilation” as in metamorphosis. The metacompiler is very similar to a
conventional cross assembler/compiler.

I believe the best way to explain this ceForth_328 system is through its source code in
the Arduino sketch and in the metacompiler that produces its dictionary. Going
through source code almost line by line, I hope that I can explain the process of
producing a FORTH target system on Arduino Uno, and everything that goes into the
dictionary which makes the Arduino Uno behave like a FORTH language processor
inside the ATmega328P microcontroller.

In Part One of this manual, I went through the C source code in the eForth_328.pde
file. Now I will do the same for the ceForth_328 metacompiler. If you are new to
FORTH, the source code would look strange. I hope you will bear with me in
reading the source code. FORTH is more like English (or Chinese for that matter)
than a conventional procedural programming language, and is very easy to get use to.
Once you learn to read FORTH code, it will be very easy to write your own FORTH
programs.

8. ceForth_328 Metacompiler

As discussed earlier, the FORTH Virtual Machine (FVM) is coded in C, and it is
really not very complicated. There are only 33 pseudo instructions, and a Finite
State Machine (FSM) which sequencing through these pseudo instructions stored in
memory. The complication is in the FORTH dictionary which contains an interpreter,
a compiler, many debugging tools, in about 200 FORTH commands, all linked into a
linear, searchable dictionary. To really understand this FORTH system and use it to
develop applications, you need to know most of these commands, how the dictionary
is constructed, and how it is extended when new FORTH commands are added to the
dictionary.

The dictionary in ceForth_328 system is built by a metacompiler, which is a FORTH
program constructing a new FORTH system for a target microcontroller like
Atmega328P. For the ceForth_328 system, I call the metacompiler cefMETA328.
It consists of a set of files loaded into the F# system running on Microsoft Windows.
F# is a very simple FORTH system. Though it is very simple, it contains tools to
access all the API services provided by Windows. You can build very elaborate and
sophisticated applications on the top of it. cefMETA328 is such an application.

cefMETA328 metacompiler consists of the follow set of files, in addition to the files
necessary to run the F# system:

File Function
F#.exe F# system to compile ceForth_328
cefMETA328.fex Maker of ceForth_328 metacompiler
cefMETA328.f Metacompiler of ceForth_328

 32

cefASM328.f Assembler of ceForth_328 pseudo code
cefKERN328.f Kernel of primitive commands
cEF328.f All compound commands
cefSIM328.f Simulator of ceForth_328 system
rom.mif Dictionary of ceForth_328
ceForth_328.pde ceForth_328 source code in C to run on Arduino 0022.

Several other .f files are necessary for F# to work. Do not delete them. All files
are compressed in cefMETA328.zip. Unzip it and put all the files in a folder, for
example ..\ceForth_328\. Don't leave that folder on your desktop. You must not
have spaces in the pathname of this folder.

ceForth_328.pde describes a FORTH Virtual Machine (FVM) in C code. This FVM
has a set of pseudo instructions and some C functions to execute FORTH pseudo
instructions as a Finite State Machine (FSM). These pseudo instructions are
encoded in one byte, and are called byte codes. The C routines were discussion in
the first part of this manual.

A dictionary allocates an 8 KB code array to host the dictionary of the ceForth_328
system. FORTH commands are coded as records in a single linked list. Each
command record has 3 fields:

Field Function
link field Points to name field of prior command. 2 bytes.
name field Counted string of a name. Variable length
code field Pseudo instructions and token lists. Variable length

In a primitive command, the code field has a list of pseudo instructions, terminated by
the inner interpreter instruction next, .

In a constant, the code field contains two pseudo instructions inline, and next, ,
which returns the constant value stored in the following program word.

In a variable, the code field contains two pseudo instructions dovar, and next, ,
which returns the address of the following word. This behavior is shared with arrays
defined by CREATE.

In a compound command, the code field has one pseudo instruction dolist ,
followed by an token list which is a list of code field addresses of other FORTH
commands. It is usually terminated by a FORTH command EXIT , which un-nests a
nested token list started by dolist .

The token list in a compound command usually is a linear list of addresses. A
number of structures can be embedded in this list, such as:
 Literals to return an inline constant
 String literals to return the address of an embedded inline string
 Control structures for branching and looping

33 pseudo instructions are implemented in this system. Only 30 are actually used.

 33

Up to 256 pseudo instructions can be accommodated in this design. The number of
compound commands is limited by the space in the flash memory. An eForth system
generally has about 200 compound commands to begin with. You add more to build
applications.

Load cefMETA328.fex under F# to build the eForth dictionary. It produces a file
rom.mif which contains the hexadecimal image of the ceForth_328 Forth dictionary.
Contents of rom.mif must be copied into the code memory array in the
ceForth_328.pde file to be compiled by Arduino 0022.

The step by step procedure to build and test ceForth_328 is as follows:
1. Power-up Windows XP
2. Unzip all files in ceForth_328.zip into a folder like ..\ceForth_328 \.
3. Double click F#.exe, and bring up a file selection window:

4. Double click cefMETA328.fex in the file selection window. The ceForth_328
metacompiler compiles ceForth_328 and produces a rom.mif file. A ceForth_328
simulator is also loaded and the ceForth_328 system can be simulated.

 34

If you scroll back the console window to the very beginning, you can see all the files
being loaded by the F# system. You can see the following commands in the
cefMETA328.fex file:

FLOAD .\init.f \ initial stuff
FLOAD .\win32.f \ win32 system interface
FLOAD .\consolei.f \ api and constant definatio n
FLOAD .\ui.f \ user interface helper rout ine (reposition)
FLOAD .\console.f \ the main program
FLOAD .\ansi.f
FLOAD .\fileinc.f
FLOAD .\cefMETA328.f

cefMETA328.fex is similar to a MAKE file in UNIX. It first loads in a set of
Windows utility files. The last thing cefMETA328.fex file does is to load the
cefMETA328.f file, which is the ceForth_328 metacompiler.

We will read the source code in cefMETA329.f later. Here I just summarize the
other files loaded by it and what are accomplished by loading these files.

File Functions
cefMETA328.f Load cefASM328.f to bring up the ceForth_328 assembler. It

prints out a list of command names followed by a reDef
message. These commands are the ceForth_328 assembler,
preparing to assemble the primitive commands in the ceForth_328
kernel.

cefKERN328.f First define many system variables starting at target memory
location $920. Then it assembles about 30 primitive commands
which are the kernel of ceForth_328. There you can see names
of target commands followed by their code field addresses. They
form a symbol table, which you can use to look up names and
addresses of target commands.

cEF328.f Compile the compound commands which form the bulk of

 35

ceForth_328 target system.
cefSIM328.f ceForth_328 simulator. This simulator faithfully simulate the

ceForth_328 system cycle by cyle, instruction by instruction.

Once the cefSIM328.f simulator is loaded, type the command:
 HELP
and a list of simulator commands appear.

5. Type -1 G , and the simulator displays:
 Arduino eForth 2.0, 2011

6. Press return key and the system displays:
 0 0 0 0 ok>

 36

7. You can type in other FORTH commands to test the system in the simulator.

Now you can exercise ceForth_328 by typing in FORTH commands.
The following console window shows the results when you type command:
 WORDS
If you care to count them, there are about 195 commands. These commands are
documented in Appendix.

ceForth_328 is case insensitive. You can type in commands in upper case or lower
case characters. You can also type in mixed case characters.

Here are more eForth commands you can type into the F# console to test the eForth
system:

900 DUMP
HERE .
1 2 + .
: TEST1 1 2 3 4 5 ;
TEST1
: TEST2 10 FOR R@ . NEXT ;
TEST2
: TEST3 IF 1 ELSE 2 THEN . ;
0 TEST3
1 TEST3
: TEST4 CR .” HELLO, WORLD!” ;
TEST4

After these tests, the F# console looks as follows.

 37

8. Close F# window.

You are done with cefMETA328 metacompiler. It produces a rom.mif file, which
contains the dictionary of ceForth_328. You must import this dictionary into the
ceForth_328.pde file to get ceForth_328 to work on the Arduino Uno Board.

9. Move ceForth_328 to Arduino Uno

The step by step procedure to get ceForth_328 running on Arduino Uno Board is as
follows:
1. Open Arduino 0022 in Windows.
2. Open ceForth_328.pde file Arduino 0022.
3. Copy rom.mif to code array in ceForth_328.pde. Remember to remove the
comma at the end of the line
 /* 1FFE */ 0x0000
Arduino screen should look like the following:

 38

4. Compile ceForth_328, by clicking the Compile button.
5. Upload ceForth_328 to Arduino Uno by clicking the Upload button.
6. Open HyperTerminal on PC. Set it up to 115,200 baud, 8 data bits, 1 stop bit, no
parity, no flow control. ceForth_328 boots up and display this message:
 Start Arduino
 Arduino eForth, 2.0, 2011
7. Press Return key and the system displays:
 0 0 0 0 ok>
8. You can exercise ceForth_328 system by typing this command:
 WORDS
WORDS displays the names of all FORTH commands implemented in ceForth_328.
After executing the command WORDS, the HyperTerminal console looks like the
following:

 39

Try the following commands to verify that ceForth_328 can really compile new
FORTH commands:

 1 2 3 4
 +
 *
 : TEST1 CR ." HELLO, WORLD!" ;
 TEST1
 : TEST2 IF 1 ELSE 2 THEN . ;
 1 TEST2
 0 TEST2
 : TEST3 10 FOR R@ . NEXT ;
 TEST3

(Press Return key at the end of each line to send the commands to Arduino Uno.)

10. cefMETA328.f

The source code of the ceForth_328 metacompiler is contained in the file
cefMETA328.f.

Here we will go through cefMETA328.f file, almost line by line to see how the
ceForth_328 system is produced. All other files referred to in this file will be
discussed in their separate sections.

 (cefMEAT328.F, 13sep11cht, Arduino Uno eForth Pro ject)
HEX
variable debugging?
\ -1 debugging? !
: .head (addr -- addr)

 40

 SPACE >IN @ 20 WORD COUNT TYPE >IN !
 DUP . ;
: CR CR
 debugging? @
 IF .S KEY 0D = IF ." DONE" QUIT THEN
 THEN ;
: BREAK CR
 .S KEY 0D = IF ." DONE" QUIT THEN ;
: forth_' ' ;
: forth_dup DUP ;
: forth_drop DROP ;
: forth_over OVER ;
: forth_swap SWAP ;
: forth_@ @ ;
: forth_! ! ;
: forth_and AND ;
: forth_+ + ;
: forth_- - ;
: forth_word WORD ;
: forth_words WORDS ;
: forth_.s .S ;
: CRR cr ;
: forth_.([COMPILE] .(;
: forth_count COUNT ;
: forth_r> R> ;
: -or XOR ;
: >body 5 + ;
: forth_forget FORGET ;
: forth_. . ;
: wf: : ;
: wf; [COMPILE] ; ; immediate
: forth_EXIT EXIT ;
: forth_QUIT quit ;
: target_' forth_' >body forth_@ ;
: -OR XOR ;
: forth_\ [COMPILE] \ ;

CREATE ram 8000 ALLOT
: RESET ram 8000 0 FILL ; RESET
: RAM@ ram + W@ ;
: RAM! ram + W! ;
: RAMC@ ram + C@ ;
: RAMC! ram + C! ;
: FOUR (a --) 8 FOR AFT DUP RAMC@ 5 U.R 1+ T HEN NEXT ;
: SHOW (a) 10 FOR AFT CR DUP 5 .R SPACE
 FOUR SPACE FOUR THEN NEXT ;
: showram 0 0C FOR AFT SHOW THEN NEXT DROP ;

Command Function
debugging? A variable containing a switch to turn break points on and off. When

debugging? is set to -1, compilation will stop and the data stack is
displayed when a cr command is executed. Sprinkling cr
commands in the source code file allows you to watch the progress of
metacompilation and even stops it when necessary.

.head Display name of a command that is about to be compiled. It is used
to display a symbol table. You can look up the code field address of
any command in this table.

cr Pause metacompilation if debugging? is -1, and dump data stack.

 41

If you press ESC key, metacompilation is aborted. Otherwise,
metacompilation continues. It just does a carriage return/line feed if
debugging? is 0.

During metacompilation, many FORTH commands will be redefined so that they will
compile tokens or assemble pseudo instructions into the target dictionary. There are
numerous occasions where the original behavior of a FORTH command must be
preserved. To preserve the original behavior of a FORTH command, it is assigned a
different name. Thereby after a command is redefined, we can still exercise its
original behavior by invoking the alternate name.

For example, + is a FORTH command that adds the top two numbers on the data
stack in the F# system. Then in the cefKERN328.f file, a new + command is
defined to assemble an add instruction in the target ceForth_328 system. If you still
need to add two numbers, you must use the alternate command forth_+ as shown
below. All the F# commands you need to use later must be redefined as
forth_xxx commands. If you neglect to redefine them, you will find that the
system behaves very strangely.

The ceForth_328 executes commands and accesses data in the memory range 0-1FFF.
In F# we allocate a 32 KB memory array, ram, to hold the ceForth_328 target
dictionary. This array contains code and data to be copied into a code array in
ceForth_328, to be processed by a FORTH Virtual Machine in Arduino Uno.

ram Memory array in F# for the ceForth_328 target dictionary. It has a
logical base address of 0 in ceForth_328. Code and data words in
the target are stored in this array.

ram@ Replace a logical address on stack with data fetched from ram data
array.

ram! Store second integer on stack into logical address of ram data array.
ramC@ Replace a logical address on stack with byte data fetched from ram

data array.
ramC! Store second integer on stack into logical address of ram data array as

a byte.
reset Clear ram data array, preparing it to receive code and data for

ceForth_328.
four Display 8 consecutive bytes in target dictionary.
show Display 256 bytes in target from address a. It also returns a+128 to

show the next block of 256 bytes.
showram Display the entire ceForth_328 dictionary of 8 KB.

VARIABLE hFile
: write-bin-file
 Z" mem.bin"
 $40000000 (GENERIC_WRITE)
 0 (share mode)
 0 (security attribute)
 2 (CREATE_ALWAYS)
 $80 (FILE_ATTRIBUTE_NORMAL)

 42

 0 (hTemplateFile)
 CreateFileA hFile !
 hFile @
 RAM 4000
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 hFile @ CloseHandle DROP
 ;

CREATE CRLF-ARRAY 0D C, 0A C,
: CRLF
 hFile @
 CRLF-ARRAY 2
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 ;

: open-mif-file
 Z" rom.mif"
 $40000000 (GENERIC_WRITE)
 0 (share mode)
 0 (security attribute)
 2 (CREATE_ALWAYS)
 $80 (FILE_ATTRIBUTE_NORMAL)
 0 (hTemplateFile)
 CreateFileA hFile !
 ;
: write-mif-header
 CRLF
 hFile @
 $" /* WIDTH=16; */"
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF
 hFile @
 $" /* DEPTH=8192; */"
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF
 hFile @
 $" /* ADDRESS_RADIX=HEX; */"
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF
 hFile @
 $" /* DATA_RADIX=HEX; */"
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF

 43

 hFile @
 $" /* CONTENT BEGIN; */"
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 ;

The ceForth_328 metacompiler builds a target dictionary for the ceForth_328 in ram,
a memory array in F#. This dictionary is written to a rom.mif file and will be
imported to the ceForth_328 system as a code array there. The C programming
language requires that the code array be written as a sequence of 16 bit integers
terminated by commas. A few lines in the rom.mif file are as follows:

/* WIDTH=16; */
/* DEPTH=8192; */
/* ADDRESS_RADIX=HEX; */
/* DATA_RADIX=HEX; */
/* CONTENT BEGIN; */
/* 0000 */ 0x0000,
/* 0002 */ 0x0000,
/* 0004 */ 0x0000,
/* 0006 */ 0x0000,
/* 0008 */ 0x0000,
. . .
/* 08FA */ 0x0000,
/* 08FC */ 0x0000,
/* 08FE */ 0x0000,
/* 0900 */ 0x1B28,
/* 0902 */ 0x0000,
/* 0904 */ 0x0000,
/* 0906 */ 0x0000,
/* 0908 */ 0x0000,
/* 090A */ 0x0880,
/* 090C */ 0x0010,
/* 090E */ 0x1654,
/* 0910 */ 0x0000,
/* 0912 */ 0x1CE8,
/* 0914 */ 0x0320,
/* 0916 */ 0x1CE8,
/* 0918 */ 0x1702,
/* 091A */ 0x0000,
/* 091C */ 0x0000,
/* 091E */ 0x0000,
/* 0920 */ 0x0000,
. . .

hFile A variable holding a file handle.
CRLF Insert a carriage return and a line feed into the currently

opened file.
open-mif-file Open a file named rom.mif for writing.
write-mif-line Write one line of text into current file.
write-mif-header Write a header required into current file.

“mif” is a term leftover from the implementation of the eP32 microprocessor on a

 44

Xilinx FPGA, and its development system expected a memory file to be in its mif
format. It is easy to conform to any code format requirements by changing these
xxx-mif-yyy commands here.

: write-mif-data
 0 (initial ram location)
 $1000 FOR AFT
 CRLF
 hFile @
 OVER (4 /) (word address)
 <# 2F HOLD 2A HOLD 20 HOLD
 3 FOR # NEXT
 20 HOLD 2A HOLD 2F HOLD #>
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 hFile @
 OVER RAM@
 <# 2C HOLD 3 FOR # NEXT 78 HOLD 30 HOLD 20 HO LD #>
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 2+
 THEN NEXT
 DROP (discard flash location)
 ;

: close-mif-file
 CRLF
 hFile @
 $" /* END; */"
 PAD (lpWrittenBytes)
 0 (lpOverlapped)
 WriteFile
 IF ELSE ." write error" QUIT THEN
 CRLF
 hFile @ CloseHandle DROP
 ;

: write-mif-file
 open-mif-file
 write-mif-header
 write-mif-data
 close-mif-file
 ;

write-mif-data Write a 8 KB dictionary of the eForth System from memory array

ram to the rom.mif file.
close-mif-file Close the rom.mif file.
write-mif-file Write a file rom.mif containing 8 KB of the eForth System

according to the C code array format.

Write-mif-file opens an rom.mif file, writes a header, writes data, and then
closes the file. The rom.mif file must be copied into a code array in the

 45

ceForth_328.pde file in Arduino 0022.

The ceForth_328 metacompiler continues to load the ceForth_328 assembler in
cefASM328.f, the ceForth_328 kernel in cefKERN328.f, and the FORTH system in
cEF328.f with the following commands:
 FLOAD cefASM328.f
 FLOAD cefKERN328.f
 FLOAD cEF328.f

The target dictionary is complete, and can be now written out into rom.mif by the
write-mif-file command.

The metacompiler now loads in the simulator in cefSIM328.f with:
 FLOAD cefSIM328.f

The ceForth_328 system can now be simulated in F#. It is most satisfying to see that
the output of this simulator matches exactly what is produced by the ceForth_328
system on the Arduino Uno Board. This simulator is working at pseudo instruction
level. It is much more convenient to run than the Arduino 0022 system. Once a
development cycle is closed in this fashion, we have very high confidence that any
software change in source code of the eForth system will work on Arduino Uno, if it
first passed this high-level simulator.

11. cefASM328.f

The cefASM328.f file contains a structured, optimizing assembler for ceForth_328.
It packs 2 pseudo instructions into one 16-bit program word. It first clears a program
location pointed to by a variable hw, and prepare it to receive 2 pseudo instructions.
Assembly commands will insert pseudo instructions into consecutive bytes, and
they make necessary decisions as to whether to add more instructions to the current
program word, or start a new program word.

A primitive FORTH command in ceForth_328 contains a sequence of pseudo
instructions, or byte codes. Two pseudo instructions are packed into a 16-bit
program word. 33 pseudo instructions are defined.

The compound FORTH commands in ceForth_328 system are based on the Token
Threading Model, in which a compound command contains a list of tokens which are
code field addresses of other FORTH commands. Compound commands in the form
of lists of token are very compact and very efficient.

HEX

VARIABLE h
VARIABLE lasth 0 lasth ! \ init linkfield address lfa

: namer! (d --)
 h @ ram! \ store doubl e to code buffer
 1 h +! \ bump nameh
 ;

: COMPILE-ONLY 40 lasth @ ram@ XOR lasth @ ram! ;

 46

: IMMEDIATE 80 lasth @ ram@ XOR lasth @ ram! ;

VARIABLE hi
VARIABLE hw
VARIABLE bi (for byte packing)
: align 14 hi ! ;
: org DUP . CR h ! align ;
: allot (n --) h +! ;

CREATE mask 3F000000 , FC0000 , 3F000 , FC0 , 3 F ,
: #, (d) h @ ram! 1 h +! ;
: ,w (d) hw @ ram@ OR hw @ ram! ;
: ,i (d) hi @ 14 = IF 0 hi ! h @ hw ! 0 #, THEN
 hi @ mask + @ AND ,w 4 hi +! ;
: spread (n - d) DUP 40 * DUP 40 * DUP 40 * DUP 4 0 * + + + + ;
: ,l (n) spread ,i ;
: ,b (c) bi @ 0 = IF 1 bi ! h @ hw ! 0 #, ,w EX IT THEN
 bi @ 1 = IF 2 bi ! 100 * ,w EXIT THEN
 bi @ 2 = IF 3 bi ! 10000 * ,w EXIT THE N
 0 bi ! 1000000 * ,w ;

: inst CONSTANT DOES> R> @ ,i ;
1E spread inst nop

: anew BEGIN hi @ 14 < WHILE nop REPEAT 0 bi ! ;
: # (d) 0A spread ,i #, ;
: ldi # ;
: LIT (d --) # ;

COMPILE-ONLY Patch Bit 6 in first byte of name field in current target

command. Text interpreter checks it to avoid executing
compiler commands.

IMMEDIATE Patch Bit 7 in first byte of name field in current target
command. Compiler checks it to execute commands while
compiling.

h A variable pointing to the next free memory word at the top of the target

dictionary.
lasth A variable pointing to the name field of the current target command under

construction.
namer! Compile a 16-bit word d to the top of the target dictionary.
hw A variable pointing to a new program word being constructed.
hi A variable pointing to a byte to pack the next pseudo instruction.
bi A variable pointing to a byte to pack the next ASCII character.
align Initialize pointer hi to start assembling a new program word.
org Initialize pointer h to a new address to start assembling.
allot Add a n to pointer h. It skips an area in target memory and starts

assembling above this area.
mask An array of 2 masks to isolate one 8-bit pseudo instruction from a 16-bit

instruction pattern. A pseudo instruction can be assembled in one of 2
bytes selected by hi .

 47

#, Compile d to top of target dictionary. It is the most primitive assembler
and compiler. The ceForth_328 assembler is an extension of this primitive
assembly command.

,w OR d to the program word pointed to by hw. It packs a byte into the
current program word.

spread Repeat 8-bit pseudo instruction n to fill a 16-bit instruction pattern. mask
uses it to select a byte code for assembling.

,i Use hi to select one pseudo instruction in d and assemble it into the
program word selected by hw.

,l Spread an 8-bit pseudo instruction to a 16-bit pattern and assemble a
pseudo instruction with ,i .

,b Pack byte b into current program word. Pointer bi determines which byte
field to pack. bi is incremented to facilitate packing of next byte.

inst Define pseudo instruction assembly commands. It creates a pseudo
instruction assembly command like a constant. When a pseudo instruction
assembly command is later executed, this constant is retrieved as an byte
code and a pseudo instruction is assembled into the current program word
by command ,i .

nop First pseudo instruction assembly command defined by inst .
anew Fill current program word with a nop and initialize hi and hw to

assemble new pseudo instructions in the next program word.
Assemble a load literal dolit instruction. Its literal value is assembled

in the next program word pointed to by h.
lit, Alias of #.
lit#, Assemble a inline literal inline instruction. Its literal value is

assembled in the next program word pointed to by h.

decimal
\ 0 INST nop,
1 INST bye,
2 INST qrx,
3 INST txsto,
4 INST inline,
5 INST dolit,
6 INST dolist,
7 INST exit,
8 INST execu,
9 INST donext,
10 INST qbran,
11 INST bran,
12 INST store,
13 INST at,
14 INST cstor,
15 INST cat,
16 INST istore,
17 INST iat,
18 INST rfrom,
19 INST rat,
20 INST tor,
21 INST dovar,
22 INST next,
23 INST drop,

 48

24 INST dup,
25 INST swap,
26 INST over,
27 INST zless,
28 INST andd,
29 INST orr,
30 INST xorr,
31 INST uplus,
32 INST icat,

Instruction Function
nop, No operation.
bye, Not used.
qrx, Get a character from USART0 receiver
txsto Send a character to USART0 transmitter.
inline, Fetch next word pointer to by P and push it on stack. Increment P.
dolit Fetch next word pointed to by IP and push it on stack. Increment IP.
dolist, Push IP on the return stack. Copy P into IP, and execute next to start

processing this new token list pointed to by the original IP.
exit, Pop the return stack back to IP. Execute next to continue processing

the token list interrupted by a compound command.
execu, Push IP on the return stack. Pop stack into P, and start executing the

pseudo instructions starting at P.
donext, If top of return stack is not 0, decrement it and then copy the next word

into IP, thus repeating a loop. If top of return stack is 0, pop it off the
return stack, and increment IP, leaving this loop.

qbran, If top of stack is 0, copy the next program word into IP, and then
execute next to branch to a new token list. Otherwise, increment IP,
and continue processing the current token list.

bran, Unconditional branch to address in the next program word.
store, Store the second element on stack to a location on top of stack. Pop

both elements.
at, Replace top of stack with contents of memory it addresses.
cstore, Store the second element as a byte to a location on top of stack. Pop

both elements.
cat, Replace top of stack with contents of a byte memory it addresses.
istore, Not used.
iat, Not used.
rfrom, Pop the return stack and push its top element on the stack.
rat, Copy the top element on the return stack and push it on the stack.
tor, Pop stack and push its top element on the return stack.
dovar, Push the address in P on stack.
next, Copy IP to P to process the next token. Increment IP.
drop, Pop stack.
dup, Duplicate top of stack.
swap, Swap the top two elements on stack.
over, Duplicate and push the second element on stack.
zless, If top of stack is negative, replace it with a TRUE flag; else replace it

 49

with a FALSE flag.
andd, Pop top of stack and AND it to the new top element.
orr, Pop top of stack and OR it to the new top element.
xorr, Pop top of stack and XOR it to the new top element.
uplus, Add top two elements on stack, replace them with a double integer sum.
icat, Not used.

In the ceForth_328 system, all target commands are compiled in a dictionary, and
linked into a linear list. Each target command has a link field of one 16-bit word, a
variable length name field in which the first byte contains a length followed by the
ASCII characters of the name string, null filled to a 16-bit word boundary, and a
variable-length code field containing 16-bit tokens or data words. Primitive
commands have pseudo instructions in their code fields. Compound commands
generally have token lists in their code fields. Following are metacompiler
commands which build a header which contain a link field and a name field.

: begin aanew H @ ;
: ': begin .head CONSTANT DOES> R> @ #, ;
hex
crr
: (makeHead)
 aanew
 20 word \ get nam e of new definition
 lastH @ nameR! \ fill li nk field of last word
 H @ lastH ! \ save nfa in lastH
 DUP c@ ,B \ store count
 count FOR AFT
 count ,B \ fill name field
 THEN NEXT
 DROP aanew
 ;

: makeHead
 >IN @ >R \ save in terpreter pointer
 (makeHead)
 R> >IN ! \ restore word pointer
 ;

: ($LIT)
 aanew 22 WORD
 count FOR AFT
 count ,B (compile characters)
 THEN NEXT DROP aanew ;

: $LIT (--)
 aanew
 22 WORD
 DUP c@ ,B (compile count)
 count FOR AFT
 count ,B (compile characters)
 THEN NEXT DROP aanew ;

: CODE makeHead ': ; \ for eForth kerne l words

Command Function

 50

begin Mark current location in target for later address resolution.
 ‘: Define a nameless command. begin points to the code field and is

defined as a constant in the metacompiler. The run time behavior of
this constant is changed to execute commands after DOES>, which uses
the saved code field address to assemble a token. It also displays the
name of the new command and its execution address on the terminal,
with the .head command.

(makehead) Build a header for a new target command. The header includes a link
field and a name field. The address of the name field in the last target
command is stored in lasth , and is compiled into the link field. h
points to the name field of the new command, and is copied into
lasth . Now, the following string is copied into the name field,
starting with its length byte, and null filled to the word boundary. Now,
h points to the code field of this new target command.

makehead Build a header with (makehead) and save the name string to define a
compiler command in metacompiler. It displays the name and code
field address. A string can be used repeatedly by saving and restoring its
pointer in a >IN word.

($LIT) Compile a count string for a string literal.
$LIT Compile a count string for a counted string literal.
CODE Define a new target command. It creates a new header in the target, and

then uses : to start a new subroutine. It also creates an assembly
command in the metacompiler. This assembly command assembles a
subroutine call instruction.

After the assembler in cefASM328.f is loaded, the metacompiler cefMETA328.f
continues loading these lines of code which adds the most important compiler
command :: which will be used to compile all compound commands to the target
dictionary.

: :: makeHead begin .head CONSTANT dolist, aanew DO ES> R> @ #, ;
: CREATE makeHead begin .head CONSTANT dovar, next, aanew DOES> R> @ #, ;
: VARIABLE CREATE 0 #, ;
: ;; EXIT ;

:: Start compiling a new compound command to the target dictionary.

First build a header with the name string following. Display the
name and its code field address as in a symbol table. Then, use the
code field address to define a constant in the F# dictionary of the
same name. When this new compound command is later referenced,
a token of this code field address is added to the dictionary in the
target dictionary. This is how the metacompiler builds token lists in
the target dictionary.

CREATE Build an array in target dictionary. No memory space is allocated.
When referenced when the target is running, it returns its array
address. Not used in ceForth_328 metacompiler.

VARIABLE Build a variable in target dictionary. 2 bytes are allocated and
initialized to 0. When referenced when the target is running, it

 51

returns the address of the variable.

With the assembler in place, we are now ready to build the ceForth_328 system in the
target dictionary.

12. cefKERN328.f

In ATmega328P, there are 32 KB of flash memory, and 2 KB of RAM memory.
Since the Arduino 0022 system does not allow us the write new code into the flash
memory, I designed a unified memory model so that I can add new code to the RAM
memory. The memory map of ceForth_328 is shown in the following table:

Address Function
0x0-0xFF ATmega328 CPU and IO registers
0x100-0x2FF Data space used by C compiler
0x300-0x87F Free RAM memory
0x880 Terminal input buffer
0x8FF Start of ATmega328 hardware stack
0x900-0x1FFF ceForth_328 dictionary

The parameter stack and return stack are allocated by the C compiler as parts of the
FORTH Virtual Machine. We do not have to worry them in FORTH.

We are now starting compiling new commands into the target dictionary. First, the
assembly command ORG in cefMETA328.f initializes the dictionary pointer, h, to
memory location $920. The memory area below $900 is mapped to the RAM
memory space. The memory area from $900 to $91F stores initial values of the boot
up address and system variables In the cefMETA328.f file, the following lines of
commands compiles the kernel of ceForth_328.

$920 ORG
CR .(include kernel)
FLOAD cefKERN328.f

Now, cefKERN328.f is loaded to assemble primitive FORTH commands into the
target dictionary, starting at $920.

System variables are variables used by the eForth system to perform all its various
functions. They are defined as primitive commands, with inline, and next,
pseudo instructions pointing to their respective addresses in the RAM memory,
starting at location $304.

(cefKERN328.F, 14jan11cht, for Arduino Uno)
hex
CRR .(System variables) CRR
CODE tmp 31E inline, next, #, \ ptr to c onverted # string
CODE SPAN 304 inline, next, #, \ #chars i nput by EXPECT
CODE >IN 306 inline, next, #, \ input bu ffer offset
CODE #TIB 308 inline, next, #, \ #chars i n the input buffer
CODE 'TIB 30A inline, next, #, \ #chars i n the input buffer
CODE BASE 30C inline, next, #, \ number b ase
CODE 'EVAL 30E inline, next, #, \ interpre t/compile vector

 52

CODE HLD 310 inline, next, #, \ scratch
CODE CONTEXT 312 inline, next, #, \ flash vo cabulary
CODE CP 314 inline, next, #, \ RAM dict ionary pointer
CODE LAST 316 inline, next, #, \ last nam e in RAM vocabular
CODE 'ABORT 318 inline, next, #, \ QUIT
CODE DP 31A inline, next, #, \ flash diction ary pointer
CODE CURRENT 31C inline, next, #, \ RAM vocabular y

Command Address Function
SPAN 304 Number of characters received by EXPECT.
>IN 306 Input buffer character pointer used by text interpreter.
#TIB 308 Length of Terminal Input Buffer.
'TIB 30A Address of Terminal Input Buffer.
BASE 30C Number base for numeric conversion.
'EVAL 30E Execution vector switching between $INTERPRET and

$COMPILE.
HLD 310 Pointer to a buffer holding next digit of numeric

conversion.
CONTEXT 312 Dictionary pointer pointing to name field of last

command in dictionary.
CP 314 Pointer to top of dictionary, the first available memory

location.
LAST 316 Pointer to name field of last command in dictionary.
'ABORT 318 Execution vector to handle error condition.
tmp 31E Pointer to a scratch pad.

Primitive commands have 2 pseudo instructions in their code fields. The assembler
can pack as many pseudo instructions in a code field to make the most efficient use of
memory and execution time. However, in this implementation we just add a next ,
to a pseudo instruction to build a primitive command, which you can use interactively.
If you like to enhance this system, you can use this assembler to change some
compound commands into primitive commands. You can thus reduce the size of the
dictionary, and also increase the execution speed.

CRR .(kernel words) CRR
CODE ?RX qrx, next,
CODE TX! txsto, next,
CODE !IO nop, next,
CODE doLIT dolit, next,
CODE EXIT exit, next,
CODE EXECUTE execu, next,
CODE QBRANCH qbran, next,
CODE BRANCH bran, next,
CODE doNEXT donext, next,
CODE ! store, next,
CODE @ at, next,
CODE C! cstor, next,
CODE C@ cat, next,
CODE POKE cstor, next,
CODE PEEK cat, next,
CODE R> rfrom, next,
CODE R@ rat, next,
CODE >R tor, next,

 53

CODE DROP drop, next,
CODE DUP dup, next,
CODE SWAP swap, next,
CODE OVER over, next,
CODE 0< zless, next,
CODE AND andd, next,
CODE OR orr, next,
CODE XOR xorr, next,
CODE UM+ uplus, next,
CODE doLIST dolist, next,
CODE doCON inline, next,
CODE doVAR dovar, next,
CRR

Primitive
Command

Function

doLIT Push next program word as a literal on the stack.
EXIT Pop return stack into IP. Terminate a token list.
EXECUTE Pop stack into IP to execute a token.
QBRANCH Conditional branch to address in next program word.
BRANCH Unconditional branch to address in next program word.
doNEXT Loop to address in next program word.
! Pop an address and value off stack and store value in memory.
@ Replace address on stack by its value fetched from memory.
C! Pop an address and a byte off stack and store byte in memory.
C@ Replace address on stack by its byte value fetched from memory.
POKE Alias of C!.
PEEK Alias of C@.
R> Pop return stack and push on stack.
R@ Copy top of return stack and push it on stack.
>R Pop stack and push on return stack.
DROP Discard top of stack.
DUP Duplicate top of stack.
SWAP Swap top two elements on stack.
OVER Duplicate second element on top of stack.
0< Replace top of stack with TRUE if it is negative. Else, replace

it with FALSE.
AND Pop stack and AND it to the new top.
OR Pop stack and OR it to the new top.
XOR Pop stack and XOR it to the new top.
UM+ Replace top two elements on stack with sum and carry .
doLIST Push IP on return stack and copy P to IP. Start processing a

new token list.
doCON Push an inline literal value on stack.
doVAR Push address in P on stack.

The kernel of ceForth_328 is completed, and the metacompiler is almost ready to
compile high level commands or the compound commands. In compound
commands there are lots of control structures in the token lists, and the metacompiler
needs tools to construct them. We just redefine the familiar control structure

 54

commands like IF , ELSE, THEN, FOR, NEXT, BEGIN, AGAIN, UNTIL , WHILE, and
REPEAT, and use them to build control structures in the target dictionary.

: ;; EXIT ;

: BEGIN (-- a) begin ;
: AGAIN (a --) BRANCH #, ;
: UNTIL (a --) QBRANCH #, ;
: IF (-- a) QBRANCH BEGIN 0 #, ;
: ELSE (a1 -- a2) BRANCH BEGIN 0 #, forth_swap
 BEGIN forth_swap RAM! ;
: THEN (a --) BEGIN forth_swap RAM! ;
: WHILE (a1 -- a2 a1) IF forth_swap ;
: REPEAT (a --) BRANCH #, THEN ;
: AFT (a1 -- a3 a2) forth_drop BRANCH BEGIN 0 #,
 BEGIN forth_swap ;
: FOR (-- a) >R BEGIN ;
: NEXT (a --) DONEXT #, ;
: LIT (n --) [forth_' DOLIT >body forth_@ LITERA L] #, #, ;

CRR .(include eforth)
FLOAD cEF328.f

:: Terminate compound command by appending an EXIT token to the

end of token list under construction in target dictionary.
BEGIN Start an indefinite loop.
AGAIN Terminate an indefinite loop with a unconditional branch.
UNTIL Terminate an indefinite loop with a conditional branch.
IF Start a true branch.
ELSE Start a false branch.
THEN Terminate a branch structure.
WHILE Start a true branch in an indefinite loop.
REPEAT Terminate an indefinite loop with a unconditional branch.
AFT Start a skip branch in a definite loop.
FOR Start a definite loop.
NEXT Terminate a definite loop.
LIT Compile a integer literal.

We are now ready to compile all the compound command to the ceForth_328 target
dictionary with the FLOAD cEF328.f commands.

13. cEF328.f

The cEF328.F. file contains compound commands to be compiled into the
ceForth_328 target dictionary. These commands are defined with the :: command
and terminated by ;; command. They are like the regular : and ; commands in
FORTH, but they compile new ceForth_328 commands into the ceForth_328 target
dictionary.

The ultimate goal of these commands is to implement an interactive operating system,
or a text interpreter, which accepts a line of FORTH commands from a terminal,

 55

executes these commands in sequence, and waits for another line of commands.

The text interpreter is also called the outer interpreter in FORTH. It is functionally
equivalent to an operating system on a conventional computer. It accepts commands
similar to English words you type, and carries out tasks specified by these commands.
As an operating system, a text interpreter could be very complicated, because of all
the things it has to do. However, because FORTH employs very simple syntax rules,
and has very simple internal structures, the FORTH text interpreter is much simpler
than conventional operating systems.

13.1. Common Functions

This group of compound commands are commonly used in building up the FORTH
text interpreter, and writing all FORTH applications. They are coded as compound
commands for portability. You can re-code in assembly to increase the execute
speed.

CRR .(Common functions) CRR

:: ?KEY ?RX ;;
:: KEY BEGIN ?RX UNTIL ;;
:: EMIT TX! ;;

:: ?DUP (w -- w w | 0) DUP IF DUP THEN ;;
:: ROT (w1 w2 w3 -- w2 w3 w1) >R SWAP R> SWAP ;;
:: 2DROP (w w --) DROP DROP ;;
:: 2DUP (w1 w2 -- w1 w2 w1 w2) OVER OVER ;;
:: + (w w -- w) UM+ DROP ;;
:: NOT (w -- w) -1 LIT XOR ;;

CRR

:: NEGATE (n -- -n) NOT 1 LIT + ;;
:: DNEGATE (d -- -d) NOT >R NOT 1 LIT UM+ R> + ;;
:: - (w w -- w) NEGATE + ;;
:: ABS (n -- +n) DUP 0< IF NEGATE THEN ;;

CRR .(Comparison) CRR

:: 0= (w -- t) IF 0 LIT EXIT THEN -1 LIT ;;
:: = (w w -- t) XOR IF 0 LIT EXIT THEN -1 LIT ;;
:: U< (u u -- t) 2DUP XOR 0< IF SWAP DROP 0< EXIT THEN - 0< ;;
:: < (n n -- t) 2DUP XOR 0< IF DROP 0< EXIT THEN - 0< ;;
:: MAX (n n -- n) 2DUP < IF SWAP THEN DROP ; ;
:: MIN (n n -- n) 2DUP SWAP < IF SWAP THEN DROP ; ;
:: WITHIN (u ul uh -- t) \ ul <= u < uh
 OVER - >R - R> U< ;;

Command Function
?KEY If a character is received by UASRT0 receiver, push it and TRUE on

stack; else push FALSE.
KEY Wait to receive a character and push it on stack.
EMIT Pop stack and transmit the character.
BL Return $20, ASCII code for space.
+! Add second element to memory whose address is on top of stack.

 56

?DUP Duplicate top of stack only if it is not zero.
ROT Rotate top 3 elements on stack
2DROP Discard top two elements on stack.
2DUP Duplicate top two elements on stack.
+ Pop top of stack and add it to the new top.
NOT One's compliment top of stack.
NEGATE Two's compliment top of stack.
DNEGATE Two's compliment top two elements of stack as a double integer.
- Pop top of stack and subtract it from the new top.
ABS Replace top of stack by its absolute value.
0= Replace top of stack with TRUE if it is zero, else with FALSE
= Pop top two elements off stack, and push TRUE if they are equal, else

push FALSE.
U< Pop top two elements off stack, and push TRUE if second<top, else

push FALSE. Comparison is unsigned.
< Pop top two elements off stack, and push TRUE if second<top, else

push FALSE. Comparison is signed.
MAX Pop top two elements off stack, and push the larger one on top.

Comparison is signed.
MIN Pop top two elements off stack, and push the smaller one on top.

Comparison is signed.
WITHIN Pop top two elements off stack, and push TRUE if

third<=top<second, else push FALSE. Comparisons are signed.

Divide and Multiply

UM/MOD and UM* are the most complicated and comprehensive division and
multiplication commands. Once they are coded, all other division and multiplication
operators can be derived easily from them. It has been a tradition in FORTH
programming that one solves the most difficult problem first, and all other problems
are solved by themselves.

The scaling commands */MOD and */ are useful in scaling number n1 by the ratio of
n2/n3. When n2 and n3 are properly chosen, the scaling commands can preserve
precision similar to the floating point operations at a much higher speed. Notice also
that in these scaling operations, the intermediate product of n1 and n2 is a double
precision integer so that the precision of scaling is maintained.

CRR .(Divide) CRR

:: UM/MOD (ud u -- ur uq)
 2DUP U<
 IF NEGATE $0F LIT
 FOR >R DUP UM+ >R >R DUP UM+ R> + DUP
 R> R@ SWAP >R UM+ R> OR
 IF >R DROP 1 LIT + R> ELSE DROP THEN R>
 NEXT DROP SWAP EXIT
 THEN DROP 2DROP -1 LIT DUP ;;
:: M/MOD (d n -- r q) \ floored
 DUP 0< DUP >R
 IF NEGATE >R DNEGATE R>
 THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>

 57

 IF SWAP NEGATE SWAP THEN ;;
:: /MOD (n n -- r q) OVER 0< SWAP M/MOD ;;
:: MOD (n n -- r) /MOD DROP ;;
:: / (n n -- q) /MOD SWAP DROP ;;

CRR .(Multiply) CRR

:: UM* (u u -- ud)
 0 LIT SWAP (u1 0 u2) $0F LIT (19 decimal)
 FOR DUP UM+ >R >R DUP UM+ R> + R>
 IF >R OVER UM+ R> + THEN
 NEXT ROT DROP ;;
:: * (n n -- n) UM* DROP ;;
:: M* (n n -- d)
 2DUP XOR 0< >R ABS SWAP ABS UM* R> IF DNEGATE T HEN ;;
:: */MOD (n n n -- r q) >R M* R> M/MOD ;;
:: */ (n n n -- q) */MOD SWAP DROP ;;

UM/MOD Divide an unsigned double integer by an unsigned single integer.

Return unsigned remainder and unsigned quotient.
M/MOD Divide a signed double integer by a signed single integer. Return

signed remainder and signed quotient.
/MOD Divide a signed single integer by a signed integer. Return signed

remainder and quotient.
MOD Divide a signed single integer by a signed integer. Return signed

remainder.
/ Divide a signed single integer by a signed integer. Return signed

quotient.
UM* Multiply two unsigned integers and produce an unsigned double

integer product.
* Multiply two signed integers to produce a signed single integer

product.
M* Multiply two signed integers to produce a signed double integer

product.
*/MOD Multiply signed integers n1 and n2 , and then divide the double

integer product by n3 . Scale n1 by n2/n3 . Returns both remainder
and quotient.

*/ Similar to */MOD except that it only returns quotient.

Bits, Bytes and Memory

Following are commands which mostly deal with data on top of stack and in memory.
A count string in FORTH is a string preceded by its length in bytes. String literals in
compound commands and the name strings in the headers of command records are all
count strings. COUNT command fetches the count byte from a count string. This
address is incremented by 1, and the count just read is pushed on the stack. COUNT
is designed to get the count byte at the beginning of a count string. However, it is
often used in a loop to read consecutive bytes in a byte array.

CRR .(Bits & Bytes) CRR

:: 1- (a -- a) -1 LIT + ;;

 58

:: 1+ (a -- a) 1 LIT + ;;
:: 2- (a -- a) -2 LIT + ;;
:: 2+ (a -- a) 2 LIT + ;;
:: 2* (n -- 2n) DUP + ;;
:: 2/ (n -- n/2) 2 LIT / ;;
:: BL (-- 32) 20 LIT ;;
:: >CHAR (c -- c)
 $7F LIT AND DUP $7F LIT BL WITHIN
 IF DROP (CHAR _) $5F LIT THEN ;;
:: ALIGNED (b -- a) 1+ FFFE LIT AND ;;

CRR .(Memory access) CRR

:: +! (n a --) SWAP OVER @ + SWAP ! ;;
:: 2! (d a --) SWAP OVER ! 2+ ! ;;
:: 2@ (a -- d) DUP 2+ @ SWAP @ ;;
:: COUNT (b -- b +n) DUP 1+ SWAP C@ ;;
:: HERE (-- a) CP @ ;;
:: PAD (-- a) HERE 50 LIT + ;;
:: TIB (-- a) #TIB 2+ @ ;;
CRR
:: @EXECUTE (a --) @ ?DUP IF EXECUTE THEN ;;
:: CMOVE (b b u --)
 FOR AFT >R COUNT R@ C! R> 1+ THEN NEXT 2DROP ;;
:: FILL (b u c --)
 SWAP FOR SWAP AFT 2DUP C! 1+ THEN NEXT 2DROP ;;
:: ERASE (b u --) 0 LIT FILL ;;

1- Add -1 to top of stack.
1+ Add 1 to top of stack.
2- Add -2 to top of stack
2+ Add 2 to top of stack
2* Multiply top of stack by 2.
2/ Divide top of stack by 2.
BL Return $20, ASCII code for space.
>CHAR Filter non-printable character to a harmless ‘underscore’ character,

ASCII 95.
ALIGNED Adjust top of stack to 16-bit word boundary.
+! Add n to a location whose address is on top of stack.
2! Store double integer d to address on top of stack.
2@ Fetch double integer from address on top of stack.
COUNT Push a byte fetch from address on top of stack, and increment

address.
HERE Returns address of free space above the dictionary.
PAD Returns address of a buffer 80 bytes above the dictionary.
TIB Return address of Terminal Input Buffer.
@EXECUTE Jump to an execution address on top of stack.
CMOVE Copy u bytes of memory from array b1 to array b2 .
FILL Fill u bytes of memory array b with the same byte c .
ERASE Fill u bytes of memory array b with 0.

13.2. Numeric Conversion

 59

FORTH is interesting in its special capabilities in handling numbers across a
man-machine interface. It recognizes that machines and humans prefer very
different representations of numbers. Machines prefer binary representation, but
humans prefer decimal Arabic representation. However, depending on
circumstances, a human may want numbers to be represented in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine) versus external (human) number
representations by insisting that all numbers are represented in binary form in CPU
and memory. Only when numbers are imported or exported for human consumption
are they converted to external ASCII representation. The radix of the external
representation is stored in system variable BASE. You can select any reasonable
radix in BASE, up to 72, limited by available printable characters in the ASCII
character set.

Numeric Output

An output number string is built below the PAD buffer in RAM memory. The least
significant digit is extracted from the integer on top of stack by dividing it by the
current radix in BASE. The digit thus extracted is added to the output string
backwards from PAD to the low memory. The conversion is terminated when the
integer is divided to zero. The address and length of the number string are made
available by #> for outputting.

An output number conversion is initiated by <# and terminated by #>. Between
them, # converts one digit at a time, #S converts all the digits, while HOLD and SIGN
inserts special characters into the string under construction. This set of commands is
very versatile and can handle many different output formats.

CRR .(Numeric Output) CRR \ single precision

:: DIGIT (u -- c) 9 LIT OVER < 7 LIT AND +
 (CHAR 0) 30 LIT + ;;
:: EXTRACT (n base -- n c) 0 LIT SWAP UM/MOD SWAP DIGIT ;;
:: <# (--) PAD HLD ! ;;
:: HOLD (c --) HLD @ 1- DUP HLD ! C! ;;
:: # (u -- u) BASE @ EXTRACT HOLD ;;
:: #S (u -- 0) BEGIN # DUP WHILE REPEAT ;;
CRR
:: SIGN (n --) 0< IF (CHAR -) 2D LIT HOLD THEN ;;
:: #> (w -- b u) DROP HLD @ PAD OVER - ;;
:: str (n -- b u) DUP >R ABS <# #S R> SIGN #> ;;
:: HEX (--) 10 LIT BASE ! ;;
:: DECIMAL (--) 0A LIT BASE ! ;;
:: UPPER (c -- c')
 DUP $61 LIT $7B LIT WITHIN IF $5F LIT AND THEN ;;
:: >UPPER (a --)
 COUNT FOR AFT DUP C@ UPPER OVER C! 1+ THEN NEXT D ROP ;;

DIGIT Convert integer u to a digit c .
EXTRACT Extract least significant digit c from a number n. n is divided by radix

in base .

 60

<# Set up HLD to start numeric conversion.
HOLD Insert an ASCII character c in numeric output string.
Extract one digit from integer u, according to radix in BASE, and add

it to output string.
#S Extract all digits to output string until u is 0.
SIGN Insert a - sign in numeric output string if n is negative.
#> Terminate numeric conversion and return address and length of output

string.
str Convert signed integer n to a numeric output string.
HEX Set numeric conversion radix to 16 for hexadecimal conversions.
DECIMAL Set numeric conversion radix to 10 for decimal conversions.
UPPER Convert a character to upper case.
>UPPER Convert a count string pointed to by top of stack to upper case.

Numeric Input

The ceForth_328 text interpreter must interpret commands and numbers. It parses
strings out of the Input Terminal Buffer and interprets them in sequence. When the
text interpreter encounters a string which is not the name of a command, it assumes
that the string must be a number and attempts to convert it to a number according to
the current radix. When the text interpreter succeeds in converting the string to a
number, the number is pushed on the parameter stack for future use, if the text
interpreter is in the interpreting mode. If it is in the compiling mode, the text
interpreter will compile an integer literal so that when the command under
construction is later executed, the integer value will be pushed on the parameter stack.

If the text interpreter fails to convert the string to a number, this is an error condition
The text interpreter aborts, post an error message to you, and then wait for your next
line of commands.

CRR .(Numeric Input) CRR \ single precision

:: DIGIT? (c base -- u t)
 >R (CHAR 0) 30 LIT - 9 LIT OVER <
 IF 7 LIT - DUP 0A LIT < OR THEN DUP R> U< ;;
:: NUMBER? (a -- n T | a F)
 BASE @ >R 0 LIT OVER COUNT (a 0 b n)
 OVER C@ (CHAR $) 24 LIT =
 IF HEX SWAP 1+ SWAP 1- THEN (a 0 b' n')
 OVER C@ (CHAR -) 2D LIT = >R (a 0 b n)
 SWAP R@ - SWAP R@ + (a 0 b" n") ?DUP
 IF 1- (a 0 b n)
 FOR DUP >R C@ BASE @ DIGIT?
 WHILE SWAP BASE @ * + R> 1+
 NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP
 ELSE R> R> (b index) 2DROP (digit number) 2 DROP 0 LIT
 THEN DUP
 THEN R> (n ?sign) 2DROP R> BASE ! ;;

DIGIT? Convert a digit c to its numeric value u according to current radix b.

If conversion is successful, push a true flag above u. If not successful,

 61

return c and a false flag.
NUMBER? Convert a count string of digits at location a to an integer. If first

character is a $, convert in hexadecimal; otherwise, convert using
radix in BASE. If first character is a - , negate integer. If an illegal
character is encountered, address of string and a false flag are
returned. Successful conversion returns integer value and a true flag.

Basic I/O

ceForth_328 system assumes that it communicates with you only through a serial I/O
device. The serial I/O uses three primitive commands: ?KEY, KEY, and EMIT.
These commands are enhanced to a set of compound commands which are shared by
tasks doing character I/O operations.

CRR .(Basic I/O) CRR

:: SPACE (--) BL EMIT ;;
CRR
:: CHARS (+n c --) \ ???ANS conflict
 SWAP 0 LIT MAX FOR AFT DUP EMIT THEN NEXT DROP ;;
:: SPACES (+n --) BL CHARS ;;
:: TYPE (b u --) FOR AFT COUNT >CHAR EMIT THEN NE XT DROP ;;
:: CR (--) (=Cr) 0D LIT EMIT (=Lf) 0A LIT EMI T ;;
:: do$ (-- a)
 R> R@ R> COUNT + ALIGNED >R SWAP >R ;;
CRR
:: $"| (-- a) do$;; COMPILE-ONLY
:: ."| (--) do$ COUNT TYPE ;; COMPILE-ONLY
:: .R (n +n --) >R str R> OVER - SPACES TYP E ;;
:: U.R (u +n --) >R <# #S #> R> OVER - SPACES TYP E ;;
:: U. (u --) <# #S #> SPACE TYPE ;;
:: . (n --) BASE @ 0A LIT XOR IF U. EXIT THEN st r SPACE TYPE ;;
:: ? (a --) @ . ;;

SPACE Output a blank space character.
CHARS Output a string of n characters c .
SPACES Output n blank space characters.
TYPE Output n characters from a string in memory b.
CR Output a carriage-return and a line-feed.
do$ Unpack a count string literal, pointed to by address on return stack. The

string is copied to text buffer a. The return address on return stack is
incremented to skip over the string literal.

String literals are data structures compiled in compound commands, in-line with other
commands. A string literal must start with a string command, which knows how to
handle the following count string at run time.

$"| Unpack following count string in this string literal and return address of

count string.
."| Unpack following count string in this string literal and output string

characters.
.R Output a signed integer n right-justified in a field of +n characters.

 62

U.R Output an unsigned integer n right-justified in a field of +n characters.
U. Output an unsigned integer u in free format, followed by a space.
. Output a signed integer n in free format, followed by a space.
? Output a signed integer stored in memory a, in free format followed by

a space.

13.3. Dictionary Search

Parsing

Parsing is always considered a very advanced topic in computer science. However,
because FORTH uses very simple syntax rules, parsing is easy. FORTH input
stream consists of ASCII strings separated by spaces and other white space characters
like tabs, carriage returns, and line feeds. The text interpreter scans the input stream,
parses or separates out strings, and interprets them in sequence. After a string is
parsed out of the input stream, the text interpreter interprets it; i.e., executes it if it is a
valid command, compiles it if the text interpreter is in the compiling mode, and
convert it to a number if the string is not a FORTH command.

CRR .(Parsing) CRR

:: (parse) (b u c -- b u delta ; <string>)
 tmp ! OVER >R DUP \ b u u
 IF 1- tmp C@ BL =
 IF \ b u' \ 'skip'
 FOR BL OVER C@ - 0< NOT WHILE 1+
 NEXT (b) R> DROP 0 LIT DUP EXIT \ all delim
 THEN R>
 THEN OVER SWAP \ b' b' u' \ 'scan'
 FOR tmp C@ OVER C@ - tmp C@ BL =
 IF 0< THEN WHILE 1+
 NEXT DUP >R
 ELSE R> DROP DUP 1+ >R
 THEN OVER - R> R> - EXIT
 THEN (b u) OVER R> - ;;
:: PARSE (c -- b u ; <string>)
 >R TIB >IN @ + #TIB @ >IN @ - R> (parse) >IN + ! ;;
:: CHAR (-- c) BL PARSE DROP C@ ;;
:: PACK$ (b u -- a)
 HERE 2+ 2DUP C!
 2DUP + 1+ 0 LIT SWAP C!
 1+ SWAP CMOVE HERE 2+ ;;
:: TOKEN (-- a ;; <string>)
 BL PARSE 1F LIT AND PACK$ DUP >UPPER ;;
:: WORD (c -- a ; <string>)
 PARSE PACK$;;

 (parse) Parse out a string delimited by character c from input buffer at b1 ,

length u1 . Return address b2 and length u2 of the string just parsed
out, and the difference n between b1 and b2 .

PARSE Parse a string delimited by character c in TIB , from character pointed
to by >IN . It returns address b and the length of parsed string u.

CHAR Parse a string delimited by space character in TIB , and return its first

 63

character.
PACK$ Copy a string at b with length u, to a count string at a.
TOKEN Parse out a text string delimited by a space character in TIB . The text

string is assumed to be the name of a command, and its length is limited
to 31 characters. This string is copied into the WORD buffer one word
above the dictionary; i.e., HERE+2.

WORD Parse out next text string delimited by character c in TIB . This string is
copied into the WORD buffer one word above the dictionary; i.e.,
HERE+2. Length of string is limited to 255 characters.

Search Dictionary

In this FORTH system, records of commands are linked into a dictionary. A record
contains three fields: a link field holding the name field address of the previous record,
a name field holding the name of this command as a count string, and a code field
holding the executable code of this command. The dictionary is a linear list linked
through link fields and the name fields of all records.

The link field of the first command record contains a 0, indicating it is the end of the
linked list. A system variable CONTEXT holds an address pointing to the name
field of the last command record. The dictionary search starts at CONTEXT and
terminates at the first matched name, or at the first command record.

From CONTEXT, we locate the name field of the last command record in the
dictionary. It this name does not match the string to be searched, we can find the
link field of this record, which is 2 bytes less than the name field address. From the
link field, we fetch out the name field of the next command record. Compare its
name with the search string. And so forth.

CRR .(Dictionary Search) CRR

:: NAME> (na -- xt) COUNT 1F LIT AND + ALIGNED ;;
:: SAME? (b a u -- b a f \ -0+)
 $1F LIT AND 2/
 FOR AFT OVER R@ 2* + @
 OVER R@ 2* + @ - ?DUP
 IF R> DROP EXIT THEN THEN
 NEXT 0 LIT ;;
:: find (a va -- xt na | a F) \ ************ be c areful here!!!
 SWAP \ va a
 DUP C@ tmp ! \ va a \ get byte count
 DUP @ >R \ va a \ save 1st cell
 2+ SWAP \ a' va \ next-cell-addr va
 BEGIN DUP \ a' na na
 IF DUP @ FF1F LIT AND R@ XOR \ compare 1st cel l
 IF 2+ -1 LIT ELSE 2+ tmp @ SAME? THEN
 ELSE R> DROP SWAP 2- SWAP EXIT \ a F
 THEN
 WHILE 2- 2- @ \ a' la
 REPEAT R> DROP SWAP DROP 2- DUP NAME> SWAP ;;
:: NAME? (a -- xt na | a F)
 CONTEXT @ find ;;

 64

NAME> Return code field address xt from name field address a of a command.
SAME? Compare two strings at a1 and a2 for u bytes. If string1>string2,

returns a positive integer. If string1<string2, return a negative integer. If
strings are identical, return a 0.

find Look up a count string at a in dictionary. Search starts at va . If a
command is found, return code field address xt and name field address
na . If the string is not found, return address a and a false flag.

NAME? Search dictionary from CONTEXT for a name at a. Return code field
address and name field address if a command is found. Otherwise,
return address a and a false flag.

13.4. Text Interpreter

Terminal Input

The text interpreter interprets source text received from an input device and stored in
the Terminal Input Buffer. To process characters in the Terminal Input Buffer, we
need special commands to deal with the special conditions of backspace character and
carriage return. On top of stack, three special parameters are referenced in many
commands: bot is the Beginning Of the input Buffer, eot is the End Of the input
Buffer, and cur points to the current character in the input buffer.

CRR .(Terminal) CRR

:: ^H (bot eot cur -- bot eot cur-1) \ backspace
 >R OVER R> SWAP OVER XOR
 IF (=BkSp) 8 LIT EMIT
 1- BL EMIT
 (=BkSp) 8 LIT EMIT
 THEN ;;
:: TAP (bot eot cur c -- bot eot cur)
 DUP EMIT OVER C! 1+ ;;
:: kTAP (bot eot cur c -- bot eot cur)
 DUP (=Cr) 0D LIT XOR
 IF (=BkSp) 8 LIT XOR IF BL TAP ELSE ^H THEN EXI T
 THEN DROP SWAP DROP DUP ;;
CRR
:: accept (b u -- b u)
 OVER + OVER
 BEGIN 2DUP XOR
 WHILE KEY DUP BL - 5F LIT U<
 IF TAP ELSE kTAP THEN
 REPEAT DROP OVER - ;;
:: EXPECT (b u --) accept SPAN ! DROP ;;
:: QUERY (--)
 TIB 50 LIT accept #TIB ! DROP 0 LIT >IN ! ;;

^H Process back-space. Erase last character and decrement cur . If

cur=bot , do nothing because you cannot backup beyond beginning of
input buffer.

TAP Output character c to terminal, store c in cur , and increment cur .

 65

bot and eot are the beginning and end of the input buffer.
kTAP Processes character c . c is normally stored at cur , which is

incremented by 1. If c is a carriage-return, echo a space and make
eot=cur . If c is a back-space, erase the last character and decrement
cur .

accept Accept u characters into buffer at b, or until a carriage return. The
value of u returned is the actual count of characters received.

EXPECT Accept u characters into buffer at b, or until a carriage return. The
count of characters received is in SPAN.

QUERY Accept up to 80 characters from the input device to the Terminal Input
Buffer. This also prepares the Terminal Input Buffer for parsing by
setting #TIB to characters received and clearing >IN , pointing to the
beginning of the Terminal Input Buffer.

Interpreter

Text interpreter in FORTH is like a conventional operating system of a computer. It
is your primary interface to get the computer to do work. Since FORTH uses very
simple syntax rule--commands are separated by spaces, the text interpreter is also
very simple. It accepts a line of text from the terminal, parses out a command
delimited by spaces, locates the command in the dictionary and then executes it. The
process is repeated until the input text is exhausted. Then the text interpreter waits
for another line of text and interprets it again. This cycle repeats until you are
exhausted and turns off the computer.

In ceForth_328, the text interpreter is coded as a command QUIT. QUIT contains an
infinite loop which repeats the QUERY EVAL command pair. QUERY accepts a
line of text from the input terminal. EVAL interprets the text one command at a time
till the end of the text line.

When an error occurred, it is because the text interpreter encounters a string which
can not be interpreted or processed. This string is already parsed out and stored in a
buffer in RAM memory. It is displayed and followed by a ? mark, and the text
interpreter is re-initialized to accept the next line of commands.

CRR .(Error handling) CRR

:: ABORT (--) 'ABORT @EXECUTE ;;
:: abort" (f --) IF do$
 COUNT TYPE ABORT THEN do$ DROP ;; COMPILE-ONLY

CRR .(Interpret) CRR

:: ERROR (a --)
 space count type $3F LIT EMIT
\ $1B LIT (ESC) EMIT
 ABORT
:: $INTERPRET (a --)
 NAME? ?DUP
 IF C@ 40 LIT AND
 abort" $LIT compile only" EXECUTE EXIT

 66

 THEN NUMBER? IF EXIT ELSE ERROR THEN
 ;;

:: [(--) DOLIT $INTERPRET 'EVAL ! ;; IMMEDIATE
:: .OK (--) DOLIT $INTERPRET 'EVAL @ =
 IF CR >R >R >R DUP . R> DUP . R> DUP . R> DUP . . "| $LIT ok>"
 THEN ;;
:: EVAL (--)
 BEGIN TOKEN DUP C@
 WHILE 'EVAL @EXECUTE \ ?STACK
 REPEAT DROP .OK ;;

CRR .(Shell) CRR

:: QUIT (--)
 (=TIB) 880 LIT 'TIB !
 [BEGIN QUERY EVAL AGAIN ;;

ABORT Execute the command whose address is in the system variable
'ABORT. This address normally points to QUIT.

abort" When top of stack is non-zero, output the following count string
and execute ABORT; otherwise, skip over the error message. It is
compiled before an error message.

ERROR Display error message in buffer at a and execute ABORT.
$INTERPRET Processes a string at a. If it is a valid command, execute it;

otherwise, convert it to a number. Failing that, execute ERROR and
return to QUIT.

 [Activate interpreting mode by storing $INTERPRET into variable
'EVAL , which is executed in EVAL.

.OK Prints the ok > prompt after dumping top 4 elements on stack.
EVAL Interpreter loop. Parse a string from the Terminal Input Buffer.

Invoke the command in 'EVAL to process it, either executing it
with $INTERPRET or compiling it with $COMPILE. Repeat until
input buffer is exhausted.

QUIT Text Interpreter. Receive a line of text into Terminal Input Buffer.
Process input text with EVAL. Repeat for ever.

13.5. Compiler

Compiler Primitives

In the Arduino 0022 system, we cannot add new code to the flash memory. The
compiler in ceForth_328 thus extend the dictionary in the RAM memory. To
compile a new command, it first build a header with a link field and a name field.
Then it uses the command ',' (comma) to add pseudo instructions or tokens to the
code field.

The compiler shares many of its functions, like parsing and dictionary search, with the
text interpreter. In the end, the compiler is actually embedded in the text interpreter.
By merely changing the code field address stored in the system variable 'EVAL from
$INTERPRET to $COMPILE, the text interpreter becomes a compiler. ceForth_328

 67

switches smoothly between interpreting mode and compiling mode, and becomes a
very powerful programming and debugging environment, or an operating system.

CRR .(Compiler Primitives) CRR

:: ' (-- xt) TOKEN NAME? IF EXIT THEN ERROR
:: ALLOT (n --) CP +! ;;
:: , (w --) CP @ ! 2 LIT CP +! ;;
:: [COMPILE] (-- ; <string>) ' , ;; IMMEDIATE
CRR
:: COMPILE (--) R> DUP @ , 2+ >R ;;
:: LITERAL doLIT doLIT , , ;; IMMEDIATE
:: $," (--) (CHAR ") -2 LIT ALLOT 22 LIT WORD
 COUNT + ALIGNED CP ! ;;

CRR .(Name Compiler) CRR

:: ?UNIQUE (a -- a)
 DUP NAME?
 ?DUP IF COUNT 1F LIT AND SPACE TYPE ."| $LIT reD ef "
 THEN DROP ;;
:: $,n (a --)
 DUP @
 IF ?UNIQUE
 (a) DUP NAME> CP !
 (a) DUP LAST ! \ for OVERT
 (a) 2-
 (la) CONTEXT @ SWAP ! EXIT
 THEN ERROR

CRR .(FORTH Compiler) CRR

:: $COMPILE (a --)
 NAME? ?DUP
 IF C@ 80 LIT AND
 IF EXECUTE ELSE , THEN EXIT
 THEN NUMBER?
 IF LITERAL EXIT
 THEN ERROR
:: OVERT (--) LAST @ CONTEXT ! ;;
:: ; (--)
 DOLIT EXIT , [OVERT ;; COMPILE-ONLY IMMEDIATE
::] (--) DOLIT $COMPILE 'EVAL ! ;;
:: : (-- ; <string>) TOKEN $,n (' doLIST) 6 LIT ,] ;;

 ‘ Search dictionary for following name, and return its code field
address if a command is found; otherwise, print the string with ?.

ALLOT Allocate n bytes of memory on top of dictionary.
, Compile an integer w to dictionary, and add it to the growing token

list of the command under construction. The primitive compiler.
[COMPILE] Compile the code field address of the next command. It compiles an

immediate command, even if it would otherwise be executed.
COMPILE Compile the code field address of the next command. It forces

compilation of a command at run time.
LITERAL Compile an integer literal. It first compiles doLIT , followed by an

integer on top of stack. When doLIT is executed, it extracts the

 68

integer in the next program word and pushes it on the stack.
$," Compile a count string. String text is taken from the input stream

and terminated by a double quote. A token (such as ."| or $"|)
must be compiled before the string to form a sting literal.

?UNIQUE Display a warning message to show that the name of a new
command is the same as a command already in the dictionary.

$,n Build a new header in the dictionary using the name string already
in the WORD buffer. Fill in the link field with the address in LAST.
The top of the dictionary is now the code field of a new command,
ready to accept new tokens.

$COMPILE Process a string at a, and compile a new token in the dictionary.
Increment dictionary pointer CP. Ready to compile next token.

OVERT Link a new command to the dictionary and make it available for
dictionary search. Change CONTEXT to point to the name field of
this new command, and extend the dictionary chain to include a new
command.

; Terminate a compound command. Compile an EXIT command to
terminate a token list. Link this command to the dictionary, and
change the text interpreter to interpreting mode.

] Activate compiling mode by writing the address of $COMPILE into
variable 'EVAL .

: Create a new compound command. Take the next input string to
build a new header. Now, its code field is on top of the dictionary,
and is ready to accept tokens.

Defining Commands

Defining commands are molds to create many commands that share the same run time
execution behavior.

CRR .(Defining Words) CRR

:: CODE (-- ; <string>) TOKEN $,n OVERT ;;
:: CREATE (-- ; <string>) CODE 1615 LIT , ;;
:: VARIABLE (-- ; <string>) CREATE 0 LIT , ;;
:: CONSTANT (n -- ; <string>) CODE 1604 LIT , , ; ;

CODE Create a new primitive command that is intended to contain pseudo

instructions.
CREATE Create a new data array without allocating memory.
VARIABLE Create a new variable, initialized to 0.
CONSTANT Create an integer constant.

13.6. Tools

Memory Dump

DUMP command displays 256 bytes of data starting at a memory address on top of
stack. It dumps 16 bytes to a line. A line begins with the address of the first byte,

 69

followed by 16 bytes shown in hex, 3 columns per bytes. At the end of a line are the
16 bytes shown in ASCII characters. Non-printable characters are replaced by
underscores (ASCII 95).

DUMP dumps RAM memory as well as flash memory. RAM memory is from 0 to
$8FF, and flash memory, which is actually a data array declared in ceForth_328.pde,
is from $900 to $1FFF.

The dictionary contains all command records defined in the system, ready for
execution and compilation. WORDS command allows you to examine the
dictionary and to look for the correct names of commands in case you are not sure of
their spellings. WORDS follows the dictionary link in the system variable
CONTEXT and displays the names of all commands in the dictionary. The
dictionary links can be traced easily because the link field in the header of a command
points to the name field of the previous command, and the link field is two bytes
below the corresponding name field.

CRR .(Tools) CRR

:: dm+ (b u -- b+u)
 OVER 5 LIT U.R SPACE FOR AFT COUNT 3 LIT U.R THEN NEXT ;;
:: DUMP (b --)
 $10 LIT
 FOR AFT CR $10 LIT 2DUP dm+ ROT ROT
 SPACE TYPE
 THEN NEXT DROP ;;

CRR

:: >NAME (xt -- na | F)
 CONTEXT
 BEGIN @ DUP
 WHILE 2DUP NAME> XOR
 IF 2-
 ELSE SWAP DROP EXIT
 THEN
 REPEAT SWAP DROP ;;
:: .ID (a --)
 ?DUP IF COUNT $1F LIT AND TYPE SPACE
 ELSE SPACE ."| $LIT {noName}" THEN ;;
:: SEE (-- ; <string>)
 ' CR
 BEGIN
 20 LIT FOR
 2+ DUP @ DUP IF >NAME THEN ?DUP
 IF SPACE .ID ELSE DUP @ U. THEN
 NEXT KEY 0D LIT = \ can't use ESC on terminal
 UNTIL DROP ;;
:: WORDS (--)
 CR CONTEXT
 BEGIN @ ?DUP
 WHILE DUP SPACE .ID 2-
 REPEAT ;;
:: FORGET (--)
 TOKEN NAME? ?DUP
 IF 2- DUP CP !

 70

 @ DUP CONTEXT ! LAST !
 DROP EXIT
 THEN ERROR

dm+ Display 16 bytes from address b. Return new address b+16 for the

next dm+.
DUMP Display 256 bytes from address b. A line begins with an address,

followed by 16 bytes in hex and 16 bytes in ASCII.
>NAME From a code field address xt of a command, return its name field

address na . If xt is not a valid code field address, return 0.
.ID Display the name of a command, given its name field address a. It

replaces non-printable characters in a name by underscores.
SEE Search the next word in the input stream for a command, and

decompile the first 32 program words in its code field. Display an
error message if the next word is not a valid command. It scans the
code field and looks for tokens. If it finds a valid token, display its
name. If a word in the code field is not a token, just display its value.

WORDS Display all names in the dictionary. The display order of commands is
reversed from compiling order. The last defined command is
displayed first.

FORGET Search the next string in the input stream for a command. If it is a
valid command, delete it and all subsequent command records from
the dictionary.

13.7. Hardware Reset

When ATmega328P microcontroller on Arduino Uno is powered up, or when it is
reset, its FORTH Virtual Machine initializes its Finite State Machine to start running.
The program counter P is initialized with the contents at location $900. The code
field address of command COLD is placed at $900 by the metacompiler. The first
thing COLD does is call a diagnostic routine, DIAGNOSE, to run a series of tests,
verifying that the FORTH Virtual Machine is working properly. It is superfluous
once the ceForth_328 is fully debugged. However, in implementing the ceForth_328,
DIAGNOSE is extremely helpful in simulation and in verification. In about 1000
cycles, you can observe most pseudo instructions executed, and verify that they
execute correctly.

:: DIAGNOSE (-)
 $65 LIT
\ EMIT
\ 'F' prove UM+ 0< \ carry, TRUE, FALSE
 0 LIT 0< -2 LIT 0< \ 0 FFFF
 UM+ DROP \ FFFF (-1)
 3 LIT UM+ UM+ DROP \ 3
 $43 LIT UM+ DROP \ 'F'
\ EMIT
\ 'o' logic: XOR AND OR
 $4F LIT $6F LIT XOR \ 20h
 $F0 LIT AND
 $4F LIT OR
\ EMIT
\ 'r' stack: DUP OVER SWAP DROP

 71

 8 LIT 6 LIT SWAP
 OVER XOR 3 LIT AND AND
 $70 LIT UM+ DROP \ 'r'
\ EMIT
\ 't'-- prove BRANCH ?BRANCH
 0 LIT IF $3F LIT THEN
 -1 LIT IF $74 LIT ELSE $21 LIT THEN
\ EMIT
\ 'h' -- @ ! test memeory address
 $68 LIT $80 LIT !
 $80 LIT @
\ EMIT
\ 'M' -- prove >R R> R@
 $4D LIT >R R@ R> AND
\ EMIT
\ 'l' -- prove 'next' can run
 61 LIT $A LIT FOR 1 LIT UM+ DROP NEXT
\ EMIT
\ 'emi' -- prove mul, dupy, popy
 $656D LIT $100 LIT UM*
 SWAP $100 LIT UM*
 SWAP DROP
\ EMIT EMIT
\ ' C' -- prove div
 $2043 LIT 0 LIT $100 LIT UM/MOD
\ EMIT EMIT
 ;;

DIAGNOSE Test the following primitive commands in the ceForth_328: LIT , 0<,

QBRANCH, UM+, DROP, XOR, AND, OR, DUP, OVER, SWAP,
BRANCH, @, ! , >R, R@, R>, NEXT, UM*, and UM/MOD.

COLD Initialize the ceForth_328 system to start FORTH text interpreter. It
first executes DIAGNOSE to run a few tests on most of the primitive
commands, displays a sign-on message, and then jumps to QUIT.
COLD is the first compound command executed after power up or
after chip reset. Its address is placed in memory location $900,
which contains an address the FORTH Virtual Machine uses to start
its Finite State Machine.

13.8. Structures

Control Structures

Commands which build control structures in a token list are IMMEDIATE commands
which are executed in compiling mode, not compiled as tokens. Control structures
are as follows:
 IF…ELSE…THEN
 IF…THEN
 FOR…NEXT
 FOR…AFT…THEN…NEXT
 BEGIN…UNTIL
 BEGIN…AGAIN

 72

 BEGIN…WHILE…REPEAT

I use two characters a and A to denote some addresses on the data stack. a points to
a location to where a branch commands would jump to. A points to a location where
a new address will be stored when the address is resolved.

CRR .(Structures) CRR

:: <MARK (-- a) HERE ;;
:: <RESOLVE (a --) , ;;
:: >MARK (-- A) HERE 0 LIT , ;;
:: >RESOLVE (A --) <MARK SWAP ! ;;
CRR
:: FOR (-- a) COMPILE >R <MARK ;; IMMEDIATE
:: BEGIN (-- a) <MARK ;; IMMEDIATE
:: NEXT (a --) COMPILE doNEXT <RESOLVE ;; IMMEDIA TE
:: UNTIL (a --) COMPILE QBRANCH <RESOLVE ;; IMMED IATE
CRR
:: AGAIN (a --) COMPILE BRANCH <RESOLVE ;; IMMED IATE
:: IF (-- A) COMPILE QBRANCH >MARK ;; IMMEDIATE
:: AHEAD (-- A) COMPILE BRANCH >MARK ;; IMMEDIATE
:: REPEAT (A a --) AGAIN >RESOLVE ;; IMMEDIATE
CRR
:: THEN (A --) >RESOLVE ;; IMMEDIATE
:: AFT (a -- a A) DROP AHEAD BEGIN SWAP ;; IMMEDI ATE
:: ELSE (A -- A) AHEAD SWAP THEN ;; IMMEDIATE
:: WHEN (a A -- a A a) IF OVER ;; IMMEDIATE
:: WHILE (a -- A a) IF SWAP ;; IMMEDIATE

CRR .(compilers) CRR

:: ABORT" (-- ; <string>) COMPILE abort" $," ;; I MMEDIATE
:: $" (-- ; <string>) COMPILE $"| $," ;; IMMEDIAT E
:: ." (-- ; <string>) COMPILE ."| $," ;; IMMEDIAT E
CRR
:: .((--) 29 LIT PARSE TYPE ;; IMMEDIATE
:: \ (--) $A LIT WORD DROP ;; IMMEDIATE
:: (29 LIT PARSE 2DROP ;; IMMEDIATE
:: IMMEDIATE 80 LIT LAST @ @ OR LAST @ ! ;;

<MARK Leave address a of the current program word on the stack.
<RESOLVE Compile address a into the current program word.
>MARK Compile a 0 into current program word. Push its address A on stack.
>RESOLVE Store address of current program word in address A on top of stack.
FOR Begin a FOR-NEXT loop. Compile a >R command and leave the

address of the next word a on the stack.
BEGIN Begin a indefinite loop. Leave address a of the current program word

on the stack.
NEXT Compile a doNEXT command with target address a.
THEN Resolve branch address at A with current program word address.
UNTIL Compile a QBRANCH command with target address a.
AGAIN Compile a BRANCH command with target address a.
IF Compile a QBRANCH command, and leave its address a on stack.

 73

AHEAD Compile a BRANCH command, and leave its address a on stack.
REPEAT Compile a BRANCH command with target address a. Use the address of

the next program word to resolve the address field of the QBRANCH
command at A.

AFT Compile a BRANCH command and leave its address as A,. Replace the
address a left by FOR with the address of the next program word.

ELSE Compile a BRANCH command. and push the address of the next
program word on stack. Swap two address on stack. Resolve the
address on top of stack with current program word address.

WHILE Compile a QBRANCH command and leave its address A on the stack.
Prior address a is swapped to the top of stack.

String Structures

A string structure in a token list begins with a string command token, followed by a
count string. Commands which build string structures are also IMMEDIATE
commands.

ABORT" Compile an error message. This error message is displayed when the

top of the stack is non-zero.
." Compile a string literal, which will be displayed at run time.
$" Compile a string literal. When it is executed, only the address of the

string is left on the data stack for the following commands to access
this string.

.(Display the following string, delimited by).
\ Start a comment. Ignore all characters until end of line.
 (Start a comment. Ignore the following string, delimited by).
IMMEDIATE Set the immediate bit in the name field of the last defined command.

Such a command will be executed, not compiled, in compiling mode.

13.9. Initialize System Variables

When the ceForth_328 powers up, the P register is initialized by an address fetched
from location $900. At the end of cefMETA328.f file, the metacompiler stores the
address of COLD in this location. The metacompiler also stored 8 16-bit words in a
table from $90A to $918 to initialize 8 variables, so that the FORTH Virtual Machine
can run properly. The following table shows these variables, their addresses, their
initial values and their functions.

CRR
900 ORG
COLD

$90A ORG
$880 #,
$10 #,
$INTERPRET
0 #,
lastH forth_@ #,
$320 #,
lastH forth_@ #,

 74

QUIT

 write-mif-file
 forth_forget H
 FLOAD cefSIM328.F

Variable Address Initial

Value
Function

reset vector $900 $1ACC Address of COLD to start ceForth_328 system.
'TIB $90A $880 Address of Terminal Input Buffer.
BASE $90C $0A Number base for numeric conversions.
'EVAL $90E $15F8 Execution vector of text interpreter, initialized to

point to $INTERPRET. It may be changed to
point to $COMPILE in compiling mode.

HLD $910 $0 Pointer to numeric output string.
CONTEXT $912 $1C7C Pointer to name field of last command in

dictionary.
CP $914 $320 Pointer to top of dictionary, first free memory

location to add new commands.
LAST $916 $1C7C Pointer to name field of last command in

dictionary.
'ABORT $918 $16A6 Address of QUIT command to handle error

conditions.

The ceForth_328 is now completely built in the target dictionary. In cefMETA328.f
file, the target dictionary is now copied into the rom.mif file by the command
 write-mif-file.

14. cefSIM328.f

The metacompiler redefined most F# commands in order to build the ceForth_328
target dictionary. Before we load in the simulator, the metacompiler must be
removed. The commands in cefMETA328.f
 forth_forget H
removes all the metacompiler commands. F# is restored and the following
commands load in ceForth_328 simulator in cefSIM328.f:
 FLOAD cefSIM328.f

An accurate and fast logic simulator is extremely valuable in designing and testing a
new CPU or a virtual machine. It is also very useful in software development if it is
difficult to debug software in actual hardware. This ceForth_328 simulator served
me well in the process of developing the ceForth_328 system.

This ceForth_328 simulator faithfully replicates the logic behavior of the ceForth_328
on a cycle-by- cycle basis. The ceForth_328 FORTH Virtual Machine (FVM) is
composed of a set of registers and two stacks. A 4 phase Finite State Machine (FSM)
runs the FVM to execute pseudo instructions stored in a memory array. It is very
simple to simulate this behavior logically in a simulator.

 75

The source code of this simulator is in cefSIM328.F. It is loaded at the end of
cefMETA328.F, which builds the ceForth_328 system in a F# memory array ram.
The simulator reads program words from this array and executes pseudo instructions
contained in this array.

14.1. Registers and Memory

HEX
$1F CONSTANT LIMIT (stack depth)
$7FFF CONSTANT RANGE (program memory size in words)
VARIABLE CLOCK (slot is in the last 2 bits)
VARIABLE BREAK
CREATE REGISTER $300 ALLOT
: C+! DUP >R C@ + R> C! ;
DECIMAL
REGISTER CONSTANT P
REGISTER 4 + CONSTANT I
REGISTER 8 + CONSTANT I1
REGISTER 9 + CONSTANT I2
\ REGISTER 10 + CONSTANT I3
\ REGISTER 11 + CONSTANT I4
\ REGISTER 12 + CONSTANT I5
REGISTER 13 + CONSTANT RP
REGISTER 14 + CONSTANT SP
REGISTER 16 + CONSTANT T
REGISTER 24 + CONSTANT IP
REGISTER 32 + CONSTANT WP
REGISTER $100 + CONSTANT RSTACK0
REGISTER $200 + CONSTANT SSTACK0
HEX
: RSTACK RP C@ LIMIT AND 2 LSHIFT RSTACK0 + ;
: SSTACK SP C@ LIMIT AND 2 LSHIFT SSTACK0 + ;
: CYCLE 1 CLOCK +! ;
: JUMP CLOCK @ 3 OR CLOCK ! ;
: RPUSH (n -- , push n on return stack)
 1 RP C+! RSTACK W! ;
: RPOPP (-- n , pop n from return stack)
 RSTACK W@ -1 RP C+! ;
: SPUSH (n -- , push n on data stack)
 1 SP C+!
 T W@ SSTACK W!
 T ! ;
: SPOPP (-- n , pop n from data stack)
 T W@
 SSTACK W@ T W!
 -1 SP C+! ;
: continue
 P W@ RAM@ DUP I W!
 100 /MOD SWAP I1 C!
 FF AND I2 C!
 2 P +! ;

Command Function
LIMIT Limit stacks depths are 32 levels.
RANGE Limit program size to 32kB, the size of the RAM array

 76

CLOCK A variable that has a 30-bit count field and a 2-bit phase field. The
phase field paces FSM to fetch program words and execution pseudo
instructions.

BREAK A variable holding a breakpoint address.
REGISTER Base address of registers and stack arrays.
CYCLE Increment CLOCK to run FSM.
JUMP Force a 3 into phase field in CLOCK. In next cycle, CLOCK is

incremented and the phase field is cleared to 0. Then, a new program
word will be fetched and its pseudo instructions will be executed.

RPUSH Push integer d on return stack.
RPOPP Pop return stack and leave integer on system stack.
SPUSH Push integer d on parameter stack.
SPOPP Pop parameter stack and leave integer on system stack.
continue Fetch next program word and store the 2 pseudo instructions in I1 and

I2, to be executed in sequence by FSM.

14.2. Pseudo Instructions

Following are pseudo instructions in the FORTH Virtual Machine simulated in this
simulator. These pseudo instructions were implemented in C code, which were
discussed earlier in the ceForth_328.pde sketch. They are now coded in FORTH.
It is interesting to compare the same set of pseudo instructions implemented in two
different programming languages.

: next, IP W@ RAM@ P W!
 2 IP +! JUMP ;
: nop, JUMP ;
: bye, ABORT" Simulation done." ;
\ : qrx, ?RX ?DUP IF SPUSH -1 ELSE 0 THEN SPUSH ;
: qrx, KEY SPUSH -1 SPUSH ;
: txsto, SPOPP TX! ;
: inline, P W@ RAM@ SPUSH 2 P +! ;
: dolit, IP W@ RAM@ SPUSH 2 IP +! next, ;
: dolist, IP W@ RPUSH P W@ IP W! next, ;
: exit, RPOPP IP W! next, ;
: execu, IP W@ RPUSH SPOPP P W! JUMP ;
: donext, RPOPP ?DUP IF 1- RPUSH IP W@ RAM@ IP W!
 ELSE 2 IP +! THEN next, ;
: qbran, SPOPP IF 2 IP +! ELSE IP W@ RAM@ IP ! THE N next, ;
: bran, IP W@ RAM@ IP W! next, ;
: store, SPOPP SPOPP SWAP RAM! ;
: at, SPOPP RAM@ SPUSH ;
: istore, SPOPP SPOPP SWAP RAM! ;
: iat, SPOPP RAM@ SPUSH ;
: icat, SPOPP RAMC@ SPUSH ;
: cstor, SPOPP SPOPP SWAP RAMC! ;
: cat, SPOPP RAMC@ SPUSH ;
: rpat, 9C RAM@ SPUSH ;
: rpsto, SPOPP 9C RAM! ;
: rfrom, RPOPP SPUSH ;
: rat, RPOPP DUP RPUSH SPUSH ;
: tor, SPOPP RPUSH ;
: spat, 9E RAM@ SPUSH ;
: spsto, SPOPP 9E RAM! ;
: drop, SPOPP DROP ;

 77

: dup, SPOPP DUP SPUSH SPUSH ;
: swap, SPOPP SPOPP SWAP SPUSH SPUSH ;
: over, SPOPP SPOPP DUP SPUSH SWAP SPUSH SPUSH ;
: zless, SPOPP $8000 AND $8000 = $FFFF AND SPUSH ;
: andd, SPOPP SPOPP AND SPUSH ;
: orr, SPOPP SPOPP OR SPUSH ;
: xorr, SPOPP SPOPP XOR SPUSH ;
: uplus, SPOPP SPOPP + DUP $FFFF AND SPUSH
 $10000 AND IF 1 ELSE 0 THEN SPUSH ;
: dovar, P @ SPUSH ;

Instruction Function
next, Continue processing next token pointed to by IP. Increment IP.
nop, No operation.
qrx Push received character on stack. Also push a TRUE flag.
txsto, Send a character on top of stack to transmitter.
inline, Push next word pointer to by P on stack. Increment P.
dolit, Push next word pointer to by IP on stack. Increment IP.
dolist, Push IP on the return stack. Copy P into IP and start processing a

new token list.
exit, Pop the return stack back to IP. Return to an interrupted token list.
execu, Push IP on return stack. Pop parameter stack into P, and start

executing the pseudo instructions starting at P.
donext, If top of return stack is not 0, decrement it and then jump to address

pointed to by IP, thus repeating a loop. If top of return stack is 0,
pop it off the return stack, increment IP, and leave this loop.

qbran, If top of stack is 0, branch to address pointed to by IP. If top of stack
is not 0, increment IP, and continue processing the current token list.

bran, Branch to address pointed to by IP.
store, Store the second element on stack to an address on top of stack.
cstore, Store the second byte element on stack to an address on top of stack.
at, Replace top of stack by the contents it addresses.
cat, Replace top of stack by the byte contents it addresses.
icat, Not used.
iat, Not used.
istore, Not used
icstore, Not used.
rfrom Pop the return stack and push it on the parameter stack.
rat Pop top of return stack and push it on the parameter stack.
tor Pop parameter stack and push it on the return stack.
drop, Pop the parameter stack.
dup, Duplicate top of parameter stack.
swap, Swap the top two elements on the parameter stack.
over, Duplicate and push the second element on the parameter stack.
zless, If top of stack is negative, replace it with a TRUE flag; else replace it

with a FALSE flag.
andd, Pop top of parameter stack and AND it to the new top element.
orr, Pop top of parameter stack and OR it to the new top element.
xorr, Pop top of parameter stack and XOR it to the new top element.

 78

uplus, Add top two elements on parameter stack, replace them with a double
integer sum.

dovar, Push the address in P on the parameter stack.

14.3. Finite State Machine

Following is the Finite State Machine (FSM) in FORTH Virtual Machine (FVM)
implemented in the simulator. The FSM paces the simulator through pseudo
instructions stored in RAM memory, with a master clock, simulated by a CLOCK
variable. The lowest two bits in CLOCK is a Phase Counter. The value in the Phase
Counter indicates which phase is currently being executed. If it is Phase 0,
contine command is executed. If it is Phase 1, the pseudo instruction in I1 is
executed. If it is Phase 2, the pseudo instruction in I1 is executed. There is nothing
to do in Phase 3, and Phase 0 follows immediately.

HEX
CREATE CODE-TABLE
' nop, , ' bye, , ' qrx, , ' txsto, ,
' inline, , ' dolit, , ' dolist, , ' exit, ,
' execu, , ' donext, , ' qbran, , ' bran, ,
' store, , ' at, , ' cstor, , ' cat, ,
' istore, , ' iat, , ' rfrom, , ' rat, ,
' tor, , ' dovar, , ' next, , ' drop, ,
' dup, , ' swap, , ' over, , ' zless, ,
' andd, , ' orr, , ' xorr, , ' uplus, ,
' icat, ,

: executecode (code --)
 DUP 21 > ABORT" Illegal code "
 CELLS CODE-TABLE + @ EXECUTE ;

: .stack (add #) FOR AFT DUP @ U. 4 - THEN NEXT D ROP CR ;
: .sstack ." S:" T @ U.
 SSTACK SP C@ .stack ;
: .rstack ." R:" RSTACK RP C@ .stack ;
: .registers ." IP=" IP @ . ." P=" P @ . ." I=" I @ U.
 ." I1=" I1 C@ . ." I2=" I2 C@ .
 CR ;
: S ." CLOCK=" CLOCK @ . .registers
 .sstack .rstack ;

: SYNC0 continue ;
: SYNC1 I1 C@ executecode ;
: SYNC2 I2 C@ executecode ;
CREATE SYNC-TABLE
' continue , ' SYNC1 , ' SYNC2 , ' JUMP ,
: sync CLOCK @ 3 AND cells
 SYNC-TABLE + @ EXECUTE ;

CODE-TABLE An array containing the execution addresses of all the pseudo
instructions.

executecode From the byte code of a pseudo instruction, pick up its execution
address in CODE-TABLE and execute it.

.stack Display the contents of a stack.

 79

.sstack Display the contents of data stack.

.rstack Display the contents of return stack.

.registers Display the contents of all the relevant registers.
S Show all the registers and stacks at this cycle.
SYNC0 Phase 0. Fetch and decode next program word
SYNC1 Phase 1. Execute pseudo instruction in I1
SYNC2 Phase 2. Execute pseudo instruction in I2
SYNC-TABLE A array containing 4 execution addresses to be executed in 4

phases of FSM.
sync From the phase field of variable CLOCK, execute the command

appropriate for that phase, selected from SYNC-TABLE. This is
the Finite State Machine of the FORTH Virtual Machine.

14.4. User Interface

This simulator has a very simple text-based user interface. The most used
commands are:

: C sync CYCLE S ;
: RESET REGISTER $300 ERASE 0 CLOCK !
 $900 RAM@ P ! (start of code table in flash)
 ;
RESET

: G (addr --)
 CR ." Press any key to stop." CR
 BREAK !
 BEGIN sync P @ BREAK @ =
 IF CYCLE C EXIT
 ELSE CYCLE
 THEN
 ?KEY
 UNTIL ;
: PUSH (n) T @ SPUSH T ! ;
: POP SPOPP ;

: D P @ CELL- FOUR FOUR ;
: M SHOW ;
: RUN CR ." Press ESC to stop." CR
 BEGIN C KEY 1B = UNTIL ;

: HELP CR ." cEF Simulator, copyright Offete Enter prises, 2009"
 CR ." C: execute next cycle"
 CR ." S: show all registers"
 CR ." D: display next 8 words"
 CR ." addr M: display 128 words from addr"
 CR ." addr G: run and stop at addr"
 CR ." RUN: execute, one key per cycle"
 CR ;

Command Function
C Run one clock cycle and display all registers and stacks.
reset Clear the REGISTER array, simulating hardware reset.
G Run and stop at address given on stack. This is a very

 80

efficient way to set breakpoints and then run till a
breakpoint is triggered. It allows you to execute a large
portion of the program and stop only at a specified
location.

PUSH Push a new integer into the T register and data stack.
POP Discard contents in T and pop data stack back into T.
D Display memory starting at address in P.
M Dump 256 bytes in memory using show command.
RUN Continue stepping with any key, terminated by ESC.
HELP Display instructions to use the simulator.

C is the single stepper in simulator. It runs the FSM for one cycle, and displays all
registers and stacks. This is the most useful command to debug the ceForth_328 in
the early development stage. You can see all data in all registers and stacks. In the
ceForth_328 system, the first command executed is COLD, which executes a
diagnostic word, DIAGNOSE. DIAGNOSE runs simple tests on most pseudo
instructions. By single stepping through DIAGNOSE, you can validate most pseudo
instructions. If all tests in DIAGNOSE run successfully, it is very likely the
ceForth_328 will run correctly.

reset clears the REGISTER array, and initializes the simulator to run from a
location whose address is stored in $900.

This simulator is most effective in debugging short sequences of program words to
verify that the sequences are executed correctly. After ceForth_328 pseudo
instructions are verified, use the G command to execute a long stretch of program and
break only at a specified location. This allows large segments of programs to be
tested. If the simulator runs forever and cannot reach the break point you specified,
you can stop the G command by hitting a key on the keyboard to terminate it.

When F# runs the metacompiler to compile ceForth_328, it displays names and code
field addresses of all commands compiled into the target dictionary. The display is a
symbol table. You can look up a command and find its code field address. The
code field addresses are the best place to set your break point. To debug a command,
find its code field address and enter it with the G command. The simulator will
break at the beginning of this command, and you can use the C command to single
step through it.

Typing lots of C commands is tedious. The RUN command lessens your typing chore.
After executing RUN, the simulator displays registers and stacks and pauses.
Pressing any key will single step Slot Machine for one cycle. You can run many
steps easily this way. When you want to stop RUN, press the ESC key.

To examine memory, type an address followed by the M command. It will display
256 bytes of memory starting from that address. The D command displays 8
program words starting at this address.

If you want to start debugging at a particular address, type the address followed by the
P command. This address is stored in the program counter register, P, and C or RUN

 81

commands will single step words starting at this memory address.

If you want to change the data stack to run simulation with the data you want on the
stack, use PUSH and POP commands. Type a number followed by PUSH, and this
number is pushed on the data stack in the simulator. You can enter as many numbers
on stack as you like in this way. If you want to discard a number off the data stack,
type POP.

The above commands allow you to set up ceForth_328 simulator exactly the way you
want before running simulation.

 82

Appendix eForth_328 Commands

- (n1 n2 -- n3) Subtract n2 from n1 (n1-n2=n3).
' <name> (-- addr) Find <name> and leave its address.
! (n addr --) Store n to addr.
!IO (--) Initialize the serial I/O devices.
(n -- n/base) Convert next digit of n and add it to output string .
#> (n -- addr n1) Terminate numeric conversion, leaving addr and count n1.
#S (n --) Convert all significant digits in n to output string.
#TIB (-- addr) Return address of variable storing number of characters

received in terminal input buffer.
$" <string> (-- addr) Compile a string literal. Return its address at run time.
S"| (-- addr) Return address of following string literal at run time.
$,n (addr --) Build a new dictionary header using the string at addr.
$COMPILE (addr --) Compile string at addr to dictionary as a token or literal.
$INTERPRET (addr --) Interpret string a addr. Execute it of convert it to a number.
(<text>) (--) Ignore comment text.
(parse) (addr n char --

addr n delta)
Scan string delimited by char. Return found string and its offset
delta.

* (n1 n2 -- n3) Signed multiply. Leave product.
*/ (n1 n2 n3 -- n4) Signed multiply and divide. Leave quotient of (n1*n2)/n3.
*/MOD (n1 n2 n3 -- n4) Signed multiply and divide. Leave remainder of (n1*n2)/n3.
, (n --) Add n to parameter field of the most recently defined word.
. (n --) Display signed number with a trailing blank.
." <text>" (--) Compile <text> message. At run-time display text message.
."! (--) Display following string literal as a text message.
.(<text>) (--) Display <text> received from the input stream.
.ID (addr --) Display name of a command at addr.
.OK (--) Display ok> message.
.R (n n1 --) Display n right justified in a field of n1 character width.
/ (n1 n2 -- quot) Signed division. Leave quotient of n1/n2.
/MOD (n1 n2 -- rem

quot)
Signed division. Leave quotient and remainder of n1/n2.

: <name> (--) Begin a compound command of <name>.
; (--) Terminate a compound command.
? (addr --) Display contents in addr.
?DUP (n -- n n | 0) Duplicate top of stack if it is not a 0.
?KEY (-- char T | F) Return input character and true, or a false if no input.
?RX (-- char T | F) Return input character and true, or a false if no input.
?UNIQUE (addr --) Display a "reDef" message if addr is an existing command.
@ (addr -- n) Replace addr by number fetched from addr.
[(--) Switch from compilation to interpretation.
[COMPILE]
<name>

(--) Compile the word <name> in the input stream as an token.

\ <text> (--) Ignore text till end of line.
] (--) Switch from interpretation to compilation.
^H (bot eot cur --

bot eot cur)
Backspace. Backup the cursor by one character.

+ (n1 n2 -- n3) Add n1 and n2.
+! (n addr --) Add n to number at addr.
< (n1 n2 -- flag) True if n1 less than n2.
<# (--) Start numeric output conversion.
<MARK (-- addr) Push current program address on stack.
<RESOLVE (addr --) Compile addr to dictionary.
= (n1 n2 -- flag) True if n1 equals n2.
> (n1 n2 -- flag) True if n1 greater than n2.
>CHAR (n -- char) Convert n to a printable character char. Non-printable character

 83

is converted to an underscore character.
>IN (-- addr) Return address of a variable pointing to current character being

interpreted.
>MARK (-- addr) Compile 0 to dictionary. Push its address on stack
>NAME (ca -- na) Convert a code field address to a name field address.
>R (n --) Pop top and push it on return stack.
>RESOLVE (addr --) Store address of current program word in addr.
>UPPER (addr --) Convert a count string at addr to upper case.
0< (n -- flag) True if n is negative.
0= (n -- flag) True if n is 0.
1- (n -- n-1) Decrement top.
1+ (n -- n+1) Increment top.
2- (n -- n-2) Decrement top by 2.
2! (d addr --) Store a double integer to addr.
2* (n -- 2n) Multiply top by 2.
2/ (n -- n/2) Divide top by 2.
2@ (addr -- d) Fetch a double integer from addr.
2+ (n -- n+2) Increment top by 2
2DROP (d --) Pop two numbers off stack.
2DUP (d -- d d) Duplicate a double integer on stack.
ABORT (--) Clean up stack and jump to address in 'ABORT.
'ABORT (-- addr) Return address to handle error condition.
abort" (flag --) If flag is true, display following message and ABORT.
ABS (n -- u) Return absolute value of top.
accept (addr n -- addr

n1)
Accept n characters to buffer at addr. Replace n with actual
count n1

AFT (--) Branch to THEN to skip a branch in FOR-NEXT loop.
AHEAD (--) Branch forward to address in next word.
ALIGNED (n -- n1) Adjust n to the word boundary.
ALLOT (+n --) Add +n bytes to parameter field of the most recently word.
AND (n1 n2 -- n3) Logical bit-wise AND.
BASE (-- addr) Contain radix for numeric conversion.
BEGIN (--) Start an indefinite loop.
BL (-- 32) Push 32 on stack.
BRANCH (flag --) Branch to address in next program word if flag is 0.
C! (n addr --) Store a byte to addr.
C@ (addr -- n) Fetch a byte from addr.
CHAR
<string>

(-- char) Push first character in the following text string.

CHARS (n char --) Send n characters char to the output device.
CMOVE (addr addr1 n --) Copy n bytes starting at addr to memory starting at addr1.
CODE
<name>

(--) Start a new primitive command.

COLD (--) Initialize FORTH system and start text interpreter.
COMPILE
<name>

(--) Retrieve address of the following command and compile it as a
token.

CONSTANT
<name>

(n --) Define a constant. At run-time, n is pushed on the stack.

CONTEXT (-- addr) Return address of a variable pointing to name field of last word
in dictionary.

COUNT (addr -- addr+1
n)

Replace addr with address and count of a count string.

CP (-- addr) Return address of a variable pointing to first free space on
dictionary.

CR (--) Display a new line. Carriage return and line feed.
CREATE
<name>

(--) Define an array. At run-time, its address is left on the stack.

DECIMAL (--) Set number base to decimal.

 84

DIAGNOSE (--) Exercise all primitive commands for debugging.
DIGIT (n -- char) Convert digit u to a character.
DNEGATE (d -- d1) Negate a double integer on stack.
do$ (-- addr) Return the address of the following compiled string.
doCON (-- n) Return contents of next program word.
doLIST (--) Start processing a new nested list.
doLIT (-- n) Push an inline literal.
doNEXT (--) Terminate a single index loop.
doVAR (-- addr) Return address of next program word.
DROP (n --) Discard top of stack.
DUMP (addr n --) Dump n bytes of memory starting from addr.
DUP (n1 -- n2) Duplicate top of stack.
ELSE (--) Terminate <true> clause, continue after the THEN.
EMIT (char --) Initialize the serial I/O devices.
ERASE (addr n --) Clear a n byte array at addr
ERROR (addr --) Display error message at addr and jump to ABORT.
EVAL (--) Interpret input stream in terminal input buffer.
'EVAL (-- addr) Return address of variable containing $INTERPRET or

$COMPILE.
EXECUTE (addr --) Execute the command at addr.
EXIT (--) Terminate execution of current compound command.
EXPECT (addr n --) Accept n characters into buffer at addr.
EXTRACT (n base -- n/base

n1)
Extract the least significant digit n1 from n. n is divided by
base.

FILL (addr n char --) Fill an array at address with n characters char.
find (a va -- ca na | a

0)
Search dictionary at va for a string at a. Return ca and na if
succeeded, else return a and 0.

FOR (n --) Setup loop. Repeat loop until limit n is decremented to 0.
FORGET
<name>

(--) Delete command <name> and all words added afterwards.

HERE (-- addr) Address of next available dictionary location.
HLD (-- addr) Return address of a variable pointing to next converted digit.
HOLD (char --) Add character char to the number string under conversion.
IF (flag --) If flag is zero, branches forward to <false> or after THEN.
IMMEDIATE (--) Set immediate bit in name field of last command added.
KEY (-- char) Get an ASCII character from the keyboard. Does not echo.
kTAP (bot eot cur char

-- bot eot cur)
Process a control character, CR or backspace.

LAST (-- char) Get an ASCII character from the keyboard. Does not echo.
LITERAL (n --) Compile number n. At run-time, n is pushed on the stack.
M* (n1 n2 -- d) Multiply n1 and n2. Return double integer product.
M/MOD (d n -- mod quot) Divide double integer d by n1. Return remainder and quotient.
MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.
MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.
MOD (n1 n2 -- mod) Signed divide. Leaver remainder of n1/n2.
NAME? (addr -- ca na | a

F)
Search dictionary for name at addr. Return code field address
and name field address if a command is found, else push a false.

NAME> (na -- ca) Convert a name field address to a code field address.
NEGATE (n1 -- n2) Two's complement.
NEXT (--) Decrement index and repeat loop until index is less than 0
NOT (n1 -- n2) Bit-wise one's complement.
NUMBER? (addr -- n T |

addr F)
Convert a string at addr to an integer and push a true flag. If it
is not a number, push a false flag.

OR (n1 n2 -- n3) Logical bit-wise OR.
OVER (n1 n2 -- n1 n2

n1)
Make copy of second item on stack.

OVERT (--) Change CONTEXT to add a new command to dictionary.
PACK$ (addr n-- addr1) Copy a string at addr with length n, to a count string at addr1.

 85

PAD (-- addr) Return address of a scratch pad area.
PARSE (char -- addr n) Parse terminal input buffer for a string terminated by char.

Return its address and length.
PEEK (addr -- n) Fetch a byte from addr.
POKE (n addr --) Store a byte to addr.
QBRANCH (flag --) Branch to address in next word if flag is zero.
QUERY (-- addr) Leave address of a scratch area of at least 84 bytes.
QUIT (--) Return to terminal, no stack change, no message.
R@ (-- n) Copy top of return stack on stack.
R> (-- n) Pop top of return stack and push it on stack.
REPEAT (--) Unconditional backward branch to BEGIN.
ROT (n1 n2 n3 -- n2

n3 n1)
Rotate third item to top. "rote"

SAME? (addr1 addr2 n --
aadr1 addr2 flag)

Compare two strings at addr1 and addr2 for n bytes. If
string1>string2, returns a positive integer. If string1<string2,
return a negative integer. If strings are identical, return a 0.

SEE <name> (--) Decompile the word <name>.
SIGN (n --) If n is negative, add a - sign to the number output string.
SPACE (--) Display a space.
str (n -- addr n1) Convert signed integer n to a numeric output string at addr,

length n1.
SPACES (n --) Display n spaces.
SWAP (n1 n2 -- n2 n1) Exchange top two stack items.
TAP (bot eot cur char

-- bot eot cur)
Accept and echo a character and bump the cursor.

THEN (--) Terminate the IF-ELSE structure.
TIB (-- addr) Push address of terminal input buffer.
'TIB (-- addr) Return address of variable pointing to terminal input buffer.
tmp (-- addr) Return address of a temporary variable.
TOKEN (-- addr) Parse next string delimited by space into a word buffer 2 bytes

above the top of dictionary.
TX! (char --) Send character c to the output device.
TYPE (addr +n --) Display a string of +n characters starting at address addr.
U. (n --) Display unsigned number with trailing blank.
U.R (n n1 --) Display unsigned number n right justified in a field of n1

characters.
U< (n1 n2 -- flag) Unsigned compare. Return true if n1<n2.
UM* (n1 n2 -- d) Unsigned multiply. Return double integer product.
UM/MOD (d n -- mod quot) Unsigned divide. Return remainder and quotient.
UM+ (n1 n2 -- d) Unsigned add. Return double integer sum.
UNTIL (flag --) Repeat <loop-body> until the flag is non-zero.
UPPER (char -- char1) Convert a character to upper case.
VARIABLE
<name>

(--) Define a variable. At run-time, <name> leaves its address.

WHILE (flag --) Repeat <loop-body> and <true> clause while the flag is
non-zero.

WITHIN (n1 n2 n3 -- flag) Return true flag if n1<=n3<n2. Else, return false flag.
WORD
<text>

(char -- addr) Get the char delimited string <text> from the input stream and
leave as a counted string at addr.

WORDS (--) Display all commands in the dictionary.
XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.

