eForth asan Arduino Sketch

Last year | decided to retire from electronics amdrocontrollers, because after two
glaucoma and cataracts operations, | could nossedl objects and narrow lines and
there was no way that | could work on the surfaceimed parts with very narrow
line spacing. So | cleaned out my study and magmrgave away all my tools and
spare parts. | realized that | should not be dware engineer. |1am only a
programmer, and should just work on software.

Then when | visited my brother in Denver last sumrhsaw that my niece was
working on a couple of Arduino Boards. On an Arduboard, there was a
microcontroller in a DIP socket! That was veryergsting. When | came back, |
bought a couple of Arduino Uno Boards, and havenlesrking on them since. |
had to buy back tools and many electronic partsaa@any vow to stay away from
hardware.

Arduino Uno is a lovely, small, cheap, and readitgessible microcontroller board.
The operating system and the programming envirobdeuino 0022 is a good
match to the Arduino Uno Board. Through a sing&B table, you can upload
programs from a PC to Arduino Uno, and then comiateiwith Uno through the
same cable using RS232 protocol. You write progranC language as sketches in
Arduino 0022, and the sketches are compiled and dp#aded to the ATmega328P
microcontroller on Arduino Uno for execution. Skets are C programs greatly
simplified to the point that you just have to files of code in the two following
routines:

setup()

loop()
All intricacies and complications in the C languagel its associated compiler and
linker are taking care of by Arduino 0022 systerdlo wonder Arduino is such a
huge success.

FORTH is a programming language much better sdistethicrocontrollers than C.
FORTH is really a programming language with a biniloperating system. It has an
interpreter and a compiler so that you can writggpams in small modules and
interactively test and debug them. You can buldé applications quickly and
debug them thoroughly. FORTH also gives you acteafl the hardware
components in the microcontroller and all the 1@ides connected to the
microcontroller.

So, | ported a very simple FORTH model, 328eFamter to the ATmega328P
microcontroller. It was written in AVR assemblynguage, and had to be assembled
in the AVR Studio 4 IDE from Atmel Corp, and thepleaded to ATmega328P
through a separated AVRISP mkll programming cabl@nce 328eForth is uploaded
to ATmega328P, it can communicate with the PC thihaihe Arduino USB cable.
328eForth cannot be uploaded through the USB chbtsguse Arduino 0022 requires
a bootloader pre-loaded in ATmega328P to uploattbks, and 328eForth must use
the bootloader section of flash memory in ATmegad3&8store commands which
writes new code into the application section offtash memory at run-time.

For the serious FORTH programmers, 328eForth sygteenyou the ultimate control
over the ATmega328P microcontroller. For the miacher Arduino user community,
we need a FORTH implementation which is compatiotd the Arduino 0022 system.
Here is my solution: ceForth_328. It is writtenGras a sketch. It can be compiled
and uploaded by Arduino 0022. Once it is uploaeithe Atmega328P
microcontroller, it communicates with the PC thrbulge Arduino USB cable.
However, new FORTH commands are compiled only iheoRAM memory in
ATmega328P. You have only about 1.5 KB of RAM meyrto stored new
commands, and when you turn off Arduino Uno, these commands are lost.

In spite of these limitations, ceForth_328 is stiltery useful system. You can learn
FORTH and use if to evaluate Arduino Uno for vasi@pplications. You can also
use it to learn about the ATmega328P microcontrdiecause it allows you to read
and to write all the 10 registers. | specificadigded two command3EEKand
POKEto read and write RAM memory, which includes b# 1O registers. The

AVR Family Data Book is a huge 566 page documeantd,the best way to read it is
opening one chapter on an 1/O device, readingeagsster descriptions, usifREEK

to look at a register, and usiRKEthe change the register.

Part One ceForth 328 for Arduino Uno

1. Introduction

Since 1990, | have been promoting a simple FORTguage model called eForth.
This model consists of a kernel of 30 primitive eoands which have to be
implemented in machine instructions of a host n@ordroller, and 190 compound
commands constructed from the primitive commandsather compound commands.
By isolating machine dependent commands from madhikependent commands,
the eForth model can be ported to any microcomtreiry easily.

This FORTH system, ceForth_328 is derived fromdBE Version 1.0 system written
in C, which follows closely the original eForth negwith only 30 primitive. cEF
1.0 system was compiled by gcc in the cygwin emvitent. ceForth_328 is a
eForth implementation for the ATmega328P microauler from Atmel as a sketch
on the Arduino 0022 system. It can be compiled@ridaded to the Arduino Uno
Board to give you a taste of FORTH. Because thédtions imposed by Arduino
0022, you can add only 1.5 KB of new commands ¢o0RAM memory. It sounds
like a severe limitation. However, because ofdbpactness of FORTH
commands, you can still compile a substantial @apgibn into the small RAM
memory. Another serious limitation is that you mansave the application in the
flash memory because Arduino 0022 system doesroweide tools to write new code
to the flash memory at run time.

If you really need to develop large applicationd &mhave the complete control over
the underlying microcontroller, you can use theweaFORTH system | built for
ATmega328P, the 328eForth system. In the 328eBystem, new FORTH
commands are compiled directly into the flash megmamd you can make the full use
of the 32 KB of flash memory, as well as the 2 KBNRmemory. The drawback of
the 328eForth system is that you have to have aratgul programming device, like
AVRISP mKll, to upload it into the flash memory,daih overwrites the Arduino 0022
bootloader section of the flash memory so thaait add new commands to the
application section of the flash memory. In esse28eForth is not compatible
with Arduino 0022. This is the reason why | dey&d this ceForth_328 system,
which is basically a teaser introducing you toH@RTH language, and perhaps to
the real FORTH implementation of 328eForth.

2. From Harvard to Princeton

The first large scale, working computer in the U&whe Harvard Mark I, designed
by Howard Aiken at Harvard University and built BM. It was an
electromechanical monster completed in May 194th miograms stored on paper
tape. Then came ENIAC built by J. Presper Eckatdohn Mauchly at University
of Pennsylvania in July 1946. It was based on wactubes, and programmed by
patch cords and switches. In these computersramgwere entered through media
completely different from mechanisms performing pomation, and were called the
Harvard Architecture.

In 1945, John von Neumann, then at Princeton Usityewas invited to visit ENIAC,
and then wrote the classic "First Draft of a Reporthe EDVAC", in which he

3

proposed the stored program computer, where pragyeanth data resided on the same
memory medium. It was then called the PrincetarhAecture or the von Neumann
Architecture, and had been adopted by most completggners, but not all of them.

The AVR family of microcontrollers from Atmel happed to follow the Harvard
Architecture, against the common practice in tlirigtry. The reason was that they
use a large flash memory to store programs andal RAM memory to store data.
The flash memory is organized in 16-bit words dr@lRAM memory is organized in
8-bit bytes. The two memories are very differenthieir timing and read/write
behaviors, and it warrants two different memoryedsuand separated instructions to
access them.

The Arduino 0022 system used on Arduino boardsiregjthat you write application
programs in 'sketches’, which are based on the@amming language. The C
language hides the underlying microcontroller frgon. Instead, it present to you a
computing model which is essentially a Harvard Awstiure. Programs are placed
in location hidden from you. Data are placed icaktons you have to declare, and
then are secretly assigned by the compiler antirtker. Functions and data are
accessed by assigned names so that you are preévemake serious mistakes which
may cause the computer to crash. For casual Useiino 0022 matches very well
with Atmega328P microcontroller, sharing the sanaevidrd Architecture, and this
undoubtedly is one of the reasons why the Arduaressuch a huge success.

The FORTH programming language definitely belormgghe Princeton Architecture.
It assumes that you have free access to all phasmcrocontroller, and that
programs and data share the same memory spacerefdree new commands and
new data structures can be added freely so thahgee an interactive and extensible
system to develop and debug your applications.

The Harvard Architecture in the ATmega328P micrdaaler is not a big problem for
me. In assembly language, | have the completaaamter the instructions,
RAM/flash memory spaces, and all the IO deviced,lazan impose a FORTH

Virtual Machine on the ATmega328 chip. This is 828rth. An interesting feature
of ATmega328 is that if you have to write into tiqggplication section of the flash
memory, that part of your code must reside in thatlbader section of the flash
memory. Therefore, | have to take over the bod#oaection, and the resulting
328eForth system can not peacefully co-exist wighArduino 0022 bootloader.

In the Silicon Valley Forth Interest Group, we\adhactive discussions on Arduino in
the monthly meetings over the year. | was chabeng build an Arduino 0022
compatible FORTH system. My first response was ltbauld only build a FORTH
language interpreter on Arduino. | could not balBEORTH compiler, because
Arduino 0022 would not let me write new code irtte flash memory. So | built a
FORTH interpreter on Arduino Uno Board, and preseéritt to the SVFIG in the
October meeting. One member suggested: "Why glon'use the RAM memory to
store new code? You could not save the compiledaoele, but at least you would
be able to add new code and exercise them."

Thinking it through, it's not a bad idea. In ATra8@8P, there are 2 KB of RAM,
and at least 1.5 KB are free. | cannot store nmacimistructions in RAM, because

ATmega328P only executes machine instructions gtioréhe flash memory.
However, | can design a FORTH Virtual Machine wadeudo instructions, which are
pure data as far as ATmega328P is concerned. Tiseselo instructions can be
stored either in flash or in RAM. All | need iseheme to unify these two different
memories so that | can use the same set of reag/f@aeudo instructions to read the
flash and RAM memories, and to write the RAM memory

This is my way of building a Princeton Architectune a Harvard microcontroller

with a Harvard programming language. The FORTHudrMachine (FVM) has 30
pseudo instructions as byte codes. The pseuduodtisins are written as C routines,
and a simple Finite State Machine (FSM), also emiiih C, executes these byte codes,
which can be stored either in the flash or RAM mgmo The complete FORTH
operating system, including an interpreter, a céengind other programming and
debugging tools are contained in a big data straatalled a dictionary. This
dictionary contains a set of records linked insearchable linked list. Each record
is the embodiment of a FORTH command, and consfsdink field, a name field
and a code field. A FORTH command is called extlyrby a name which is an
ASCII string, and internally by a token, which etaddress of its code field. There
are two types of FORTH commands: the primitive cands having lists of pseudo
instructions in their code fields, and the compoaachmands having lists of tokens
in their code fields.

The FORTH dictionary is a large and rather complata structure, because the name
fields and the code fields are of variable lengtMy very limited experience in C is
not sufficient for me to build this data structimeC, although very experienced C
programmers in SVFIG assured me that it can be.dohtll back to FORTH to

build this dictionary and then imported it into tbeForth_328 sketch as a code array.

The dictionary code array is 8 KB in size, andliscated and initialized by C in the
flash memory. However, the lowest 2304 bytes f ¢bde array is mapped to the
RAM memory space in ATmega328P. In ATmega328PRIAM memory space is
divided into two parts. The lowest 256 bytes aspped to the CPU and IO
registers, and the rest of the 2048 bytes are RAdvhary. The read/write pseudo
instructions are smart in that they use RAM meniosyructions when the memory
address is below 2304, and they use flash memetguictions otherwise. Therefore,
the dictionary spans across the flash and RAM mgmsaces, so that | can add new
commands to the dictionary branch in RAM, while éircb 0022 thinks | am just
writing harmless data into the RAM memory.

This is how you can impose a Princeton Architecture Harvard Architecture.

The limitations are that you have only 1.5 KB tommle new FORTH commands,
and that you lose these new commands when yowptmser.

As | said before, this ceForth_328 system is aeteatiowing you to experience
FORTH within the confines of Arduino 0022. If yaue ready for serious
application programming, move on to the 328eFoyttesn.

3. What Good is ceForth_328?

With the limitations | talked about above, you naesk: "Why should | bother with
ceForth_3287?"

Well, | had seen lots of discussions in the Arduwoamunity on the Internet that
people missed theEEKandPOKEfunctions in the BASIC language that were very
popular in the early microprocessor day®EEKallows you to examine the contents
in a memory location, andlOKEallows you to change them. They are very useful
in debugging an application, especially if the Egisters are mapped into the
memory space.

| give youPEEKandPOKEin ceForth_328. Here are a few examples to stmw y
what you can do witPFEEKandPOKE

| assume that you have your Arduino Board set wphcamnected to your PC through
the USB cable. | use an Arduino Uno. First brupgArduino 0022, and click
File/Open button, then select ceForth_328.pdeviilegrever you last left it.

Compile and upload it to Arduino Uno. The Ardummmdow looks like this:

5 eforth_328 | Arduino 0022 (=03

File Edit Sketch Tools Help

J,.'wa-wmrmnn-mrwa-wa-wmrxwmrmrﬂrwa-wmmwmrmrﬂrwa-wa-wa-m-x*x*w*w**ﬁwﬁ*x*w*w*w*4\
/% Arduino eForth 328, Z.0: For Atmega3Zd on arduino Uno
J,.'wmra-mn-mrmrwa-wmra-mn-mnn-ﬂrwa-wa-wmrmrmrwz-wa-wa-m-**x*w*w**ﬁwﬁ**w**x*x*wﬁ
/¥ Chen-Hanson Ting

/% eForth_325, 2.0 07novllc

/¥ Compile new commands to Rmﬂ

/% eForth 328, 1.0 2Zlsepllcht

/% ddopted from eForth 1l.c

/% Compiled by Arduino as a sketch

/¥ Follow closely the original eForth model

/% Fernel has 3Z primitiwves

/¥ code[] array wust be filled with rom.mif produced by cefMETAZZS
A7 @, ', CH and C! access RAM memory

R R R R A R AT R R R R A AR RS A AR AR S AR ERART R RFALLAH

f#include <avr/pomspace. s

#define LOGICAL 7 OxFFFF: 0O

Fdefine LOWER (x,%) ((unsigned int)ix)<iunsiomed int) (¥))
f#define pop top = *#3-- vy
4 >

Binary sketch size: 13058 bytes (of a 5 byte maximam)

Open HyperTerminal, and configure it to 115,200dydustart bit, 8 data bits, 1 stop
bit, no parity, and no flow control. You will séee following HyperTerminal
console. If not, check to see if you have thetrf@®M port settings. You can use
other terminal emulator programs, and | assumettiegtbehave similarly.

“& 57600 - HyperTerminal
File Edit Vew Cal Transfer Help

et 3 DB

Start Arduino

Arduino efForth 2.6, 2011

0000 ok
0000 ok>_

Connected 00:06:32 WT100 115200 8-M-1

Press the Return key a couple of times, anaki*emessages echo on the console.
Type in the following commands to exercise the c#F@28 system:

WORDS

1234
+

*

: TEST1 CR ." HELLO, WORLD!" ;
TEST1

: TEST2 IF 1 ELSE 2 THEN . ;

1 TEST2

0 TEST2

: TEST3 10 FOR R@ . NEXT ;
TEST3

ceForth_328 is case insensitive. You can type cant® in either upper or lower
case. Note that ceForth 328 is in the hexadediass when it starts.

The first time you get an Arduino Board, the fitsihg you do is to turn that on-board
LED on and off. The LED is connected to the Digi@ Line D13. With the
following POKE commands, you can turn the LED od aff:

20 24 POKE

20 23 POKE

20 23 POKE
(After POKE press Return key to send one line of commanA3teega328P to be
executed.)

The Digital I/O Line D13 on Arduino Uno is connett® bit-5 of GPIO Port B, PB-5.
Port B is a general purpose I/O device which haddahowing registers:

Address | Register| Name Function

$23 PINB Input register Status of input pins
$24 DDRB Direction register 1: output; O: input
$25 PORTB | Data register Output data, pull-up tesis

Setting a bit in DDRB register makes the correspumgin an output pin. This is
what the commands

20 24 POKE
do. Then, writing this bit in PINB register togglthe output pin. This is done by
the commands

20 23 POKE
The commandPOKEtakes two arguments in front of it: the first argent is one byte
of data, and the second argument is the addresgmiory location where the byte
data is deposited. Alternatively, you d@KEthe PORTB register to set or clear
the bit at PB-5, and respectively turn the LED owoff

20 25 POKE

0 25 POKE

See? When you can poke the IO registers, you @atnat the ATmega328P chip
directly, without writing a sketch.

Type the above commands. Press Enter key at thefezach line. You will see
how ceForth_328 responds to your commands as ghtwe ifollowing console
display:

“& 57600 - HyperTerminal
File Edit View Cal Transfer Help

Start Arduino

Arduino efForth 2.6, 2011

ok>

ok>20 24 POKE
ok>20 23 POKE
ok>20 23 POKE
ok>

ok>

ok>20 25 POKE
ok>0 25 POKE
ok>

ok>

ok>23 PEEK

10 ok>24 PEEK

B 20 ok>25 PEEK
10 20 0 ok>

16 20 0 ok>

10 20 0 ok>

106 20 0 ok>

10 20 0 ok>

16 20 0 ok>

SoOoIoEEDoE@
Hooooooo@
oD@

L OEIeEEoEI@

=

Connected 03:56:21 WT100 115200 8-M-1 t CAPS

The zero's to the left of the promgk> at the beginning of this session show the top
4 elements on the parameter stack of the FORTHIMiMachine. After you

8

execute the commands

23 PEEK
the value returned from register 23 is pushed erptrameter stack as the number 10.
Subsequently, the value returned by commands

24 PEEK
is 20, and that returned by

25 PEEK
is 0. You can use PEEK to see the contents oh@mory location, including all
the CPU registers, all the IO registers, all theMRiemory, and all the flash memory.
You can use POKE to change the contents of regiated RAM memory. You
cannot change the contents of flash memory, though.

Type in the above command lines to verify that getithe same results as show in
the above console display.

Just these two commanB& EKandPOKE make it worthwhile for you to look at
ceForth_328 seriously.

Now. Heed this warning!

Use thePOKEcommand carefully. There is no protection agayosir poking into
sensitive locations which might cause trouble. Taue to stay away, absolutely
and positively, from locations 0 to $1F (decimeé8 Dy, because they map directly into
the CPU registers. Only God knows what data an@dtthere, and they change
dynamically. You are encouraged to poke into edgisters from $20 to $FF, but
you have to study carefully the AVR Family Data R@m that you know exactly
what the consequences are, before you try it. odfgo the poking correctly, you can
make all the 10 devices to do what you want. Hasvewmcorrectly poking the 10
register may have no ill consequences, or may dreshystem at the worst.

The C compiler uses RAM locations from $100 to $2F€eForth_328 uses the
RAM locations from $300 to $8FF. If you did notngpile new commands into the
RAM memory, locations from $380 to $87F are fre® gou can poke these
locations without any problem.

PEEKallows you to examine memory contents one bytetahe. | give you a
much more powerful commari@UMRo display 256 bytes of contiguous memory
locations. DUMRakes one argument as an address, and displagsritents of the
next 256 bytes in a nicely formatted table. Faragle, the commands

0 DUMP
displays the contents of all the CPU registersalhthe 10 registers, as show in the
following:

“& 57600 - HyperTerminal
File Edit View Cal Transfer Help

0= 3 DB
010 20 0 ok>
0 10 20 0 ok>
010 20 0 ok>
0 10 20 0 ok>
010 20 0 ok>
0 160 20 B ok>@ DUMP

=
-~
[d5]
=
-
-]
-
-
D
=4
[
(=)
D
-

FD 1 511 C_w $7:v 0_2}_
68 20 43 13 @ yP h C_
35 62 62 62 bbh_ bbbb
B 0 0 0 b'b! b

b b
62 F6 8 BD 6_b___b bbb_bu_5
0 80 1 0 _4b b&
062 @ 0 _bdb bith b
20 82221 k btbh_
20 21 23 62 62 62 21 62 bbbbbbbbbbbb b_b
AB 62 62 62 62 62 62 62 62 62 62 B 21 21 62 62 21 bbbbbbbbbb!b bhb
B6 1 4#1B 0 821 0622 BFSB8FEFF B 06262 2 bbx__ bb
CO 6298 66210 B8 50 62 62 62 62 62 62 62 62 62 b__b__ Pbbbbbbbbb
DB 62 62 21 62 62 62 34 14 62 62 15 62 62 62 20 62 bbbbbbbbbbbb!bib
E6 62 62 62 62 62 62 62 14 62 62 62 21 62 62 62 35 bbbbbbbbbbbbbbbb
FO 14 62 62 62 21 62 62 62 21 62 62 62 22 62 62 62 bbbbbbbbbbbbbbbb

0 10 26 0 ok>

0 10 26 8 ok>

L=n
Mo
=
Soooe@ D
=
=
=
L=a
Mo

wn
=
[}
=
M
M
L=y}
M2
=
=
RN @RDWONE @~
[=a}
™
NS @-IE2@ N
(=3}
M~
[=}
M
(=2}
M

Connected 04:32:41 WT100 115200 8-M-1 t CAPS

Here, you see the contents of the CPU registens fogation 0 to $1F, and those of
the 10 registers from $20 to $FF. The locationsaihg data of $62 are those not
implemented as IO registers. The locations showatg other than $62 are
generally valid registers. Poke them carefullg@jiou study their functions in the
AVR Family Data Book. ceForth_328 is the best canipn of the AVR Family
Data Book as you read about the ATmega328 microaibert

Another example is the commands

900 DUMP
and the results are shown in the following:

10

“& 57600 - HyperTerminal
File Edit View Cal Transfer Help

O & & 087 =

EB 62 62 62 62 62 62 62 14 62 62 62 21 62 62 62 35 bbbbbbbbbbbbbbbb
FO 14 62 62 62 21 62 62 62 21 62 62 62 22 62 62 62 bbbbbbbbbbbbbbbb
0 10 26 0 ok>
0 10 20 0 ok>
0 10 20 8 ok>
0 10 20 0 ok>900 DUMP

900 28 1B O O B0 B D D 0 B89 §10 0 54 16 (T_
916 @ OE81C 20 3 E81C 217 @ 6 B8 ©® B8 B _h__h
926 0 B0 374 6D70 416 1E 322 9 3 48 4C 44 _ tmp __HLD
930 416 2 320 9 40535041 4FE 0 416 & 3 __SPAN
940 36 9 I 3E A9 ALE 416 6 342 9 4 23 54 49 6_ >IN B_ #TI
950 42 0 416 8 I 4C 9 & 2754 49 42 B 4 16 B L__"TIB_
960 AN 358 9 4424105345 B 416 C 364 9 X BASE d_
970 5 27 45 56 41 4C 416 E 370 9 3 48 4C 44 CEVAL p_ HLD
980 4 16 18 3 7C 9 7 43 4F 4E D& 45 58 54 4 16 i__CONTEXT__
990 12 386 9 24350 0 & 1614 3 94 9 4 4C CP L
9ne 41 53 54 O 41616 3 9E 9 6 27 41 42 4F 52 AST "ABOR
980 5S4 O 41618 I AR 9 2 44 50 0 4 16 1A T = DP
9C0 B8 9 7 43 55 52 52 45 4E 54 4 16 1C 3 C2 9 8_ CURRENT B
e 3425945 1 BDB 9 3 IFH258 216D8 9 BYE P TR X
9E6 3545821 3 16E@ 9 321 49 4F B 16 E8 9 _TH' " 'T0 h_
9F0 5 64 6F 4C 49 54 516 FB 9 4 45 58 49 54 0 _doLIT__p_ EKIT_
0 10 20 B ok>
010 20 8 ok>_

Connected 04142132 WT100 115200 8-M-1 CAPS

It shows the first 256 bytes of the ceForth_328iaary with 19 complete records of
FORTH commands. The data dumped in bytes may akerany sense to you at
this point, but you should recognize the namesie$¢ commands in the ASCII dump
on the right hand side of the display.

The dictionary covers the flash memory locationsfi$900 to $1C9B. You can
POKE or DUMPthis area at will. You cannot change the contantiPOKE has no
effect on them.

Do you likePEEK andPOKE As a matter of facBEEEK andPOKE are actually
aliases of the comman@@aandC!, which are native FORTH command common to
most FORTH systems. It is kind of cheating, babbe you are a good sport.

4. FORTH Virtual Machine

A FORTH Virtual Machine (FVM) is a program which kes a real microcontroller
behave like a FORTH language processor. The FVd&/aheet of pseudo instructions
which supports the primitive FORTH commands and #ie token lists in the
compound FORTH commands. All FORTH commands opsraih parameters
stored on a parameter stack. Compound commandsseggarated return stack to
process nested token lists.

The ceForth_328 FVM is implemented as a Arduinddken a file named
ceForth_328.pde. Itis compiled by Arduino 002thpder and the results are
uploaded to Arduino Uno for execution. Here | wgd through the source code in
ceForth_328.pde to explain how this FVM works.

4.1. FORTH Virtual Machinein C

11

The source code is in ceForth_328.pde. It is cted@s a sketch by Arduino 0022.
The first section has a set of macros as #defatersients:

#include <avr/pgmspace.h>

#define LOGICAL ? OxFFFF: O

#define LOWER(X,y) ((unsigned int)(x)<(unsigned int)(Y))
#define poptop = *S--

#define push *++S =top; top =

#define data ((unsigned int*) (0))

#define cData ((unsigned char*) (0))

We have to include avr/pgmspace.h library to aceesss in the flash memory.

The following macros are defined to simply coding.

Macro Function

LOGICAL | Return a -1 for TRUE condition and a O f&ALSE condition.

LOWER Used by UM+ pseudo instruction to generataray.

push Push the contents in thep register to the parameter stack.
pop Pop the parameter stack back intotthye register.

data Pointer to the RAM memory space to accesstifata.
cData Pointer to the RAM memory space to access dgfia.

We need to access directly the entire physical RAdnory space, and the
mechanism to do it is in declaring two macdaga andcData as shown in above.

Declaration of FVM data registers and arrays ineltree following

unsigned char* cCode;
int n;

intl, P, IP, top ;
unsigned char 11, 12;
int w, clock;

int phase;

int rack[32] = {0};

int stack[32] = {0};

int* R = rack;

int* S = stack;

int code[] PROGMEM = {

The functions of these registers and arrays aelliselow:

Register/Array | Functions

I Instruction latch

P Program counter, pointing to pseudo instructioredel].
IP Interpreter pointer for address interpreter

top Top elements of the parameter stack

11 Instruction register for the first byte codeairi6 bit word

12

12 Instruction register for the second byte coda 6 bit word
clock Clocking register for a 4 phase clock in FVM
phase Phase register

n Scratch register

w Scratch register

rack Return stack

stack Data stack

R Return stack pointer

S Data stack pointer

cCode A byte pointer to access eForth dictionatyyiies
code An 8 Kbytes array to host eForth dictionary

Contents of theode array is generated by a separated FORTH progrédetca
metacompiler. It is discussed in Part Two of thenual. This code array is placed
in the flash memory by the attribute PROGMEM. S@etnctions in the
pgmspace.h library file are called to addressdhiay in the flash memory.

4.2. FORTH Finite Sate Machine

Skip over thecode array, and we have the familiar Arduino routinésetup()
andloop() . loop() is the Finite State Machine (FSM) in FVM to execute
pseudo instructions stored in thede array.

void setup()

Serial.begin(115200);
clock = 0;
P = pgm_read_word(&code[0x480]);
IP=0;
S = stack;
R = rack;
top = 0;
phase = 0;
cCode = (unsigned char *) code;
Serial.printin(");
Serial.printin("Start Arduino™);
Serial.printin(");

}

setup() initializes all the registers in FVM. It alsofializes the USARTO to
115,200 bauds, and displays a sign-on message. progeam counter is initialized

to an address stored in the flash memory locat8fio$ As a 16 bit word is fetch out
of this location, the actual word address is $4&0 of $900. This address points to
the FORTH comman@OLDat location $1ACC, which further initializes th&/A

and then starts the FORTH interpreter.

The routindoop() is a Finite State Machine (FSM) as computer hardwa
designers would call it.

13

void loop()
{ phase =clock & 3;
switch(phase) {
case 0: fetch_decode(); break;
case 1: execute(l1); break;
case 2: execute(12); break;
case 3: jump(); break;

}

clock +=1;

}

The simplicity ofloop() is deceptive. Itis an infinite loop, and eveygle
through it is a FSM clock cycle, and tbleck register is incremented. The least
significant two bits in thelock register is copied into thghase register, which
runs the 4-state FSM. In Phasddd¢ch_code fetches a new program word from
a location pointed to by the P register, and the lbyte codes in this program word
are stored into 11 and 12 registers. In the ngxte; thephase register is 1, and in
Phase 1, the byte code in I1 is executed by thineexecute(l1). In the next
cycle,execute(l2) does just that, executing the byte code in 2. Phase 3, the
routinejump() does nothing and the FSM is ready to go to Phiastfich the next
program word.

This simple FSM executes all primitive FORTH comigmvhich contain pseudo
instructions in their code fields. As we will deger, a special pseudo instruction
dolist which is the first byte in the code field of a qugwand FORTH command,
starts processing a nested list of tokens.

There are two versions t@op() . The one | show above is the regular one. The
second one is for debugging. You may need it wltenmake changes to the code,
or to the dictionary in theode array. Using this version, you can single step
through the code, and observe changes in the eegisthd in the stacks. It was very
helpful for me in developing this sketch. | onlygnamented this part out, in case you
will need it when you revise this sketch and steaishing the system.

void loop()
{ phase =clock & 3;
if (Serial.available()>0)
{
n = Serial.read();
switch(phase) {
case 0: fetch_decode(); break;
case 1: execute(l1); break;
case 2: execute(12); break;
case 3: jump(); break;
}
Serial.printin(n, HEX);
Serial.print("clock=");
Serial.print(clock,HEX);
Serial.print(" IP=");

14

Serial.print(IP,HEX);
Serial.print(" P=");
Serial.print(P,HEX);
Serial.print(" 1=");
Serial.print(l,HEX);
Serial.print(" 11=");
Serial.print(11,HEX);
Serial.print(" 12=");
Serial.printin(12,HEX);
dumpStack();

clock +=1;

}

}
void dumpStack(void)
{intn;
Serial.print("S=");
for (n =0; n <= (S-stack) ; n++)
{ Serial.print(stack[n],HEX);
Serial.print(" "); }
Serial.printin(top,HEX);
Serial.print("R=");
for (n =0; n <= (R-rack) ; n++)
{ Serial.print(rack[n],HEX);
Serial.print(" "); }
Serial.printin(");
}

DumpStack displays the contents of the parameter stack tvékop register, and
the return stack.

4.3. Pseudo Instructions

Following are the routines which implement the g&einstructions in the FVM.

void jump(void) { clock |= 3; }
void fetch_decode(void)
{if (P <0x900) { | = data[P>>1]; }
else { | = pgm_read_word(&code[P>>1]); }
P+=2;
I1= (unsigned char) (I & OXFF);
I2= (unsigned char) (I >> 8);
}
void next(void)
{if (1P <0x900) { P = data[IP>>1]; }
else { P = pgm_read_word(&code[IP>>1]); }
IP +=2; jump(); }
void bye() { exit(0); }

Instruction Function

jump It sets the two least significant bits in theck register, and forces

15

the next phase to Phase 0 in the next executide,dgcfetch the
next program word. flump is executed in Phase 1, the byte cg
which would be execute in Phase 2 is skipped.

fetch_decode

It is always executed in Phase 0. It fetches theé program word
pointed to by P, decode the bytes codes in thisl\aad stores then
in 11 and 12 registers. The program word can biaénflash
memory or in the RAM memory. Since the programanisra
16-bit integer, the program pointer P must be digiddy 2, and the
word is fetched using word arragata or code .

next

Inner Interpreter. It terminates all prim@&i#ORTH commands.
When FORTHis running, it is always interpretingpoocessing a
token list in a compound FORTH command. The intggy
pointer IP is always pointing to the next tokerthat token list.
next fetches the token pointed to by IP, and stone ithe program
counter P. IP is incremented, pointing to the nekén to be
processed. Thepmp is called to execute the first word in this
token. If this token points to a primitive FORTHnemand, the
pseudo instructions in its code field are executeskquence, until
thenext atthe end. If this token points to a compoundRF8
command, the first pseudo code to be executddlist , causing
the following token list to be nested and processed

bye

It is used to terminate a C program and rdtuthe host operating
system. In embedded system, you have no plactumrandoye
IS not used.

de

void grx(void)

{ if (Serial.available() == 0) { push 0; }
else { push Serial.read(); push OXFFFF; }

void txsto(void) { Serial.write((char) top); pop; }
void emit(void) { txsto(); }
void docon(void)
{if (P <0x900) { push data[P>>1]; }
else { push pgm_read_word(&code[P>>1]); }

P+=2;}

void dolit(void)
{iif (1P <0x900) { push data[IP>>1]; }

else { push pgm_read_word(&code[IP>>1]); }

IP +=2; next(); }
void dolist(void) { *++R = IP; IP = P; next(); }
void exitt(void) { IP = *R--; next(); }
void execu(void) { *++R = IP; P = top; pop; jump(); }
void donext(void)

{if(R){*R-=1;

{iif (1P <0x900) { IP = data[IP>>1]; }

else { IP = pgm_read_word(&code[IP>>1]); }

B

else { IP += 2; R--; } next(); }
void gbran(void)

{ if(top == 0)

16

{if (IP <0x900) { IP = data[IP>>1]; }
else { IP = pgm_read_word(&code[IP>>1]); }
}
else IP += 2; pop; next(); }
void bran(void)
{if (1P <0x900) { IP = data[IP>>1]; }
else { IP = pgm_read_word(&code[IP>>1]); }

next(); }

Instruction| Function

grx If USARTO receiver receives a character, ptistnd a TRUE flag on
parameter stack. Otherwise, push a FALSE flagacks

txsto Send a character on top of stack to USARasmitter.

emit Same asxsto

docon Fetch next word pointer to by P and push gtack. Increment P.

dolit Fetch next word pointed to by IP and pusbnitstack. Increment IP.

dolist Address Interpreter. Push IP on returnkstacCopy P into IP, and

executenext to start processing this new token list pointetiytdhe
original IP. This pseudo instruction starts a tokst in a compound
command.

exitt Pop return stack back to IP. Execnéxt to continue processing the
token list interrupted by a compound command. eritninates a token
list.

execu Push IP on return stack. Pop stack intadPstart executing the
pseudo instructions starting at P.

A} %4

donext If top of return stack is not 0, decreméand then copy the next wor
into IP, thus repeating a loop. If top of retutack is O, pop it off
return stack, and increment IP, leaving this loop.

)

gbran If top of stack is 0, copy the next prograordMnto IP, and then
executenext to branch to a new token list. If top of stack O,
just increment IP, and then execaoext to continue processing the
current token list. It is used to start a condigibbranch in a token lis

bran Copy the next program word into IP, and then exegekt to branch

to a new token list.

void store(void)

{ data[top>>1] = *S--; pop; }
void cstore(void)

{ cData[top] = (char) *S--; pop; }
void at(void)

{if (top < 0x900) { top = data[top>>1]; }

else { top = pgm_read_word(&code[top>>1]); }

void cat(void)
{if (top < 0x900) top = (int) cData[top];
else top = (int) pgm_read_byte(&cCodeltop]); }
void icat(void) {top = (int) pgm_read_byte(&cCode[top]); }
void iat(void) { top = pgm_read_word(&code[top]); }
void istore(void) { pop; pop; }

17

void icstore(void) { pop; pop; }

void rfrom(void) { push *R--; }

void rat(void) { push *R; }

void tor(void) { *++R = top; pop; }

void rpsto(void) { R = rack; }

void spsto(void) { S = stack; }

void drop(void) { pop; }

void dup(void) { *++S = top; }

void swap(void) { w = top; top = *S; *S = w; }

void over(void) { push S[-1]; }

void zless(void) { top = (top & 0X8000) LOGICAL ;}
void andd(void) { top &= *S--; }

void orr(void) { top |= *S--; }

void xorr(void) { top "= *S--; }

void uplus(void) { *S += top; top = LOWER(*S, top) ;)
void nop(void) { jump(); }

void dovar(void) { push P; }

Instruction | Function

store Store the second element on stack to adocatnose address is on
top of stack. Pop both elements.

cstore Store the second element as a byte ontstaclocation whose
address is on top of stack. Pop both elements.

at An address is on top of stack. Fetch the casiarthis location and
store it on top of stack.

cat An address is on top of stack. Fetch a by fhis location and
store it on top of stack.

icat An address is on top of stack. Fetch a by fthis location in the

flash memory and store it on top of stack. Noudusethis
implementation.

iat An address is on top of stack. Fetch a wasthfthis location in the
flash memory and store it on top of stack. Noudusethis
implementation.

istore Store the second element on stack to aidocet the flash memory
whose address is on top of stack. Pop both elanemMot used in
this implementation.

icstore Store the second element as a byte on staclocation in the flash
memory whose address is on top of stack. Popdiethents. Not
used in this implementation.

rfrom Pop the return stack and push its top eleraprdtack.

rat Copy the top element on the return stack ast iuon stack.

tor Pop stack and push its top element on retackst

rpsto Initialize the return stack.

spsto Initialize the parameter stack.

drop Pop the parameter stack.

dup Duplicate top of stack.

swap Swap the top two elements on stack.

over Duplicate and push the second element on.stack

zless If top of stack is negative, replace it vathRUE flag; else replace it

18

with a FALSE flag.

andd Pop top of stack and AND it to the new topnelet.

orr Pop top of stack and OR it to the new top eleme

xorr Pop top of stack and XOR it to the new topredat.

uplus Add top two elements on stack, replace thém avdouble integer
sum.

nop No operation.

dovar Push the address in P on stack.

In the other implementation 328eForth, | followbé Harvard Architecture of AVR
and addressed the RAM memory and flash memory seilarated pseudo
instructions. The RAM memory was addressed by#sido instructionstore
cstore ,at andcat . The flash memory was addresses by the pseuttadgtiens
istore ,icstore ,iat andicat . W.ith the new unified memory model of the
Princeton Architecture, the pseudo instructisttse .cstore ,at andcat are
enhanced to address both RAM and flash memorieallodated 8 KB to theode
array. The first 2304 bytes are mapped to the RAdMory, and the rest are
mapped to the flash memory. This unified memorygehl@llows me to extend the
FORTH dictionary in the flash memory to the RAM naw | use the same
FORTH commands to read and write both RAM and flasimory. Of course, |
cannot write new code into the actual flash memamg the write commands do not
change contents in the flash memory. Logicalbould write new data into the flash
memory, if tools were provided by the Arduino 0G38tem.

4.4. Executing Pseudo Instructions

After 33 pseudo instructions are coded in C rogtiexecution pointers of these 33
instructions are collected in an execution poiateay*primitives[64] . The
routineexecute uses a byte valumode to select and execute one of the 33 pseudo
instructions. Only 30 pseudo instructions are abttwsed.

void (*primitives[64])(void) = {
[* case 0 */ nop,
[* case 1 */ bye,
[* case 2 */ grx,
[* case 3 */ txsto,
[* case 4 */ docon,
[* case 5 */ dolit,
[* case 6 */ dolist,
[* case 7 */ exitt,
[* case 8 */ execu,
[* case 9 */ donext,
/* case 10 */ gbran,
[* case 11 */ bran,
[* case 12 */ store,
[* case 13 */ at,
[* case 14 */ cstore,
[* case 15 */ cat,
[* case 16 */ icat,

19

[* case 17 */ iat,

[* case 18 */ rfrom,
[* case 19 */ rat,

[* case 20 */ tor,

[* case 21 */ dovar,
[* case 22 */ next,
[* case 23 */ drop,
[* case 24 */ dup,
[* case 25 */ swap,
[* case 26 */ over,
[* case 27 */ zless,
[* case 28 */ andd,
[* case 29 */ orr,

[* case 30 */ xorr,
/* case 31 */ uplus,
[* case 32 */ icat

|8

void execute(unsigned char icode)

{ if(icode < 33) {
primitives[icode]();

} else {
Serial.printin (");
Serial.print ("lllegal code=");
Serial.print(icode, HEX) ;
Serial.print(" P=") ;
Serial.printin(P, HEX) ;

}

}

5. Examples

ceForth_328 has about 1.5 KB of RAM memory freedmpile new FORTH
commands. It is not very big, but enough to compilbstantial applications. Here
| will show you a few examples to get you started.

5.1. Compiler Tests

When | implement a new FORTH system, there arevanfav commands | always
use to test the system, and to verify that the clemyorks correctly. These test
commands are show in the TESTS.TXT file. Get tbd#ino 0022 up and upload
ceForth_328.pde. Then get the HyperTerminal upou Will see the
HyperTerminal console as follows:

20

“& 57600 - HyperTerminal |Z||E|[g|

File Edit Vew Cal Transfer Help
0= Z 0B
-~
Start Arduino
Arduino efForth 2.6, 2011
v
Connected 00:00:13 Y¥T100 115200 8-H-1

Select Transfer/Transfer Text File and you geteadelection window. Navigate to
the folder where ceForth_328 sits, and you seetteed files:

[send Text Fite .

Look in: |',':}efnrth_328 v‘ €] ¥ e -
» [Z] bk, bxt
[t # %] baaterr bzt

My Recent [Z] Ft.eve bxt
Documents | (2] lessont 1 bxt
- [Z] README. TXT
@ E] servo.kxt
BB £
B kone. bxt
r.fﬂ traffic.ty Type: Text Document

Date Modified: 11/10/2011 12:32 PM
Size: 145 bytes

Desktop

My Documents

tdy Computer

File name: ‘ tests. bt b | [Open]

My Ntk | Flesoftype: | Test fle [£TRT) v [concel |

Double click the TESTS.TXT file, and its contente aend to ceForth 328, as shown
in the following:

21

“& 57600 - HyperTerminal
File Edit Vew Cal Transfer Help

et 3 DB

Start Arduino

Arduino efForth 2.0, 2011
{ Tests of compiler 1@novllcht)
0000 ok>: testl1 123 45 ;

0000 ok>: test?2 if 1 else 2 then . ;

B OO0 oky: testd 10 for r@ . next ;
0000 ok>: testd cr ." Hello, world!” ;
0000 ok>_

Connected 00:05:14 WT100 115200 8-M-1

Now, types these commands to test these commands:
testl
0 test2
1 test2
test3
test4

5.2. BLINK

Blink.pde is generally the first sketch people wbtrly which they first get an
Arduino Board. | showed you before how to turn B8 LED on and off in an
earlier section. Here | will show you the FORTH@ram which blinks the LED.
The commands are in the file Blink.txt. Assumirggjhave the Arduino Board
ready with ceForth_328, and with HyperTerminahastclick Transfer/Transfer Text
File. In the file selection window, select Blink.file, and the following commands
are compiled:

(Blink Line D13, 01novlicht)

HEX

:MS (n--) FOR AFT $40 FOR NEXT THEN NEXT ;

: BLINK 20 24 C! BEGIN 20 23 C! 400 MS ?KEY UNTIL ;

TheMScommand causes a delay. You give the numberlo$eaonds befort1S
In theBLINK command, we first initialize the D13 line as arpot port, and then
fall into an infinite loop. In the loop, the LEB toggled, and there is a delay by the
commands:

400 MS
400 in hexadecimal is 1024 in decimal. Thereftre,delay lasts about 1000
milliseconds. After that7KEY looks at the USARTO receiver. If there is no inpu

22

character, the loop is repeated. If you hit any e the keyboard, the loop will be
terminated.

Type in the commanBLINK with a Return, the D13 LED will blink. On for 1
second and off for 1 second, until you hit a key] aeForth_328 returns to the text
interpreter, showing thek> prompt.

5.3. TONE

This example allows you to generate a tone on #heiBital output line. Why D6?
Because D6 connects to one of the outputs fronfither/Counter0 in ATmega328P.
We will thus use Timer/Counter0 to produce a squaee on D6. If you connect
one lead of a speaker or a buzzer to D6, and tier tgad to the ground, you will
hear a tone.

The commands to generate a tone are in the file.Banas shown below:

(Tone generator, 09novl1icht)

HEX

: SETUP

40 2A C!'\ make OCOA (/O Line 6, PD-6) an output pin

42 44 C!'\ toggle OCOA on compare match, select C TC mode

FF 47 C!'\ maximum count in OCROA to compare
3 45 C!'\ select /64, prescaler=3, start counter

: PRESCALER (0-5 --)
45 C! ;

: TUNING (¢ --)

47 ¢! ;

Load this file in HyperTerminal as show before. efitliype in
SETUP
If you had a speaker connected to D6, you will leeime.

The Timer/counterO has a prescaler which scalesmtser clock and uses the slowed
oscillator to drive the counter. The comm&RESCALERakes one argument from
0to 5. Changing the prescaler, you will genegadiferent tone according to the
following table:

Prescaler Base Frequency

Stop oscillator

31.2 KHz

7.81 KHz

980 Hz

244 Hz

Q|WIN|FL O

61 Hz

The command@UNINGallows you to fine-tune the frequency of the tomare

23

accurately. TUNINGtakes one argument from 0 to $FF. A smaller aeatm
produces a higher pitch.

An exercise you may want to do is to write a comdwahich plays a short song.
Use a text editor to edit Tone.txt file. Add soomnmands to play a song.

5.4. ServoMotors

Are you into robotics? How about using your ArduBoard to drive 6 servo
motors?

ATmega328P has three timer/counters. Timeer/Cobiated Timer/Counter2 are 8
bit timer/counters, and Timer/Counter 1 is a 16tmer/counter. Timer/Counterl is
more complicated, naturally, but you can run ithia 8-bit mode, so that all three
behave similarly. Each Timer/Counter has two otgpthich can be programmed to
generate two different PWM waves driving two semvators. The commands are in
the file Servo.txt, as shown below:

(Servo Motors on Arduino Uno)
(Chen-Hanson Ting, 5/18/2011)
(OC1A: $88, PB1, Pin 9)
(OC1B: $8a, PB2, Pin 10)

(OC2A: $b3, PB3, Pin 11)
(OC2B: $b4, PD3, Pin 3)
(OCO0B: $47, PD5, Pin5)

(OCOA: $48, PD6, Pin 6)

(Master clock 16 MHz, prescaler 1024)

(3 Counter/Timers, fast PWM mode, 8 bit counter)

(PWM wave frequency 60 Hz, period 16 ms)

(PWM control code: $10, 1 ms; $18, 1.5 ms; $20, 2 ms)
hex

> init-ports

E 24 c!682ac! \outputports
a344c!545c! \TCCROA, TCCROB
1847 C!1848 C! \ OCROA, OCROB
al80c!d8lc! \TCCR1A, TCCR1B
1888 c!188a C! \OCRI1A, OCR1B
a3b0c! 7blc! \TCCR2A, TCCR2B
18 b3 C!18 b4 C!' \OCR2A, OCR2B

:s1l(n--)88c!;
:s2(n--)8ac!;
:s3(n--)b3c!;
:s4(n--)b4c!;
:s5(n--)47c!
:s6(n--)48c!;

24

The commandahit-ports is a bit complicated, and you have to read theethr
chapters in the AVR Family Data Book on Timer/Cauft 2 and 3 to fully
understand it. However, | just summarized the nmpbrtant information on these
timer/counters in the comment lines at the begimoinServo.txt file shown above.

Six servo motors are connected to Digital lines D3, D6, D9, D10, and D11. D3,
D5, and D6 are driven by three lines in Port PPBS, PD5 and PD6, respectively.
D9, D10, and D11 are driven by three lines in PRi3tas PB1, PB2 and PB3,
respectively. The commands in init-ports

E 24 c!682ac! \outputports
assigned these 6 lines as output lines.

Relevant 10 registers, their addresses, and tlasicliunctions are summarized in the
following table:

Register Timer/Cqg Timer/C | Timer/C | Function

unterO ounterl | ounter2
TCCRNA 44 80 BO Timer control register A
TCCRNB 45 81 Bl Timer control register B
OCRNA 47 88 B3 Output compare register A
OCRNB 48 8A B4 Output compare register B

To drive a servo motor you give it a PWM wave at&) with the turn-on period
varying from 1 ms to 2 ms. This range is conteblg writing a value from $10 to
$20 into the corresponding output compare registan initial value of $18 written
into the output compare registers sets the serwonsiat their mid points. The
commandsS1 to S6 allow you to change the set points of these 6 rsoto

If you examine the output lines with an oscillosepypou will see that the output
PWM waves have a frequency of 60 Hz instead ofelqeired frequency of 50 Hz.
This is due to the fact that the ATmega328P isatriby a 16 MHz crystal clock, and
60 Hz comes out the prescalers naturally. If yamiwo drive servos at exactly 50
Hz, you can use one timer/counter to drive a secmedand tune the first
timer/counter accurately for 50 Hz operation. B@n, you could only drive 3 servo
motors. However, most servo motors do not reahg @bout the base frequency of
the PWM waves, and 60 Hz works just fine.

5.5. Traffic Controller

A traffic controller is my favorite demo applicatio | often challenge people to

write the simplest and the most efficient prograncdntrol traffic lights at a highway
intersection. In each of the north, south, eadtvaest directions, | place two sensors
to sense forward and left-turn cars, and 4 lightadicate go, left-turn, caution, and
stop signals. On the Arduino Boards, there areenotigh output lines to drive 16
traffic signals, so | give the north and south cliens the same 4 signals, and the east
and west directions another 4 signals.

The commands are in the Traffic.txt file, as shdyeiow:

| (Traffic Controller on Arduino Uno)

25

(Chen-Hanson Ting, 5/10/2011)

(Switches: PC: 0, N; 1, NL; 2, S; 3, SL; 4, W; 5, WL)

(PB: 2:E; 3,EL)

(LEDs: PD:2,nsG;3,nsY;4,nsR,5,nsL;6, ewG;7,ewyY)
(PB: 0, ewR; 1,ewL)

hex

- init-ports

fc2ac!324c! \output ports
3f28 clc 25 c!; \input ports, pullup resistors

: seconds for aft 100 for 100 for next next then ne xt;

s lights (n--)
dup 2bc! \PD outputs
100/ Cor 25 c!; \PB outputs, maintain pullups

- switches (--n)
23 c@ 100 * \ PB inputs
26 c@ or \ PC inputs
dupcr.;

: N-S begin 104 lights 5 seconds
switches c3a and if 108 lights 2 seconds then
switches a and if 130 lights 3 seconds then
switches ¢30 and until

: E-W Dbegin 50 lights 5 seconds
switches 82f and if 90 lights 2 seconds then
switches 820 and if 310 lights 3 seconds then
switches f and until

: go init-ports
begin N-S E-W ?key until drop ;

| am very proud of this program, as | have revisagveral times and now it is in its
best shape. The IO port assignments are as follows

Port IO Line IO Device Function

D2 PD2 Green LED North-South Go

D3 PD3 Yellow LED North-South Caution
D4 PD4 Red LED North-South Stop

D5 PD5 Green LED North-South Left-Turn
D6 PD6 Green LED East-west Go

D7 PD7 Yellow LED East-west Caution

D8 PBO Red LED East-west Stop

D9 PB1 Green LED East-west Left-Turn

26

A0 PCO Switch North Forward
Al PC1 Switch North Left-Turn
A2 PC2 Switch South Forward
A3 PC3 Switch South Left-Turn
A4 PC4 Switch West Forward
A5 PC5 Switch West Left-Turn
D10 PB2 Switch East Forward
D11 PB3 Switch East Left-Turn

Commands are explained in the following table:

Command

Function

init-ports

Initialize the three 10 ports PA, PC and PD. Timeut ports do not
have to be initialized, except that their pull-egistors are activated fc
the proper operation of external switches. ltappsatisfying that the
ATmega328P can drive LED's directly with its outpoes without
current limiting resistors, and that it has optigmall-up resistors to
simplify input circuitry. The actual layout of theaffic controller is
therefore extremely simple.

DI

seconds

Delay a number of seconds.

lights

From a 16 bit value, turn on/off 8 LEDs. ellower byte controls PD
port, and the upper byte controls PB port.

switches

From a 16 bit value, read 8 switches. |dWwer byte reads PC port,
and the upper byte controls PB port.

N-S

A loop managing north-south traffic. If eitferward switches in the
north or south direction are active, turn on Nditith Go LED for 5
seconds. Next, if there are activity in other dii@ns, turn on
North-South Stop and Caution LEDs for 2 secondshenT if either
left-turn switches in the north or south directame active, turn on
North-South Stop and Left-turn LED for 3 second$hen, if there are
activity in the East-West direction, turn off Not@outh Caution LED's
and exit this command so tHatwW command has a chance to run.
Otherwise, repedt-S loop.

E-W

A loop managing east-west traffic. If eithenfiard switches in the
east or west direction are active, turn on Eastt\@esLED for 5
seconds. Next, if there are activity in other dii@s, turn on
East-West Caution LED for 2 seconds. Then, ifegithft-turn
switches in the east or west direction are activa on East-West Stoy
and Left-turn LEDs for 3 seconds. Then, if thene &ctivity in the
East-West direction, turn off East-west Caution IsEDd exit this
command so thdll-S command has a chance to run. Otherwise,
repeate-W loop.

go

Initialize 10 ports and enter a loop repeatid andE-W commands.

Exit this loop if the user hit any key on the kegixh

This program is simple because | realized that & Finite State Machine with two

major states, which are coded\«S andS-W commands.

states in either major states and they are seqdehasugh under the appropriate

conditions.

You can treat it as a 6-state FintsgeSMachine, but the transition ru

27

There are three minor

les

would be much more complicated.
5.6. MorelLessons

There are 17 lessons in files lessonl.txt to lekgdxt. Take a look at these files
and enter the commands as exercises to learn eFortu can also download these
files through the Transfer/Transfer text file butto However, remember that you
have only about 1.5 KB of RAM space to compile rmmands. When you
compile too many commands, ceForth_328 will craghstop talking to you. Push
the reset button on Arduino Uno to start over.

If you think you are about to crash, the can usectimmand COLD to start over, or
use the commands:

FORGET <name>
to trim the dictionary back to a command you coexpitarlier. COLD or FORGET
allow you to reclaim the dictionary space so thai gan compile more commands.

6. Conclusion

| can bore you to death with more examples, bstgeems a good point to stop.
What | want to show you is that within the confiré®\rduino 0022, it is possible to
build a FORTH programming environment to let peaotplore this simple yet
powerful programming language. Although the siRfAM memory in

ATmega328P limits the number of new commands youachl to the FORTH system,
and Arduino 0022 does not allow you to save thernands ceForth_328 compiles, it
is a useful environment for you to explore thigmesting microcontroller while you
are reading the huge 566 page AVR Family Data Book.

PEEK and POKE are aliases of the native FORTH comisn& @ and C!. They
clearly demonstrate the power and the usefulneBO&TH as a programming
language.

ATmega328P is a much more powerful microcontrahen what Arduino 0022
allows it to be. The roots of Arduino 0022 arghie UNIX operating system and in
the C programming Language. | admire the devetpeArduino in simplifying
the operating system and the language to the ffmbt/ou are presented with only
two routines:

setup();

loop()
Most of the complications in the operating system i the language are hidden
from you so that you can go immediately doing ulséfmgs. However, the
operating system and the language still insulatefy@m the underlying
microcontroller, and prevent you from exploit thermacontroller to its full capacity.

FORTH is an operating system and a programminguiage which are transparent
between you and the microcontroller you own. Astwery low end, it allows you to
push the microcontroller to the bare metal, giwng complete control over the
registers, the 10 devices and the memory. At thercend, it allows you to express
you programming intentions at the highest concdpéwal, in building nested lists to
arbitrary depth, much like LISP albeit simpler,ieasnd without the irritating

28

parentheses.

The ceForth_328 system is a teaser to give you $@amés-on experience with
FORTH on an Arduino Board. It introduces you teal FORTH system 328eForth
which give you access to the entire ATmega328Pauarntroller, and allows you to
build complete turnkey applications for Arduino Badsiand even for bare
ATmega328P chips. | hope to convince you thatetieern better way to develop
turnkey applications than Arduino 0022.

You see. The Arduino 0022 system comes in a zififeedf 87,587 KB. It

expands to fill 245 MB on your hard disk. You fgalon't know what's happening
behind your back when you compile a sketch in Ardud022. It always amazes me
that the results uploaded to the Arduino Uno Baartdially works. It is a long and
tedious task to learn about all the library rousipeovided in the Arduino 0022
system. Very often, it is difficult to find utilés and tools that you need to do your
job. The huge Arduino community helps, but onlyatoextend. You are on your
own in the end.

In contrast, the assembly source code of 328elgatem has only 54,472 bytes.
This is 1/500th the size of the Arduino 0022 systand it is within a single person's
intelligence. However, this 54 KB of source codescribe a complete operating
system , a programming language and a whole buinttiols embedded inside a
microcontroller, independent of a host computea supporting operating system. It
give you complete freedom in developing your speeipplications.

Last but not least, actually, ATmega328P and thR Asmily of microcontrollers, in
my humble opinion, are great chips but of very paesign. Most microcontroller
designers really don't know what they are doingheyTjust throw things together
and called them microcontrollers. Not much thougéte really put into the
architecture, the instruction sets, and the pergitdevices. There were very few
visions behind the microcontroller designs. Anakdware designers really do not
understand software. They just throw the chip ¢kerfence, and let software
engineers make things work. On this side of tinedesoftware designers really do
not understand software either, and they build elgraulky, inefficient systems,
plagued with bugs. So, we get a mess. Microctiatsocan be designed simpler
and better, if the designers really understandvarel and software. In this respect,
probably you should look at my 32-bit FORTH microtoller design in eP32. But,
that's a different story.

29

Part Two Metacompilation of ceForth 328

7. Metacompilation

In 1990, Bill Muench and | developed a very simpRTH model called eForth and
it was ported to 30 some different microprocesams microcontrollers by many
volunteers. A young fellow in Taiwan, Mr. Chealeshvap, ported eForth to
Windows to become the weForth system. He furthbaeced it and released it as
the F# system. It is the simplest FORTH implemiona for Windows, but can call
all Windows APIs to build very sophisticated apgtions for a PC.

Most of the eForth systems were written in asserasiguages native to the
underlying microcontrollers. Because the hardvadmgendencies were contained in
a small set of primitive FORTH commands, eFortheis/ easy to port. You rewrite
the primitive commands in an assembler, providealhsfree by the microcontroller
manufacturer, and copy the source code of all timepound commands over. A new
eForth generally can be built in about 2 weeks.

When | worked with Chuck Moore to develop the MuRP&trocontroller, he wrote a
metacompiler in the then very popular FORTH syskET on a PC, to produce
testing routines for the new microcontroller. IRR1 Chuck designed 25 machine
instructions, and these machine instructions mateeey well with the primitive
command in eForth. | used Chuck's metacompiléutlnl a eForth system for
MuP21, and it worked quit well. Then | went on d®ping a series of
microcontrollers P8, P16, and P24, using Chuckwmooenpiler to build eForth
systems for them. When | moved on to a 32-bit amantroller, | called it eP32 to
remind people that the software for it was eForth.

Recently | implemented eForth in the C languagejte C programmers a taste of
the FORTH language and perhaps develop applicatiassd on it. It took me half a
year to figure out how to convince C to speak FORTHhese two languages are
very different in their architecture, primitive ingctions, memory management,
syntax, and expressions of arithmetic-logic operati In the end, | took the
hardware design of the eP32 microcontroller, andlata it in C routines as a
FORTH Virtual Machine (FVM). The primitive FORTHbmmands are encoded in a
set of pseudo instructions in FVM, and the compoe®iRTH commands are
encoded in a giant data structure call a dictionatycould not express this rather
complicated data structure in C. So, | used Clsudétacompiler to build it in F#,
and then imported it into the C program as a datya | called it the cEF system.

To build a FORTH system for Arduino Uno Board, lthea the C compiler in
Arduino 0022 system, it is natural to port the cyBtem over as an Arduino sketch.
The FORTH Virtual Machine (FVM) in cEF was copiedad an Arduino sketch. The
FORTH dictionary was metacompiled by F#, and imguabtb the Arduino sketch as a
data array. The result is ceForth_328, which smeothly on my Arduino Uno
now.

In the FORTH terminology, a metacompiler is a FORadrbHgram which produces an
a dictionary as a data array, which can be copitdthe memory of a target computer.
When the target computer powers up, a FORTH systdhe dictionary is booted up,

30

and you can type FORTH commands to interact with it

The new FORTH system may run on the same platfertheold FORTH system.

It may be targeted to a new platform, or to a neeracontroller. The new FORTH
system may share a large portion of FORTH code thiglold system, hence the term
“metacompilation” as in metamorphosis. The metguitenis very similar to a
conventional cross assembler/compiler.

| believe the best way to explain this ceForth_8g&em is through its source code in
the Arduino sketch and in the metacompiler thatipoes its dictionary. Going
through source code almost line by line, | hopé kitzan explain the process of
producing a FORTH target system on Arduino Uno, ewetything that goes into the
dictionary which makes the Arduino Uno behave BkéORTH language processor
inside the ATmega328P microcontroller.

In Part One of this manual, | went through the Grse code in the eForth_328.pde
file. Now I will do the same for the ceForth_32&tacompiler. If you are new to
FORTH, the source code would look strange. | hapewill bear with me in
reading the source code. FORTH is more like Ehdlis Chinese for that matter)
than a conventional procedural programming language is very easy to get use to.
Once you learn to read FORTH code, it will be veagy to write your own FORTH
programs.

8. ceForth_328 Metacompiler

As discussed earlier, the FORTH Virtual Machine j\is coded in C, and it is

really not very complicated. There are only 33ugkeinstructions, and a Finite
State Machine (FSM) which sequencing through tipsseido instructions stored in
memory. The complication is in the FORTH dictionahich contains an interpreter,
a compiler, many debugging tools, in about 200 FBR®mmands, all linked into a
linear, searchable dictionary. To really underdtdms FORTH system and use it to
develop applications, you need to know most ofét@snmands, how the dictionary
is constructed, and how it is extended when new HOEBbmmands are added to the
dictionary.

The dictionary in ceForth_328 system is built bmetacompiler, which is a FORTH
program constructing a new FORTH system for a targerocontroller like
Atmega328P. For the ceForth_328 system, | calhtb&acompiler cefMETA328.

It consists of a set of files loaded into the Fgteyn running on Microsoft Windows.
F# is a very simple FORTH system. Though it is/a&@mple, it contains tools to
access all the API services provided by Windowsou ¥an build very elaborate and
sophisticated applications on the top of it. cefMB28 is such an application.

cefMETA328 metacompiler consists of the follow skfiles, in addition to the files
necessary to run the F# system:

File Function

F#.exe F# system to compile ceForth 328

cefMETA328.fex| Maker of ceForth_328 metacompiler

cefMETA328.f Metacompiler of ceForth 328

31

cefASM328.f Assembler of ceForth 328 pseudo code

cefKERN328.f Kernel of primitive commands

CEF328.f All compound commands
cefSIM328.f Simulator of ceForth_328 system
rom.mif Dictionary of ceForth_328

ceForth_328.pde ceForth 328 source code in C to run on Arduino 0022

Several other .f files are necessary for F# to worRo not delete them. All files
are compressed in cefMETA328.zip. Unzip it andaduthe files in a folder, for
example ..\ceForth_328\. Don't leave that foldeyour desktop. You must not
have spaces in the pathname of this folder.

ceForth_328.pde describes a FORTH Virtual Machingd|{) in C code. This FVM
has a set of pseudo instructions and some C fursctmexecute FORTH pseudo
instructions as a Finite State Machine (FSM). ‘Eheseudo instructions are
encoded in one byte, and are called byte codese Clitoutines were discussion in
the first part of this manual.

A dictionary allocates an 8 KB code array to hbstdictionary of the ceForth_328
system. FORTH commands are coded as recordsmgla $inked list. Each
command record has 3 fields:

Field Function

link field Points to name field of prior commandbites.
name field Counted string of a name. Variable Iengt

code field Pseudo instructions and token listsial#e length

In a primitive command, the code field has a ligpgeudo instructions, terminated by
the inner interpreter instructiorext,

In a constant, the code field contains two pseuadtructiongnline, andnext, ,
which returns the constant value stored in thewalhg program word.

In a variable, the code field contains two pseuddtructiongdovar, andnext, |,
which returns the address of the following word.hisTbehavior is shared with arrays
defined byCREATE

In a compound command, the code field has one psasttuctiondolist
followed by an token list which is a list of codelfl addresses of other FORTH
commands. It is usually terminated by a FORTH comutaX|T , which un-nests a
nested token list started biglist

The token list in a compound command usually isear list of addresses. A
number of structures can be embedded in thisslist) as:

Literals to return an inline constant

String literals to return the address of an embdddline string

Control structures for branching and looping

33 pseudo instructions are implemented in thisesyst Only 30 are actually used.

32

Up to 256 pseudo instructions can be accommodattdd design. The number of
compound commands is limited by the space in tihfmemory. An eForth system
generally has about 200 compound commands to bathn You add more to build
applications.

Load cefMETA328.fex under F# to build the eFortttidinary. It produces a file
rom.mif which contains the hexadecimal image ofdbéEorth_328 Forth dictionary.
Contents of rom.mif must be copied into twgle memory array in the
ceForth_328.pde file to be compiled by Arduino 0022

The step by step procedure to build and test ceF828 is as follows:
1. Power-up Windows XP

2. Unzip all files in ceForth_328.zip into a foldde ..\ceForth_328 \.
3. Double click F#.exe, and bring up a file sel@ttivindow:

Open Forth Executable @@
=] + oF E-
D
My Recent
Documents
=
Deskiop
My Documents
1
58
Fy Computer
D
My Network File name: [oefMET 4328 fex R gren |
Places
Files of bype: | Fuorth Executable [fex] LJ Cancel

4. Double click cefMETA328.fex in the file seleatiwvindow. The ceForth_328
metacompiler compiles ceForth_328 and producesamd file. A ceForth_328
simulator is also loaded and the ceForth_328 systanbe simulated.

33

9C:\C-IEFURTH\eforth_BZB\F#.exe Current dir=C:C-EFORTH\eforth_328

File Edit Tooks Help
Hame Compiler -~
ZUNIQUE 17BE reDef PUNIQUE $,n 17EA reDef $,n
FORTH Compiler
$COMPILE 181E reDef $COMPILE OUERT 1852 reDef OVERT ; 1862 reDef ;] 1874 reDef] : 1884 reDef :
|befining Words

CODE 189C reDef CODE CREATE 18B8 reDef CREATE VARIABLE 18C8 reDef VARIABLE COMSTANT 18BE® reDef COMSTANT
Tools

dm+ 18F4 reDef dm+ DUHMP 191C reDef DUHP

>HAME 194A reDef >MAME .ID 197C veDef .ID SEE 19AA reDef SEE WORDS 19F4% reDef WORDS FORGET 1A1A reDef FORGET
DIAGHOSE 1A4C
Hardware reset

COLD 1B28 reDef COLD
Structures

<MARK 1B64 <RESOLVE 1B76 >MARK 1B84 >RESOLVE 1B9C

FOR 1BAC reDef FOR BEGIN 1BBE veDef BEGIN NEXT 1BCC reDef MEXT UNTIL 1BDE reDef UNTIL

AGAIN 1BFA@ reDef AGAIN IF 1C88 reDef IF AHEAD 1C12 vreDef AHEAD REPEAT 1G26 reDef REPEAT

THEN 1C36 reDef THEM AFT 1C42 reDef AFT ELSE 1C56 reDef ELSE WHEN 1C68 WHILE 1C78 reDef WHILE
compilers

ABORT" 1C8A reDef ABORT" §" 1C9A reDef %™ . 1CAA reDef .-

-(1CBA reDef .{ % 1CCA reDef % (1CDA reDef (IMMEDIATE 1CF2 veDef IMMEDIATE

$ >
988
90a
Loading cefSIM328.F reDef BREAK reDef RESET
$ >
$ >

Version FIX 14jan11CHT
$ >
3

If you scroll back the console window to the veegimning, you can see all the files
being loaded by the F# system. You can see thenximlg commands in the
cefMETA328.fex file:

FLOAD J\init.f \initial stuff

FLOAD \win32.f \win32 system interface

FLOAD .\consolei.f \ api and constant definatio n

FLOAD .\ui.f \ user interface helper rout ine (reposition)
FLOAD .\console.f \the main program

FLOAD \ansi.f

FLOAD .Xfileinc.f

FLOAD \cefMETA328.f

cefMETA328.fex is similar to a MAKE file in UNIX. It first loads in a set of
Windows utility files. The last thing cefMETA32&x file does is to load the
cefMETA328.f file, which is the ceForth_328 metaquoier.

We will read the source code in cefMETA329.f lateHere | just summarize the
other files loaded by it and what are accomplidhyetbading these files.

File Functions

cefMETA328.f | Load cefASM328.f to bring up the ceForth_328 asdemb It
prints out a list of command names followed byBef
message. These commands are the ceForth_328 dssemb
preparing to assemble the primitive commands ircéteorth_328
kernel.

cefKERN328.f | First define many system variables starting atetangemory
location $920. Then it assembles about 30 primiti@mmands
which are the kernel of ceForth_328. There youssmnames
of target commands followed by their code fieldr@ddes. They
form a symbol table, which you can use to look amas and
addresses of target commands.

CEF328.f Compile the compound commands which fdrenbiulk of

34

ceForth_328 target system.

cefSIM328.f ceForth_328 simulator. This simuldathfully simulate the
ceForth_328 system cycle by cyle, instruction tsgrunction.

Once the cefSIM328.f simulator is loaded, typedbeamand:
HELP
and a list of simulator commands appear.

9C:\C-EFOR'I'H\efurth_BZE\F#.exe Current dir=C:3C-EFORTH\eforth_328

File Edit Tools Help

DIAGHOSE 1AAC

Hardware reset

COLD 1B28 reDef COLD

Structures

<{MARK 1B64 <RESOLUE 1B76 >MARK 1B84 >RESOLUE 1B9C

FOR 1BAC reDef FOR BEGIN 1BBE reDef BEGIN NEXT 1BCC reDef MEXT UNTIL 1BDE reDef UNTIL
AGAIN 1BFA reDef AGAIN IF 1CO8 reDef IF AHEAD 1C12 reDef AHEAD REPEAT 1C26 reDef REPEAT
THEH 1CG36 reDef THEN AFT 1C42 veDef AFT ELSE 1656 veDef ELSE WHEN 1C68 WHILE 1CY8 veDef WHILE
compilers

ABORT" 1C8A reDef ABORT" $ 1C9A reDef $" ." 1CAA reDef _"

.{ 1CBA reDef .{ \ 1CCA reDef % (1CDA reDef { IMMEDIATE 1CF2 reDef IMMEDIATE

| ¥

$ >
Q68
]
Loading cefSIM328_F reDef BREAK reDef RESET
$ >
$ >
|Version FIX 14jan11CHT
$ > HELP
cEF Simulator, copyright Offete Enterprises, 20069
C: execute next cycle
S: show all registers
D: display next 8 words
addr M: display 128 words from addr
addr G: run and stop at addr
RUN: execute, one key per cycle

$ >

€

5. Type-1 G , and the simulator displays:
Arduino eForth 2.0, 2011

9C:\C-EFOR'I'H\efurth_BZE\F#.exe Current dir=C:3C-EFORTH\eforth_328

File Edit Tools Help
-(1CBA reDef _{ % 1CCA reDef % (1CDA reDef { IMMEDIATE 1CF2 reDef IMMEDIATE ~

$ >
Q68
]
Loading cefSIM328_F reDef BREAK reDef RESET
$ >
$ >
|Version FIX 14jan11CHT
$ > HELP
cEF Simulator, copyright Offete Enterprises, 20069
C: execute next cycle
S: show all registers
D: display next 8 words
addr M: display 128 words from addr
addr G: run and stop at addr
RUN: execute, one key per cycle

$> 16
Press any key to stop.

Arduino eForth 2.8, 2011

6. Press return key and the system displays:
0000 ok>

35

7. You can type in other FORTH commands to tessyis¢em in the simulator.

Now you can exercise ceForth_328 by typing in FORBrhmands.

The following console window shows the results wien type command:
WORDS

If you care to count them, there are about 195 cantts. These commands are

documented in Appendix.

ceForth_328 is case insensitive. You can typ@mroands in upper case or lower
case characters. You can also type in mixed des®@cters.

9C:\C-EFDR'I'I-I\efurth_SZB\F#.exe Current dir=C:3C-EFORTH\eforth_328

File Edit Tools Help

S$: show all registers -~
D: display next 8 words

addr M: display 128 words from addr

addr G: run and stop at addr

RUN: execute, one key per cycle

$>-16
Press any key to stop.

Arduino eForth 2.8, 2811

06060 ok>

0800 ok>

8888 ok>

8888 ok>

0606 0 ok>

0 86 0 0 ok>WORDS

IMHEDIATE (% .{ . $ ABORT" WMHILE WHEM ELSE AFT THEN REPEAT AHEAD IF AGAIN UNTIL HMEXT BEGIH
FOR >RESOLVE >HARK <RESOLVE <HARK COLD DIAGHOSE FORGET WMWORDS SEE .ID >HAHE DUMP dm+ CONSTANT VUARIABLE
CREATE CODE :] ; OUVERT $COMPILE $,n ?UNIQUE $," LITERAL COMPILE [COMPILE] , ALLOT ' QUIT EUAL
.0K [$INTERPRET ERROR abort" ABORT QUERY EXPECT accept KkTAP TAP “H HNAME? find SAME? NAME> WORD
TOKEN PACK$ CHAR PARSE (parse) % . U. U.R .R ."| $"| do§ CR TYPE SPACES CHARS SPACE ?KEY NUMBER?

JDIGIT? >UPPER UPPER DEGIMAL HEX str #> SIGH #S # HOLD <# EXTRACT DIGIT ERASE FILL CHMOVE GENECUTE
TIBE PAD HERE COUNT 2@ 2% +¢ ALIGHED >CHAR BL 2/ 2= 2+ 2- 1+ 1- =/ =/MOD Hx = UHx /7 HOD /HOD
H/MOD UH/MOD WITHIN HIN HAX < U< = 8= ABS - DHEGATE HEGATE HOT + 2DUP 2DROP ROT ?DUP EMIT KEY
?KEY doUAR doCON dolLIST UMW+ XOR OR ANMD 6< OUER SWAP DUP DROFP >R RE R> PEEK POKE ICE@ IC* I@ It
C@ C* @ * doNEXT BRANCH (QBRANCH EXECUTE EXIT doLIT *I0 TX* %RX BYE CURRENT DP ‘ABORT LAST CP
CONTEXT HLD ‘“EVAL BASE ‘'TIB #TIB >IN SPAN HLD tmp

88 8 8 ok>

Here are more eForth commands you can type int6#hensole to test the eForth
system:

900 DUMP

HERE .

12+.

:TEST112345;

TEST1

: TEST2 10 FOR R@ . NEXT ;
TEST2

: TEST3IF1ELSE 2 THEN . ;
0 TEST3

1 TEST3

: TEST4 CR .” HELLO, WORLD!";
TEST4

After these tests, the F# console looks as follows.

36

9C:\C-EFOR'I'I-I\.eforth_ZiZB\F#.exe Current dir=C:A\C-EFORTH\eforth_328
File Edit Tools Help

960 28 1B O B 6 @ O 0 0 088 810 054 16 (T_
918 9 BEB1C 20 3 ES1C 217 8 B B8 @8 B8 0 _ h_ _h

228 8 8 374 6D 70 416 1E 3 22 9 3 48 4C 4y tmp___ | HLD
930 416 2 3 2C 9 4535041 4 0 416 4 3 __ ,_ SPAN

948 36 9 3 3E 49 4E 4 16 6 3 42 9 4 23 54 49 6_ >IN B_ HTI
958 42 B 416 8 3 4C 9 4 27 54 40 42 @ 4 16 B L__"TIB___
960 A 358 9 44241534 @ 416 C 3 64 9 _ X_ BASE d_
970 527 45 56 41 4 A4 16 E 3 70 9 3 4B 4C 44 _C'EUAL____p_ HLD
o088 416 18 3 7C 9 7 43 4F 4E 54 45 58 54 4 16 __ |_ CONTEXT__
998 12 3 86 9 2 4358 B 4 16 14 3 94 9 4 AC CP L
9A8 41 53 54 @ 41616 3 9E 9 6 27 41 42 4F 52 AST ‘ABOR
OB G54 B 41618 3 AA 9 2 4458 B 41614 3T *_ DP

9CO B8 9 7 43 55 52 52 45 4E 54 4 16 1C 3 C2 9 8__ CURRENT B
9Da 3 425945 1 8D 9 3 3F 5258 216 D8 9 _BYE_P_ 7RN__X
] 35558 21 316E0 9 32149 4F 0816 E8 9 _TX*__"_ tI0_h
9F@ 5 64 6F 4C 49 54 5 16 FO 9 4 45 58 40 54 0 _doLIT_ p_ EXIT_
ok>HERE . 328

ok>1 2 + . 3

ok>: TEST1 1 2 3 45 ;

ok>TEST

ok>: TEST2 18 FOR RE . HEXT ;

ok>TEST2 1B F EDCB A9 876543218

ok>: TEST3 IF 1 ELSE 2 THEHN . ;

ok>8 TEST3 2

ok>1 TEST3 1

ok>: TEST4 CR ." HELLO, WORLD*" ;

ok>TESTY

HELLO, WORLD?
4 5 ok>

8. Close F# window.

MMMNMNNMMNMNNNMNoDoS @
FEFEEFEFFFFFFoooo
rvmrmnunmnmnurooo o

a
a
a
3
3
3
3
3
3
3
L
3

-]

You are done with cefMETA328 metacompiler. It prods a rom.mif file, which
contains the dictionary of ceForth_328. You muagbart this dictionary into the
ceForth_328.pde file to get ceForth_328 to worklenArduino Uno Board.

9. MoveceForth_328toArduino Uno

The step by step procedure to get ceForth_328mgron Arduino Uno Board is as
follows:

1. Open Arduino 0022 in Windows.

2. Open ceForth_328.pde file Arduino 0022.

3. Copy rom.mif tacode array in ceForth_328.pde. Remember to remove the
comma at the end of the line

/* 1FFE */ 0x0000

Arduino screen should look like the following:

37

9 eforth_328 | Arduino 0022 CEK

File it Sketch Tools Help

£ 1FED 7 0x0000, -~
/% 1FEZ */ 0x0000,
£ 1FE4 7 0x0000,
/% 1FEE %/ 0x0000,
£ 1FES 7 0x0000,
#% 1FEL %/ 0x0000,
£ 1FEC #/ 0x0000,
1FEE #/ 0x0000,
#% LFFD */ 0x0000,
#% LFFZ */ 0x0000,
#% LFF4 */ 0x0000,
#% LFFE */ 0x0000,
#% LFFE */ 0x0000,
#% LFFA */ 0x0000,
#% LFFC */ 0x0000,
#% LFFE */ 0x0000
|+ END; +/

I

woid setup()
i
Serial.begin({l15200) ;
clock = 0;
P = pom_read word(scode[0x480]1);
IF = 0;
53 = stack:
R = rack:
top = 0;
nhase = M=

sketch size: 13056 bytes (of a byte maximum)

4. Compile ceForth_328, by clicking the Compiletbot

5. Upload ceForth_328 to Arduino Uno by clicking tdpload button.

6. Open HyperTerminal on PC. Set it up to 115280d, 8 data bits, 1 stop bit, no
parity, no flow control. ceForth_328 boots up amplay this message:

Start Arduino

Arduino eForth, 2.0, 2011

7. Press Return key and the system displays:

000 0 ok>

8. You can exercise ceForth_328 system by typirsgdbmmand:

WORDS
WORDS8isplays the names of all FORTH commands impleeteint ceForth_328.
After executing the commanfORDShe HyperTerminal console looks like the
following:

38

“& 57600 - HyperTerminal
File Edit View Cal Transfer Help

O & & 087 =

Start Arduino

Arduino eForth 2.0, 2011

000 0 ok>WORDS
IMMEDIATE (\ . (“ %" ABORT” WHILE WHEN ELSE AFT THEN REPEAT AHEA
D IF AGAIN UNTIL NEHT BEGIN FOR >RESOLYE >MARK <RESOLYE <MARK COLD D
IHGNUSE FORGET WORDS SEE .ID >NAME DUMP dm+ CONSTANT VARIABLE CREATE
DE 1 ; OVERT $COMPTLE $.n 7UNIQUE $.,” LITERAL COMPILE [COMPILE]
; HLLUT " QUIT EVAL 0K [$INTERPRET ERROR abort™ RABORT QUERY EXPECT
accept kTAP TAP ~H NAME? find SAKME? NAME> WORD TOKEN PACK$ CHAR PA
RSE (parse) 7 U. UR .R ‘I $"1 do$ CR TYPE SPACES CHARS SPACE
7KEY NUMBER? DIGIT? >UPPER UPPER DECIMAL HEX str #> SIGN #S # HOLD
<# EXTRACT DIGIT ERASE FILL CHMOVE ®GEKECUTE TIB PAD HERE COUNT 2@ 2!
+' ALIGNED >CHAR BL 2/ 2= 2+ 2- 1+ 1- */ =/MOD M= = UM= / MOD
/HOD M/MOD UM/MOD WITHIN HMIN HMAK < = B= ABS - DNEGATE HNEGATE NO
T + 2DUP 2DROP ROT 7DUP EMIT KEY 7KEV doVAR doCON dolLIST UM+ HOR O
R AND B<¢ OVER SWAP DUP DROP >R Re@ R> PEEK POKE ICe IC* I@ It C@
Ct @ ' doNEKT BRANCH O(BRANCH EXECUTE EXIT doLIT IO TH' 7RX BYE CU
EEENT DP "ABORT LAST CP CONTEXT HLD 'EVAL BASE °'TIB #TIB >IN SPAN H
tmp
00008 ok>
0000 ok>_

Connected 05:06:05 WT100 115200 8-M-1 t CAPS

Try the following commands to verify that ceFortR83an really compile new
FORTH commands:

1234

+

*

: TEST1 CR ." HELLO, WORLD!" ;
TEST1

: TEST2 IF 1 ELSE 2 THEN . ;

1 TEST2

0 TEST2

: TEST3 10 FOR R@ . NEXT ;
TEST3

(Press Return key at the end of each line to demddmmands to Arduino Uno.)
10. cefMETA328f

The source code of the ceForth_328 metacompilasrigined in the file
cefMETA328.1.

Here we will go through cefMETA328.f file, almogté by line to see how the
ceForth_328 system is produced. All other fildemed to in this file will be
discussed in their separate sections.

(cefMEAT328.F, 13seplilcht, Arduino Uno eForth Pro ject)
HEX

variable debugging?

\ -1 debugging? !

. .head (‘addr -- addr)

39

SPACE >IN @ 20 WORD COUNT TYPE >IN!
DUP . ;
:CRCR
debugging? @
IF.SKEY OD = IF ." DONE" QUIT THEN
THEN ;
: BREAK CR
.SKEY 0D = IF ." DONE" QUIT THEN ;
: forth_'";
: forth_dup DUP ;
: forth_drop DROP ;
. forth_over OVER ;
: forth_swap SWAP ;
forth @ @ ;
forth 11
: forth_and AND ;
. forth_+ +;
. forth_- -
: forth_word WORD ;
: forth_words WORDS ;
. forth_.s .S ;
:CRRcr;
: forth_.([COMPILE] .(;
: forth_count COUNT ;
: forth_r> R>;
:-or XOR;
: >body 5 +;
: forth_forget FORGET ;
: forth_. . ;
swfig
: wf; [COMPILE] ; ; immediate
: forth_ EXIT EXIT ;
: forth_QUIT quit ;
: target_' forth_' >body forth @ ;
:-OR XOR;
: forth_\ [COMPILE]\ ;

CREATE ram 8000 ALLOT
: RESET ram 8000 O FILL ; RESET
:RAM@ ram + W@ ;
:RAM! ram + W! ;
:RAMC@ ram+C@ ;
: RAMC! ram + C!;
:FOUR (a--)8 FOR AFT DUP RAMC@ 5 U.R 1+ T HEN NEXT ;
: SHOW (a) 10 FOR AFT CR DUP 5 .R SPACE
FOUR SPACE FOUR THEN NEXT ;
: showram 0 OC FOR AFT SHOW THEN NEXT DROP ;

Command Function

debugging?| A variable containing a switch to turn break poimtsand off. Wher
debugging? is set to -1, compilation will stop and the datk is
displayed when ar command is executed. Sprinkliog
commands in the source code file allows you to wéte progress of
metacompilation and even stops it when necessary.

.head Display name of a command that is about twobwiled. It is used
to display a symbol table. You can look up theecheld address of
any command in this table.

cr Pause metacompilationdebugging? is -1, and dump data stack.

40

If you press ESC key, metacompilation is aborteQtherwise,
metacompilation continues. It just does a carriagern/line feed if
debugging? is 0.

During metacompilation, many FORTH commands wilreéefined so that they will
compile tokens or assemble pseudo instructionstirgdarget dictionary. There are
numerous occasions where the original behaviorl®®RTH command must be
preserved. To preserve the original behavior BO&®TH command, it is assigned a
different name. Thereby after a command is re@éfinve can still exercise its
original behavior by invoking the alternate name.

For examplet is a FORTH command that adds the top two numbeth®data
stack in the F# system. Then in the cefKERN34&f & new+ command is
defined to assemble aald instruction in the target ceForth_328 system.yolf still
need to add two numbers, you must use the altecoatenandorth_+ as shown
below. All the F# commands you need to use latgstrbe redefined as
forth_xxx commands. If you neglect to redefine them, you fivitl that the
system behaves very strangely.

The ceForth_328 executes commands and accesses tteanemory range 0-1FFF.
In F# we allocate a 32 KB memory arreggn, to hold the ceForth_328 target
dictionary. This array contains code and dateetadpied into @ode array in
ceForth_328, to be processed by a FORTH Virtuallvfecin Arduino Uno.

ram Memory array in F# for the ceForth_328 targeti@hary. It has a
logical base address of 0 in ceForth_328. Codadatalwords in
the target are stored in this array.

ram@ Replace a logical address on stack with data fdtbloenram data
array.

ram! Store second integer on stack into logical addséssm data array.

ramC@ Replace a logical address on stack with byte dathéd frontam
data array.

ramcC! Store second integer on stack into logical addoéssm data array as
a byte.

reset Clearram data array, preparing it to receive code and faita
ceForth_328.

four Display 8 consecutive bytes in target dictigna

show Display 256 bytes in target from address It also returng+128 to
show the next block of 256 bytes.

showram Display the entire ceForth_328 dictiondr§ &B.

VARIABLE hFile
: write-bin-file
Z" mem.bin"
$40000000 (GENERIC_WRITE)
0 (share mode)
0 (security attribute)
2 (CREATE_ALWAYS)
$80 (FILE_ATTRIBUTE_NORMAL)

41

0 (hTemplateFile)
CreateFileA hFile !

hFile @

RAM 4000

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error" QUIT THEN
hFile @ CloseHandle DROP

CREATE CRLF-ARRAY 0D C, 0A C,
: CRLF

hFile @

CRLF-ARRAY 2

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error” QUIT THEN

: open-mif-file
Z" rom.mif"
$40000000 (GENERIC_WRITE)
0 (share mode)
0 (security attribute)
2 (CREATE_ALWAYS)
$80 (FILE_ATTRIBUTE_NORMAL)
0 (hTemplateFile)
CreateFileA hFile !

: write-mif-header

CRLF

hFile @

$" /* WIDTH=16; */"

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error” QUIT THEN
CRLF

hFile @

$" /* DEPTH=8192; */"

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error" QUIT THEN
CRLF

hFile @

$" /* ADDRESS_RADIX=HEX; */"

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error" QUIT THEN
CRLF

hFile @

$" /* DATA_RADIX=HEX; */"

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error” QUIT THEN
CRLF

42

hFile @

$" /* CONTENT BEGIN; */"

PAD (IpWrittenBytes)

0 (IpOverlapped)

WriteFile

IF ELSE ." write error" QUIT THEN

The ceForth_328 metacompiler builds a target dictioraryhe ceForth 328 iram,
a memory array in F#. This dictionary is writtenatrom.mif file and will be
imported to the ceForth_328 system a®de array there. The C programming
language requires that the code array be writtensegjuence of 16 bit integers
terminated by commas. A few lines in the rom.ni& &re as follows:

/* WIDTH=16; */

/* DEPTH=8192; */

/* ADDRESS_RADIX=HEX; */
/* DATA_RADIX=HEX; */

/* CONTENT BEGIN; */

/* 0000 */ 0x0000,

/* 0002 */ 0x0000,

/* 0004 */ 0x0000,

/* 0006 */ 0x0000,

/* 0008 */ 0x0000,

/* 08FA */ 0x0000,
/* 08FC */ 0x0000,
/* 08FE */ 0x0000,
/¥ 0900 */ 0x1B28,
/* 0902 */ 0x0000,
/* 0904 */ 0x0000,
/* 0906 */ 0x0000,
/* 0908 */ 0x0000,
/* 090A */ 0x0880,
/* 090C */ 0x0010,
/* 090E */ 0x1654,
/* 0910 */ 0x0000,
/¥ 0912 */ Ox1CES,
/* 0914 */ 0x0320,
/* 0916 */ Ox1CES,
/¥ 0918 */ 0x1702,
/* 091A */ 0x0000,
/¥ 091C */ 0x0000,
/* 091E */ 0x0000,
/* 0920 */ 0x0000,

hFile A variable holding a file handle.

CRLF Insert a carriage return and a line feed théocurrently
opened file.

open-mif-file Open a file named rom.mif for writing

write-mif-line Write one line of text into currefite.

write-mif-header Write a header required into cotrde.

“mif” is a term leftover from the implementation thfe eP32 microprocessor on a

43

Xilinx FPGA, and its development system expectatemory file to be in its mif
format. Itis easy to conform to any code forneguirements by changing these
xxx-mif-yyy commands here.

: write-mif-data

0 (initial ram location)

$1000 FOR AFT
CRLF
hFile @
OVER (4 /) (word address)
<# 2F HOLD 2A HOLD 20 HOLD

3 FOR # NEXT

20 HOLD 2A HOLD 2F HOLD #>
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
hFile @
OVER RAM@
<# 2C HOLD 3 FOR # NEXT 78 HOLD 30 HOLD 20 HO LD #>
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
2+

THEN NEXT

DROP (discard flash location)

: close-mif-file
CRLF
hFile @
$" /* END; */"
PAD (IpWrittenBytes)
0 (IpOverlapped)
WriteFile
IF ELSE ." write error" QUIT THEN
CRLF
hFile @ CloseHandle DROP

: write-mif-file
open-mif-file
write-mif-header
write-mif-data
close-mif-file

write-mif-data | Write a 8 KB dictionary of the eHor$ystem from memory array
ram to the rom.mif file.

close-mif-file Close the rom.mif file.

write-mif-file | Write a file rom.mif containing 8 K®f the eForth System
according to the €Code array format.

Write-mif-file opens an rom.mif file, writes a header, writesagand then
closes the file. The rom.mif file must be copiatbia code array in the

44

ceForth_328.pde file in Arduino 0022.

The ceForth_328 metacompiler continues to loactdk@rth 328 assembler in
cefASM328.1, the ceForth_328 kernel in cefKERN328rfd the FORTH system in

cEF328.f with the following commands:
FLOAD cefASM328.f
FLOAD cefKERN328.f
FLOAD cEF328.f

The target dictionary is complete, and can be noittem out into rom.mif by the
write-mif-file command.

The metacompiler now loads in the simulator in 0&f$28.f with:
FLOAD cefSIM328.f

The ceForth_328 system can now be simulated in F4s most satisfying to see that
the output of this simulator matches exactly whairoduced by the ceForth_328
system on the Arduino Uno Board. This simulatorasking at pseudo instruction
level. Itis much more convenient to run thanAh@uino 0022 system. Once a
development cycle is closed in this fashion, weehaary high confidence that any
software change in source code of the eForth syatiérwork on Arduino Uno, if it
first passed this high-level simulator.

11. cefASM328.f

The cefASM328.f file contains a structured, optimgzassembler for ceForth_328.

It packs 2 pseudo instructions into one 16-bit praogword. It first clears a program
location pointed to by a variabltev, and prepare it to receive 2 pseudo instructions.
Assembly commands will insert pseudo instructionis consecutive bytes, and
they make necessary decisions as to whether tonadel instructions to the current
program word, or start a new program word.

A primitive FORTH command in ceForth_328 contairseguence of pseudo
instructions, or byte codes. Two pseudo instrastiare packed into a 16-bit
program word. 33 pseudo instructions are defined.

The compound FORTH commands in ceForth_328 systernased on the Token
Threading Model, in which a compound command castailist of tokens which are
code field addresses of other FORTH commands. ©Ganmgcommands in the form
of lists of token are very compact and very effitie

HEX
VARIABLE h
VARIABLE lasth 0O lasth ! \ init linkfield address Ifa
:namer! (d--)
h @ ram! \ store doubl e to code buffer
1h+! \ bump nameh

: COMPILE-ONLY 40 lasth @ ram@ XOR lasth @ ram! ;

45

: IMMEDIATE 80 lasth @ ram@ XOR lasth @ ram! ;

VARIABLE hi

VARIABLE hw

VARIABLE bi (for byte packing)
»align 14 hi!;

:org DUP . CR h! align;

callot (n--)h+!;

CREATE mask 3F000000 , FC0000 , 3F000, FCO, 3 F,
‘#, (d)h@ram! 1 h+!;
w (d)hw @ ram@ OR hw @ ram! ;
S (d)hi@14=1IF0Ohilh@ hw! 0#, THEN
hi @ mask + @ AND ,w 4 hi +!;
:spread (n-d) DUP 40 * DUP 40 * DUP 40 * DUP 4 O*++++;
;.1 (n)spread ,i;
b (c)bi@O0=IF1bi'h@ hw!0#, wEX IT THEN
bi@1=IF2bi!100* ,wEXIT THEN
bi@ 2=1F 3 bi! 10000 * ,w EXIT THE N
0 bi ! 1000000 * ,w ;

: inst CONSTANT DOES>R> @ ,i ;
1E spread inst nop

: anew BEGIN hi @ 14 < WHILE nop REPEAT 0 bi!;
:#(d) OA spread ,i #, ;

dldi#

(LT (d--)#;

COMPILE-ONLY | Patch Bit 6 in first byte of name field in currd¢atget

command. Text interpreter checks it to avoid exagut
compiler commands.

IMMEDIATE Patch Bit 7 in first byte of name fieldhicurrent target
command. Compiler checks it to execute commandwhi
compiling.

h A variable pointing to the next free memory watdhe top of the target

dictionary.

lasth A variable pointing to the name field of therent target command und

construction.

namer! | Compile a 16-bit wordi to the top of the target dictionary.

hw A variable pointing to a new program word beoogstructed.

hi A variable pointing to a byte to pack the negépdo instruction.

bi A variable pointing to a byte to pack the ne8@ll character.

align Initialize pointerhi to start assembling a new program word.

org Initialize pointerh to a new address to start assembling.

allot Add an to pointerh. It skips an area in target memory and starts

assembling above this area.

mask An array of 2 masks to isolate one 8-bit psensiruction from a 16-bit

instruction pattern. A pseudo instruction can keseatled in one of 2
bytes selected blyi .

46

#, Compiled to top of target dictionary. It is the most priivé assembler
and compiler. The ceForth_328 assembler is an sixterf this primitive
assembly command.

W ORd to the program word pointed to hw. It packs a byte into the
current program word.

spread | Repeat 8-bit pseudo instructiarto fill a 16-bit instruction patterrmask
uses it to select a byte code for assembling.

i Usehi to select one pseudo instructiordimnd assemble it into the
program word selected .

| Spread an 8-bit pseudo instruction to a 16-aitgyn and assemble a
pseudo instruction with .

b Pack bytéb into current program word. Pointer determines which byte
field to packbi is incremented to facilitate packing of next byte.

inst Define pseudo instruction assembly commariasehtes a pseudo
instruction assembly command like a constant. Wthpeeudo instruction
assembly command is later executed, this congtaetrieved as an byte
code and a pseudo instruction is assembled intoutrent program word
by commandi

nop First pseudo instruction assembly command defiryeidgi

anew Fill current program word with aop and initialize hi and hw to
assemble new pseudo instructions in the next pnogvard.

Assemble a load literalolit instruction. Its literal value is assembled
in the next program word pointed to by

lit, Alias of #.

lit#, Assemble a inline literahline instruction. Its literal value is
assembled in the next program word pointed tb by

decimal

\ O INST nop,

1 INST bye,

2 INST gr,

3 INST txsto,

4 INST inline,

5 INST dolit,

6 INST dolist,

7 INST exit,

8 INST execu,

9 INST donext,
10 INST gbran,
11 INST bran,
12 INST store,
13 INST at,

14 INST cstor,
15 INST cat,
16 INST istore,
17 INST iat,

18 INST rfrom,
19 INST rat,
20 INST tor,
21 INST dovar,
22 INST next,
23 INST drop,

47

24 INST dup,

25 INST swap,

26 INST over,

27 INST zless,

28 INST andd,

29 INST orr,

30 INST xorr,

31 INST uplus,

32 INST icat,

Instruction| Function

nop, No operation.

bye, Not used.

grx, Get a character from USARTO receiver

txsto Send a character to USARTO transmitter.

inline, Fetch next word pointer to by P and pusbnitstack. Increment P.

dolit Fetch next word pointed to by IP and pusbnitstack. Increment IP.

dolist, Push IP on the return stack. Copy P into IP, a@d@enext to start
processing this new token list pointed to by thigioal IP.

exit, Pop the return stack back to IP. Exemagt to continue processing
the token list interrupted by a compound command.

execu, Push IP on the return stack. Pop stackindad start executing the
pseudo instructions starting at P.

donext, If top of return stack is not 0, decremnieand then copy the next word
into IP, thus repeating a loop. If top of retutack is O, pop it off the
return stack, and increment IP, leaving this loop.

gbran, If top of stack is 0, copy the next prograard into IP, and then
executenext to branch to a new token list. Otherwise, increniB,
and continue processing the current token list.

bran, Unconditional branch to address in the neogjam word.

store, Store the second element on stack to adocam top of stack. Pop
both elements.

at, Replace top of stack with contents of memoaddresses.

cstore, Store the second element as a byte tatdaoon top of stack. Pop
both elements.

cat, Replace top of stack with contents of a bygéenary it addresses.

istore, Not used.

iat, Not used.

rfrom, Pop the return stack and push its top elé¢merihe stack.

rat, Copy the top element on the return stack assth jit on the stack.

tor, Pop stack and push its top element on therretiack.

dovar, Push the address in P on stack.

next, Copy IP to P to process the next token. merd IP.

drop, Pop stack.

dup, Duplicate top of stack.

swap, Swap the top two elements on stack.

over, Duplicate and push the second element ok.stac

zless, If top of stack is negative, replace it vathRUE flag; else replace it

48

with a FALSE flag.
andd, Pop top of stack and AND it to the new taprent.
orr, Pop top of stack and OR it to the new top elein
XOTrT, Pop top of stack and XOR it to the new tognant.
uplus, Add top two elements on stack, replace tivima double integer sum.
icat, Not used.

In the ceForth_328 system, all target commands@reiled in a dictionary, and
linked into a linear list. Each target command &éisk field of one 16-bit word, a
variable length name field in which the first bgtntains a length followed by the
ASCII characters of the name string, null filledatd 6-bit word boundary, and a
variable-length code field containing 16-bit tokemslata words. Primitive
commands have pseudo instructions in their codiéstie Compound commands
generally have token lists in their code fields.olléwing are metacompiler
commands which build a header which contain afield and a name field.

: begin aanew H @ ;
.. begin .head CONSTANT DOES>R> @ #, ;
hex
crr
: (makeHead)
aanew
20 word \ get nam e of new definition
lastH @ nameR! \fill li nk field of last word
H @ lastH ! \ save nfa in lastH
DUP c@ ,B \ store count
count FOR AFT
count ,B \ fill name field
THEN NEXT
DROP aanew

: makeHead
>IN @ >R \ save in terpreter pointer
(makeHead)
R> >IN ! \ restore word pointer

: ($LIT)
aanew 22 WORD
count FOR AFT
count ,B (compile characters)
THEN NEXT DROP aanew ;

CBLIT ()
aanew
22 WORD
DUP c@ ,B (compile count)
count FOR AFT
count ,B (compile characters)
THEN NEXT DROP aanew ;

: CODE makeHead ": ; \ for eForth kerne | words

| Command | Function

49

Mark current location in target for later egls resolution.

begin

Define a nameless commaregin points to the code field and is
defined as a constant in the metacompiler. Thdinua behavior of
this constant is changed to execute commandsR@®&S, which uses
the saved code field address to assemble a takaisoldisplays the
name of the new command and its execution addreiseaerminal,
with the .head command.

(makehead

Build a header for a new target command. The haadkrdes a link
field and a name field. The address of the naeild in the last target]
command is stored ilasth , and is compiled into the link fieldh.
points to the name field of the new command, arwbsed into

lasth . Now, the following string is copied into the naifreld,
starting with its length byte, and null filled tioet word boundary. Now,
h points to the code field of this new target comchan

makehead

Build a header withnhakehead) and save the name string to define|a
compiler command in metacompiler. It displays thene and code
field address. A string can be used repeatedlyalijng and restoring it
pointer in a #N word.

Ul

(BLIT) Compile a count string for a string literal
SLIT Compile a count string for a counted stririgril.
CODE Define a new target command. It creates aleader in the target, an

o

then uses to start a new subroutine. It also creates agnalsky
command in the metacompiler. This assembly commagsdmbles a
subroutine call instruction.

After the assembler in cefASM328.f is loaded, thetanompiler cefMETA328.f
continues loading these lines of code which addsrtbst important compiler

command: which will be used to compile all compound commatwlthe target

dictionary.

: i makeHead begin .head CONSTANT dolist, aanew DO ES>R> @ #, ;

: CREATE makeHeadbegin.head CONSTANT dovar, next, aanewDOES>R>@#, ;

: VARIABLE CREATE 0 #, ;

s EXIT
Start compiling a new compound command to thgetadictionary.
First build a header with the name string followindisplay the
name and its code field address as in a symbad.tablhen, use the
code field address to define a constant in thei€#bdary of the
same name. When this new compound command isrédegenced
a token of this code field address is added talitionary in the
target dictionary. This is how the metacompilelldsitoken lists in
the target dictionary.

CREATE Build an array in target dictionary. No mamepace is allocated.
When referenced when the target is running, itrnstits array
address. Not used in ceForth_328 metacompiler.

VARIABLE | Build a variable in target dictionary. 2 bytes allecated and

initialized to 0. When referenced when the targetinning, it

50

| returns the address of the variable. |

With the assembler in place, we are now ready tiol tloe ceForth_328 system in the
target dictionary.

12. cefKERN328.f

In ATmega328P, there are 32 KB of flash memory, 2B of RAM memory.

Since the Arduino 0022 system does not allow uswtite new code into the flash
memory, | designed a unified memory model so tlzainl add new code to the RAM
memory. The memory map of ceForth_328 is showtherfollowing table:

Address Function

0x0-OxFF ATmega328 CPU and IO registers
0x100-0Ox2FF Data space used by C compiler
0x300-0x87F Free RAM memory

0x880 Terminal input buffer

Ox8FF Start of ATmega328 hardware stack
0x900-Ox1FFF ceForth_328 dictionary

The parameter stack and return stack are allodstélde C compiler as parts of the
FORTH Virtual Machine. We do not have to worryrthen FORTH.

We are now starting compiling new commands intotéinget dictionary. First, the
assembly comman@RGn cefMETA328.f initializes the dictionary pointdr, to
memory location $920. The memory area below $800apped to the RAM
memory space. The memory area from $900 to $3¥Essinitial values of the boot
up address and system variables In the cefMETA3iBS.the following lines of
commands compiles the kernel of ceForth_328.

$920 ORG
CR .(include kernel)
FLOAD cefKERN328.f

Now, cefKERN328.f is loaded to assemble primiti@FHH commands into the
target dictionary, starting at $920.

System variables are variables used by the eFgstera to perform all its various
functions. They are defined as primitive commamdt) inline, andnext,
pseudo instructions pointing to their respectivdradses in the RAM memory,
starting at location $304.

(cefKERN328.F, 14jan1icht, for Arduino Uno)

hex

CRR .(System variables) CRR

CODE tmp 31Einline, next, #, \ptrtoc onverted # string
CODE SPAN 304 inline, next, #, \#charsi nput by EXPECT
CODE >IN 306 inline, next, #, \input bu ffer offset

CODE #TIB 308 inline, next, #, \#charsi n the input buffer
CODE 'TIB 30Ainline, next, #, \#charsi n the input buffer
CODE BASE 30C inline, next, #, \number b ase

CODE 'EVAL 30E inline, next, #, \interpre t/compile vector

51

CODE HLD 310 inline, next, #, \scratch

CODE CONTEXT 312 inline, next, #, \flash vo cabulary

CODE CP 314 inline, next, #, \ RAM dict ionary pointer

CODE LAST 316 inline, next, #, \last nam e in RAM vocabular

CODE 'ABORT 318 inline, next, #, \QUIT

CODE DP 31Ainline, next, #, \ flash diction ary pointer

CODE CURRENT 31C inline, next, #, \ RAM vocabular y

Command | Address Function

SPAN 304 Number of characters received by EXPECT.

>IN 306 Input buffer character pointer used éxt interpreter.

#TIB 308 Length of Terminal Input Buffer.

'TIB 30A Address of Terminal Input Buffer.

BASE 30C Number base for numeric conversion.

'EVAL 30E Execution vector switching between $BERPRET and
$COMPILE.

HLD 310 Pointer to a buffer holding next digitrmimeric
conversion.

CONTEXT | 312 Dictionary pointer pointing to name field abt
command in dictionary.

CP 314 Pointer to top of dictionary, the firsadable memory
location.

LAST 316 Pointer to name field of last commandlictionary.

'ABORT 318 Execution vector to handle error ctindi

tmp 31E Pointer to a scratch pad.

Primitive commands have 2 pseudo instructionseir tode fields. The assembler
can pack as many pseudo instructions in a cod#tiietnake the most efficient use of

memory and execution time. However, in this impatation we just addrext ,

to a pseudo instruction to build a primitive commhawhich you can use interactively.

If you like to enhance this system, you can usedlsembler to change some

compound commands into primitive commands. Youtbhas reduce the size of the

dictionary, and also increase the execution speed.

CRR .(kernel words) CRR
CODE ?RX grx, next,

CODE TX! txsto, next,

CODE !lO nop, next,

CODE doLIT dolit, next,
CODE EXIT exit, next,

CODE EXECUTE execu, next,
CODE QBRANCH gbran, next,
CODE BRANCH bran, next,
CODE doNEXT donext, next,
CODE ! store, next,

CODE @ at, next,

CODE C! cstor, next,

CODE C@ cat, next,

CODE POKE cstor, next,
CODE PEEK cat, next,

CODE R> rfrom, next,

CODE R@ rat, next,

CODE >R tor, next,

52

CODE DROP drop, next,
CODE DUP dup, next,
CODE SWAP swap, next,
CODE OVER over, next,
CODE 0< zless, next,
CODE AND andd, next,
CODE OR ofrr, next,
CODE XOR xorr, next,
CODE UM+ uplus, next,
CODE doLIST dolist, next,
CODE doCON inline, next,
CODE doVAR dovar, next,

CRR

Primitive Function

Command

doLIT Push next program word as a literal on tiaels

EXIT Pop return stack into IP. Terminate a toksh

EXECUTE Pop stack into IP to execute a token.

QBRANCH | Conditional branch to address in next pangmord.

BRANCH Unconditional branch to address in next pang word.

doNEXT Loop to address in next program word.

! Pop an address and value off stack and stoteevalmemory.

@ Replace address on stack by its value fetcloed fnemory.

C! Pop an address and a byte off stack and syaeeito memory.

C@ Replace address on stack by its byte valubddtirom memory.

POKE Alias of C!.

PEEK Alias of C@.

R> Pop return stack and push on stack.

R@ Copy top of return stack and push it on stack.

>R Pop stack and push on return stack.

DROP Discard top of stack.

DUP Duplicate top of stack.

SWAP Swap top two elements on stack.

OVER Duplicate second element on top of stack.

0< Replace top of stack with TRUE if it is negativeElse, replace
it with FALSE.

AND Pop stack and AND it to the new top.

OR Pop stack and OR it to the new top.

XOR Pop stack and XOR it to the new top.

UM+ Replace top two elements on stack with sumcandy .

doLIST Push IP on return stack and copy P to Bart processing a
new token list.

doCON Push an inline literal value on stack.

doVAR Push address in P on stack.

The kernel of ceForth_328 is completed, and thexcoshpiler is almost ready to
compile high level commands or the compound commanth compound
commands there are lots of control structuresertdken lists, and the metacompiler
needs tools to construct them. We just redefieddmiliar control structure

53

commands likéF , ELSE, THEN FOR NEXT, BEGIN, AGAIN, UNTIL, WHILE, and
REPEAT and use them to build control structures in #rgdt dictionary.

s EXIT

: BEGIN (-- a) begin ;

: AGAIN (a--) BRANCH #, ;

:UNTIL (a --) QBRANCH #, ;

'IF (--a) QBRANCH BEGIN 0 #, ;

: ELSE (al -- a2) BRANCH BEGIN 0 #, forth_swap
BEGIN forth_swap RAM! ;

: THEN (a --) BEGIN forth_swap RAM! ;

: WHILE (al -- a2 al) IF forth_swap ;

: REPEAT (a--) BRANCH #, THEN ;

:AFT (al -- a3 a2) forth_drop BRANCH BEGIN 0 #,
BEGIN forth_swap ;

:FOR (--a) >R BEGIN;

:NEXT (a--) DONEXT #, ;

:LIT (n--)[forth_' DOLIT >body forth_@ LITERA L]# #, ;

CRR .(include eforth)

FLOAD cEF328.f

Terminate compound command by appendin&4hT token to the
end of token list under construction in targetidicary.
BEGIN Start an indefinite loop.
AGAIN Terminate an indefinite loop with a unconditial branch.
UNTIL Terminate an indefinite loop with a condit@lirbranch.
IF Start a true branch.
ELSE Start a false branch.
THEN Terminate a branch structure.
WHILE Start a true branch in an indefinite loop.
REPEAT Terminate an indefinite loop with a uncorial branch.
AFT Start a skip branch in a definite loop.
FOR Start a definite loop.
NEXT Terminate a definite loop.
LIT Compile a integer literal.

We are now ready to compile all the compound contmarthe ceForth_328 target
dictionary with the=LOAD cEF328.f commands.

13. CcEF328f

The cEF328.F. file contains compound commands tmb®piled into the
ceForth_328 target dictionary. These commanddefieed with the: command
and terminated by command. They are like the regulaand; commands in
FORTH, but they compile new ceForth_328 commantisthre ceForth_328 target
dictionary.

The ultimate goal of these commands is to implemaaritteractive operating system,
or a text interpreter, which accepts a line of FBIRRbmmands from a terminal,

54

executes these commands in sequence, and wa#redtrer line of commands.

The text interpreter is also called the outer piteter in FORTH. It is functionally
equivalent to an operating system on a conventicomlputer. It accepts commands
similar to English words you type, and carries tasks specified by these commands.
As an operating system, a text interpreter coulddrg complicated, because of all
the things it has to do. However, because FORTpl@&ys very simple syntax rules,
and has very simple internal structures, the FORMtinterpreter is much simpler
than conventional operating systems.

13.1. Common Functions

This group of compound commands are commonly usédiiding up the FORTH
text interpreter, and writing all FORTH applicatson They are coded as compound
commands for portability. You can re-code in ad3grto increase the execute
speed.

CRR .(Common functions) CRR

;. ?KEY ?RX ;;
;2 KEY BEGIN ?RX UNTIL ;;
S EMIT TX! ;;

:: ?DUP (w--ww | 0)DUP IF DUP THEN ;;

 ROT (w1l w2 w3 --w2w3wl) >R SWAP R> SWAP ;;
:: 2DROP (w w --) DROP DROP ;;

2 2DUP (w1 w2 -- wl w2 wl w2) OVER OVER ;;

D+ (ww--w) UM+ DROP ;;

2 NOT (w--w)-1LIT XOR ;;

CRR

2 NEGATE (n---n) NOT 1 LIT + ;;

- DNEGATE (d -- -d) NOT >R NOT 1 LIT UM+ R> + ;;
m-(ww--w)NEGATE + ;;

2 ABS (n-- +n) DUP 0< IF NEGATE THEN ;;

CRR .(Comparison) CRR

20=(w-1t)IFOLIT EXIT THEN -1 LIT ;;

= (ww--t) XOR IF O LIT EXIT THEN -1 LIT ;;

s U< (uu--t)2DUP XOR 0< IF SWAP DROP 0< EXIT THEN - 0< ;;
m<(nn-1)2DUP XOR 0<IF DROP 0< EXIT THEN - 0< ;;
2MAX (nn--n)2DUP < IF SWAP THEN DROP ; ;

2 MIN(nn--n)2DUP SWAP < IF SWAP THEN DROP ; ;

“WITHIN (uuluh --t)\ul<=u<uh

OVER ->R-R> U< ;;

Command | Function

?KEY If a character is received by UASRTO receiyperish it and TRUE on
stack; else push FALSE.

KEY Wait to receive a character and push it onkstac

EMIT Pop stack and transmit the character.

BL Return $20, ASCII code for space.

+! Add second element to memory whose address isof stack.

55

?DUP Duplicate top of stack only if it is not zero.

ROT Rotate top 3 elements on stack

2DROP Discard top two elements on stack.
2DUP Duplicate top two elements on stack.

+ Pop top of stack and add it to the new top.
NOT One's compliment top of stack.

NEGATE Two's compliment top of stack.

DNEGATE | Two's compliment top two elements of stack as abtéointeger.

- Pop top of stack and subtract it from the ne to

ABS Replace top of stack by its absolute value.

0= Replace top of stack with TRUE if it is zertseewith FALSE

= Pop top two elements off stack, and push TRUBRa¥ are equal, else
push FALSE.

U< Pop top two elements off stack, and push TRUEedond<top, else
push FALSE. Comparison is unsigned.

< Pop top two elements off stack, and push TRUWedond<top, else
push FALSE. Comparison is signed.

MAX Pop top two elements off stack, and push tingdaone on top.
Comparison is signed.

MIN Pop top two elements off stack, and push thalEenone on top.

Comparison is signed.

WITHIN Pop top two elements off stack, and push ERU
third<=top<second, else push FALSE. Comparisoasigned.

Divide and Multiply

UM/MOD and UM* are the most complicated and compr&ive division and
multiplication commands. Once they are codedpthler division and multiplication
operators can be derived easily from them. Itdesen a tradition in FORTH
programming that one solves the most difficult peabfirst, and all other problems
are solved by themselves.

The scaling commands */MOD and */ are useful inisganumber n1 by the ratio of
n2/n3. When n2 and n3 are properly chosen, tHengaaammands can preserve
precision similar to the floating point operatiatsa much higher speed. Notice also
that in these scaling operations, the intermedgliedduct of n1 and n2 is a double
precision integer so that the precision of scalsngaintained.

CRR .(Divide) CRR

> UM/MOD (ud u --uruq)

2DUP U<

IF NEGATE $OF LIT
FOR >R DUP UM+ >R >R DUP UM+ R> + DUP

R> R@ SWAP >R UM+ R> OR

IF >R DROP 1 LIT + R> ELSE DROP THEN R>
NEXT DROP SWAP EXIT

THEN DROP 2DROP -1 LIT DUP ;;

::M/MOD (dn--rq) \floored

DUP 0< DUP >R

IF NEGATE >R DNEGATE R>

THEN >R DUP 0< IF R@ + THEN R> UM/MOD R>

56

IF SWAP NEGATE SWAP THEN ;;

22/MOD (nn--rqg) OVER 0< SWAP M/MOD ;;
2MOD(nn--r)/MOD DROP ;;
»/(nn--q)/MOD SWAP DROP ;;

CRR .(Multiply) CRR

SUM* (uu--ud)
O LIT SWAP (ul 0u2) $OF LIT (19 decimal)
FOR DUP UM+ >R >R DUP UM+ R> + R>
IF >R OVER UM+ R> + THEN
NEXT ROT DROP ;;
Z*(nn--n)UM*DROP ;;
SM*(nn--d)
2DUP XOR 0< >R ABS SWAP ABS UM* R> IF DNEGATE T HEN ;;
2*MOD (nnn-rq) >R M*R>M/MOD ;;
“*(nnn--q)*MOD SWAP DROP ;;

UM/MOD | Divide an unsigned double integer by an gned single integer.
Return unsigned remainder and unsigned quotient.

M/MOD Divide a signed double integer by a signetyk integer. Return
signed remainder and signed quotient.

/IMOD Divide a signed single integer by a signe@gar. Return signed
remainder and quotient.

MOD Divide a signed single integer by a signeegatr. Return signed
remainder.

/ Divide a signed single integer by a signed inteBeturn signed
guotient.

UM* Multiply two unsigned integers and produce arsigned double
integer product.

* Multiply two signed integers to produce a sigrs#ogle integer
product.

M* Multiply two signed integers to produce a sigramlble integer
product.

*MOD Multiply signed integersl andn2, and then divide the double
integer product by3. Scalenl byn2/n3 . Returns both remainder
and quotient.

/ Similar to/MOD except that it only returns quotient.

Bits, Bytesand Memory

Following are commands which mostly deal with dataop of stack and in memory.
A count string in FORTH is a string preceded byetggth in bytes. String literals in
compound commands and the name strings in the reeafleommand records are all
count strings. COUNT command fetches the courd frygim a count string. This
address is incremented by 1, and the count judtisgaushed on the stack. COUNT
is designed to get the count byte at the beginafregcount string. However, it is
often used in a loop to read consecutive byteshyta array.

CRR .(Bits & Bytes) CRR

n1l-(a--a)-1LIT+;;

57

sl+(a--a)lLIT+;;
m2-(a--a)-2LIT+;;
m2+(a--a)2LIT+;;
n2*(n--2n)DUP +;;

22 (n--nf2)2LIT/;;
mBL(--32)20LIT;

=>CHAR (c--c)

$7F LIT AND DUP $7F LIT BL WITHIN
IF DROP (CHAR _) $5F LIT THEN ;;

: ALIGNED (b --a) 1+ FFFE LIT AND ;;

CRR .(Memory access) CRR

s+ (na-)SWAP OVER @ + SWAP ! ;;

n2l(da--) SWAP OVER ! 2+ 1 ;;

m2@ (a--d)DUP 2+ @ SWAP @ ;;

:COUNT (b --b+n) DUP 1+ SWAP C@ ;;

“HERE (--a)CP @ ;;

:: PAD (--a) HERE 50 LIT + ;;

STIB(--a)#TIB2+ @ ;;

CRR

. @EXECUTE (a--) @ ?DUP IF EXECUTE THEN ;;
:CMOVE (bbu--)

FOR AFT >R COUNT R@ C! R> 1+ THEN NEXT 2DROP ;;
“FILL(buc-)

SWAP FOR SWAP AFT 2DUP C! 1+ THEN NEXT 2DROP ;;
2 ERASE (bu--)O0OLITFILL ;;

1- Add -1 to top of stack.

1+ Add 1 to top of stack.

2- Add -2 to top of stack

2+ Add 2 to top of stack

2* Multiply top of stack by 2.

2/ Divide top of stack by 2.

BL Return $20, ASCII code for space.

>CHAR Filter non-printable character to a harmlesslerscore’ character,
ASCII 95.

ALIGNED Adjust top of stack to 16-bit word boundary

+! Add n to a location whose address is on top of stack.

2! Store double integer d to address on top aksta

2@ Fetch double integer from address on top cksta

COUNT Push a byte fetch from address on top @kstand increment
address.

HERE Returns address of free space above the nbetio

PAD Returns address of a buffer 80 bytes abovditttmnary.

TIB Return address of Terminal Input Buffer.

@EXECUTE | Jump to an execution address on top of stack.

CMOVE Copyu bytes of memory from arrdyl to arrayb?2.

FILL Fill u bytes of memory array with the same byte.

ERASE Fill u bytes of memory array with O.

13.2. Numeric Conversion

58

FORTH is interesting in its special capabilitiehendling numbers across a
man-machine interface. It recognizes that machaneshumans prefer very
different representations of numbers. Machinefepi@nary representation, but
humans prefer decimal Arabic representation. Hewnelepending on
circumstances, a human may want numbers to besemesl in other radices, like
hexadecimal, octal, and sometimes binary.

FORTH solves this problem of internal (machine)susrexternal (human) number
representations by insisting that all numbers epeasented in binary form in CPU
and memory. Only when numbers are imported or gggdor human consumption
are they converted to external ASCII representatiorhe radix of the external
representation is stored in system variable BAS¥ou can select any reasonable
radix in BASE, up to 72, limited by available pabte characters in the ASCII
character set.

Numeric Output

An output number string is built below the PAD larffn RAM memory. The least
significant digit is extracted from the integertop of stack by dividing it by the
current radix in BASE. The digit thus extractecdsled to the output string
backwards from PAD to the low memory. The conwerss terminated when the
integer is divided to zero. The address and lenfithe number string are made
available by #> for outputting.

An output number conversion is initiated by <# &ewmininated by #>. Between
them, # converts one digit at a time, #S convértha digits, while HOLD and SIGN
inserts special characters into the string undesttaction. This set of commands is
very versatile and can handle many different outpuhats.

CRR .(Numeric Output) CRR \ single precision

:DIGIT (u--c)9 LIT OVER < 7 LIT AND +
(CHAR 0) 30 LIT +;
 EXTRACT (n base --nc) 0 LIT SWAP UM/MOD SWAP DIGIT ;;
n<#(--)PADHLD!;;
2 HOLD (c --) HLD @ 1-DUPHLD!C!;;
2 #(u--u)BASE @ EXTRACT HOLD ;;
2 #S (u--0)BEGIN # DUP WHILE REPEAT
CRR
= SIGN (n--)0<IF (CHAR-)2D LIT HOLD THEN i
2#>(w--bu)DROP HLD @ PAD OVER -
str(n--bu)DUP >R ABS <# #S R> SIGN #> "
2 HEX (--) 10 LIT BASE ! ;;
:: DECIMAL (--) OALIT BASE ! ;;
2 UPPER (c--c')
DUP $61 LIT $7B LIT WITHIN IF $5F LIT AND THEN ;;
= >UPPER (a--)
COUNT FOR AFT DUP C@ UPPER OVER C! 1+ THEN NEXT D ROP ;;

DIGIT Convert integeu to a digitc.
EXTRACT | Extract least significant digit from a numben. n is divided by radix
in base .

59

<# Set up HLD to start numeric conversion.

HOLD Insert an ASCII character in numeric output string.

Extract one digit from integer, according to radix iBASE and add
it to output string.

#S Extract all digits to output string untilis O.

SIGN Insert & sign in numeric output string iif is negative.

#> Terminate numeric conversion and return addxeddength of output
string.

str Convert signed integer to a numeric output string.

HEX Set numeric conversion radix to 16 for hexamhediconversions.

DECIMAL | Set numeric conversion radix to 10 for decimal @sions.

UPPER Convert a character to upper case.

>UPPER Convert a count string pointed to by toptatk to upper case.

Numeric Input

The ceForth_328 text interpreter must interpretm@amds and numbers. It parses
strings out of the Input Terminal Buffer and intexs them in sequence. When the
text interpreter encounters a string which is hettame of a command, it assumes
that the string must be a number and attemptsrieesbit to a number according to
the current radix. When the text interpreter sadsan converting the string to a
number, the number is pushed on the parameter fiatikture use, if the text
interpreter is in the interpreting mode. If iinsthe compiling mode, the text
interpreter will compile an integer literal so theten the command under
construction is later executed, the integer valuebs pushed on the parameter stack.

If the text interpreter fails to convert the stritoga number, this is an error condition
The text interpreter aborts, post an error mesgageu, and then wait for your next
line of commands.

CRR .(Numeric Input) CRR \ single precision

::DIGIT? (c base --ut)
>R (CHAR 0) 30 LIT -9 LIT OVER <
IF 7 LIT - DUP OA LIT < OR THEN DUP R> U< ;;
2 NUMBER? (a--nT|aF)
BASE @ >R 0 LIT OVER COUNT (a0 bn)
OVERC@ (CHAR $) 24 LIT =
IF HEX SWAP 1+ SWAP 1- THEN (a0 b'n")
OVERC@ (CHAR-)2D LIT=>R (a0bn)
SWAP R@ - SWAP R@ + (a0b"n") ?DUP
IF1-(a0Obn)
FOR DUP >R C@ BASE @ DIGIT?
WHILE SWAP BASE @ * + R> 1+
NEXT DROP R@ (b ?sign) IF NEGATE THEN SWAP
ELSE R> R> (b index) 2DROP (digit number) 2 DROP O LIT
THEN DUP
THEN R> (n ?sign) 2DROP R> BASE ! ;;

DIGIT? Convert a digit to its numeric value according to current radix.
If conversion is successful, push a true flag ahoviénot successful

60

returnc and a false flag.

NUMBER? | Convert a count string of digits at locatiario an integer. If first
character is a $, convert in hexadecimal; othervgeavert using
radix inBASE If first character is a, negate integer. If an illegal
character is encountered, address of string aatsa flag are
returned. Successful conversion returns integerevanhd a true flag.

Basic1/O

ceForth_328 system assumes that it communicatbsyait only through a serial I/O
device. The serial I/O uses three primitive comdsar?KEY, KEY, and EMIT.
These commands are enhanced to a set of compommdards which are shared by
tasks doing character 1/O operations.

CRR .(Basic I/0) CRR

:» SPACE (--) BLEMIT ;;

CRR

:: CHARS (+n ¢ --) \ ???ANS conflict

SWAP 0 LIT MAX FOR AFT DUP EMIT THEN NEXT DROP ;;
:: SPACES (+n --) BL CHARS ;;

 TYPE (b u--) FOR AFT COUNT >CHAR EMIT THEN NE XT DROP ;;
2CR(--)(=Cr)O0ODLIT EMIT (=Lf) OA LIT EMI T

2 do$ (--a)

R> R@ R> COUNT + ALIGNED >R SWAP >R ;;

CRR

%" (--a)do$;; COMPILE-ONLY
" (--) do$ COUNT TYPE ;; COMPILE-ONLY

D.R(n+n--)>Rstr R>OVER-SPACES TYP E;;

2 UR (u+n-) >R <##S #> R>OVER - SPACES TYP E;;

mU. (u--)<##S #> SPACE TYPE ;;

. (n--)BASE @ OA LIT XOR IF U. EXIT THEN st r SPACE TYPE ;;
t?(a--)@ . ;;

SPACE Output a blank space character.

CHARS | Output a string of characters.

SPACES | Outputn blank space characters.

TYPE Outputn characters from a string in memdry
CR Output a carriage-return and a line-feed.
do$ Unpack a count string literal, pointed to bgr@ds on return stack. The

string is copied to text buffer. The return address on return stack is
incremented to skip over the string literal.

String literals are data structures compiled in poond commands, in-line with other
commands. A string literal must start with a gfraommand, which knows how to
handle the following count string at run time.

3| Unpack following count string in this stringdral and return address of
count string.

U Unpack following count string in this stringelral and output string
characters.

R Output a signed integerright-justified in a field oftn characters.

61

U.R Output an unsigned integerright-justified in a field ofrn characters.

u. Output an unsigned integerin free format, followed by a space.
Output a signed integerin free format, followed by a space.

? Output a signed integer stored in memayyn free format followed by
a space.

13.3. Dictionary Search
Parsing

Parsing is always considered a very advanced tomiomputer science. However,
because FORTH uses very simple syntax rules, gaisisasy. FORTH input

stream consists of ASCII strings separated by spaced other white space characters
like tabs, carriage returns, and line feeds. Eweihterpreter scans the input stream,
parses or separates out strings, and interpratsitneequence. After a string is
parsed out of the input stream, the text interprieterprets it; i.e., executes itif itis a
valid command, compiles it if the text interpreem the compiling mode, and
convert it to a number if the string is not a FORddmand.

CRR .(Parsing) CRR

:: (parse) (b uc--budelta ; <string>)
tmp! OVER >R DUP\buu
IF1-tmp C@ BL =
IF\'bu"\ skip'
FOR BL OVER C@ - 0< NOT WHILE 1+
NEXT (b) R>DROP 0 LIT DUP EXIT \ all delim
THEN R>
THEN OVER SWAP \b' b’ u'\ 'scan’
FOR tmp C@ OVER C@ - tmp C@ BL =
IF O< THEN WHILE 1+
NEXT DUP >R
ELSE R> DROP DUP 1+ >R
THEN OVER - R> R> - EXIT
THEN (b u) OVER R> - ;;
. PARSE (c -- b u; <string>)
>R TIB>IN @ + #TIB @ >IN @ - R> (parse) >IN + L
:: CHAR (-- ¢) BL PARSE DROP C@ ;;
= PACK$ (bu--a)
HERE 2+ 2DUP C!
2DUP + 1+ 0 LIT SWAP C!
1+ SWAP CMOVE HERE 2+ ;;
:: TOKEN (-- a ;; <string>)
BL PARSE 1F LIT AND PACK$ DUP >UPPER ;;
:WORD (c-- a; <string>)
PARSE PACKS$;;

(parse) | Parse out a string delimited by charactdrom input buffer ab1,
lengthul. Return addreds2 and lengttu2 of the string just parsed
out, and the difference betweerbl andb2.

PARSE | Parse a string delimited by charaaten TIB , from character pointed
to by>IN . It returns addreds and the length of parsed string

CHAR Parse a string delimited by space characté&tin, and return its first

62

character.

PACK$ | Copy a string ab with lengthu, to a count string a.

TOKEN | Parse out a text string delimited by a space characTIB . The text
string is assumed to be the name of a commandislehgth is limited
to 31 characters. This string is copied intoW@RDbuffer one word
above the dictionary; i.etHjERE2.

WORD Parse out next text string delimited by character TIB . This string is
copied into thaVORDuffer one word above the dictionary; i.e.,
HERE2. Length of string is limited to 255 characters.

Search Dictionary

In this FORTH system, records of commands are éink&o a dictionary. A record
contains three fields: a link field holding the rafreld address of the previous record,
a name field holding the name of this command esuat string, and a code field
holding the executable code of this command. Titodary is a linear list linked
through link fields and the name fields of all rets

The link field of the first command record contam®, indicating it is the end of the
linked list. A system variable CONTEXT holds ardegss pointing to the name
field of the last command record. The dictionaegrsh starts at CONTEXT and
terminates at the first matched name, or at tisé édmmmand record.

From CONTEXT, we locate the name field of the a®hmand record in the
dictionary. It this name does not match the sttinge searched, we can find the
link field of this record, which is 2 bytes lesaththe name field address. From the
link field, we fetch out the name field of the neximmand record. Compare its
name with the search string. And so forth.

CRR .(Dictionary Search) CRR

: NAME> (na -- xt) COUNT 1F LIT AND + ALIGNED ;;
2 SAME? (bau--baf\-0+)

$1F LIT AND 2/

FOR AFT OVER R@ 2*+ @

OVER R@ 2* + @ - ?DUP

IF R> DROP EXIT THEN THEN

NEXT O LIT ;;
find (ava--xtna|aF)**xxxkkiixx ha o areful here!!!
SWAP \vaa

DUP C@ tmp ! \ va a \ get byte count

DUP @ >R \va a \ save 1stcell

2+ SWAP \a'va\ next-cell-addr va

BEGINDUP \a'nana

IF DUP @ FF1F LIT AND R@ XOR \ compare 1st cel |

IF 2+ -1 LIT ELSE 2+ tmp @ SAME? THEN

ELSE R> DROP SWAP 2- SWAP EXIT\a F

THEN

WHILE 2-2- @ \a'la

REPEAT R> DROP SWAP DROP 2- DUP NAME> SWAP ;;
2= NAME? (a--xtna|aF)

CONTEXT @ find ;;

63

NAME>

Return code field address from name field addressof a command.

SAME?

Compare two strings atl anda2 for u bytes. If stringl>string2,
returns a positive integer. If stringl<string2ureta negative integer. |
strings are identical, return a 0.

=

find

Look up a count string & in dictionary. Search starts\a . If a
command is found, return code field addressand name field addres
na. If the string is not found, return addresand a false flag.

NAME?

Search dictionary frodl@ONTEXTor a name a&. Return code field
address and name field address if a command islf@therwise,
return addresa and a false flag.

13.4. Text Interpreter

Terminal Input

The text interpreter interprets source text reakivem an input device and stored in
the Terminal Input Buffer. To process characterthe Terminal Input Buffer, we
need special commands to deal with the specialitons of backspace character and

carriage return.

commandsbot is the Beginning Of the input Buffezpt is the End Of the input
Buffer, andcur points to the current character in the input buffe

On top of stack, three speciedmpaters are referenced in many

CRR .(Terminal) CRR

:: "H ('bot eot cur -- bot eot cur-1) \ backspace
>R OVER R> SWAP OVER XOR
IF (=BkSp) 8 LIT EMIT

1- BLEMIT

(=BkSp) 8 LIT EMIT

THEN ;;

:: TAP (bot eot cur c -- bot eot cur)

DUP EMIT OVER C! 1+ ;;

:: KTAP (bot eot cur ¢ -- bot eot cur)

DUP (=Cr) 0D LIT XOR

IF (=BkSp) 8 LIT XOR IF BL TAP ELSE ~H THEN EXI T
THEN DROP SWAP DROP DUP ;;

CRR

raccept(bu--bu)
OVER + OVER
BEGIN 2DUP XOR
WHILE KEY DUP BL - 5F LIT U<
IF TAP ELSE kTAP THEN
REPEAT DROP OVER - ;;
:: EXPECT (b u --) accept SPAN ! DROP ;;
» QUERY (--)
TIB 50 LIT accept #TIB! DROP O LIT >IN ! ;;

"H Process back-space. Erase last character and dsd@m. If
cur=bot , do nothing because you cannot backup beyond hiegiof
input buffer.

TAP Output character to terminal, store in cur , and incrementur .

64

bot andeot are the beginning and end of the input buffer.

KTAP Processes characterc is normally stored atur , which is
incremented by 1. i is a carriage-return, echo a space and make
eot=cur . If c is a back-space, erase the last character andndeot
cur .

accept Acceptu characters into buffer &t or until a carriage return. The
value ofu returned is the actual count of characters redeive

EXPECT | Acceptu characters into buffer &t or until a carriage return. The
count of characters received iSSRPAN

QUERY | Accept up to 80 characters from the inputicketo the Terminal Input
Buffer. This also prepares the Terminal Input Bufte parsing by
setting#TIB to characters received and cleariiy , pointing to the
beginning of the Terminal Input Buffer.

Interpreter

Text interpreter in FORTH is like a conventionakogiting system of a computer. It
is your primary interface to get the computer tondiwk. Since FORTH uses very
simple syntax rule--commands are separated by speetext interpreter is also
very simple. It accepts a line of text from thenmal, parses out a command
delimited by spaces, locates the command in thedary and then executes it. The
process is repeated until the input text is exlemlist Then the text interpreter waits
for another line of text and interprets it agaif.his cycle repeats until you are
exhausted and turns off the computer.

In ceForth_328, the text interpreter is coded esmamand QUIT. QUIT contains an
infinite loop which repeats the QUERY EVAL commagmair. QUERY accepts a

line of text from the input terminal. EVAL intemgs the text one command at a time
till the end of the text line.

When an error occurred, it is because the textpnééer encounters a string which
can not be interpreted or processed. This staraready parsed out and stored in a
buffer in RAM memory. Itis displayed and followbg a ? mark, and the text
interpreter is re-initialized to accept the nerelof commands.

CRR .(Error handling) CRR

:: ABORT (--) 'ABORT @EXECUTE ;;
;o abort" (f--) IF do$
COUNT TYPE ABORT THEN do$ DROP ;; COMPILE-ONLY

CRR .(Interpret) CRR

ERROR (a--)
space count type $3F LIT EMIT
\' $1B LIT (ESC) EMIT
ABORT
 $INTERPRET (a--)
NAME? ?DUP
IF C@ 40 LIT AND
abort" $LIT compile only" EXECUTE EXIT

65

THEN NUMBER? IF EXIT ELSE ERROR THEN

[(--) DOLIT $INTERPRET 'EVAL ! ;; IMMEDIATE

. .OK (--) DOLIT $INTERPRET 'EVAL @ =

IFCR>R >R >R DUP.R>DUP.R>DUP.R>DUP.. "| SLIT ok>"
THEN ;;

2 EVAL (--)

BEGIN TOKEN DUP C@

WHILE 'EVAL @EXECUTE \ ?STACK

REPEAT DROP .OK ;;

CRR .(Shell) CRR

2 QUIT (=)
(=TIB) 880 LIT 'TIB !
[BEGIN QUERY EVAL AGAIN ;;

ABORT Execute the command whose address is inyisters variable
'ABORT. This address normally points @UIT.
abort" When top of stack is non-zero, output tHevang count string

and executABORT otherwise, skip over the error message. It |s
compiled before an error message.

ERROR Display error message in bufferaaind executABORT

$SINTERPRET | Processes a stringat If it is a valid command, execute it;
otherwise, convert it to a number. Failing thagk@xe ERROR and
return toQUIT.

[Activate interpreting mode by storiffNTERPRET into variable
'EVAL , which is executed iBRVAL
.OK Prints theok > prompt after dumping top 4 elements on stack.
EVAL Interpreter loop. Parse a string from the Terah Input Buffer.

Invoke the command ifEVAL to process it, either executing it
with SINTERPRETor compiling it with$§COMPILE Repeat until
input buffer is exhausted.

QUIT Text Interpreter. Receive a line of text idfterminal Input Buffer.
Process input text witBVAL Repeat for ever.

13.5. Compiler
Compiler Primitives

In the Arduino 0022 system, we cannot add new ¢odlee flash memory. The
compiler in ceForth_328 thus extend the dictionarthe RAM memory. To
compile a new command, it first build a header waitimk field and a name field.
Then it uses the commahd (comma) to add pseudo instructions or tokenseo th
code field.

The compiler shares many of its functions, likespay and dictionary search, with the
text interpreter. In the end, the compiler is attfuembedded in the text interpreter.
By merely changing the code field address storatiersystem variabl&VAL from
SINTERPRET to $COMPILE, the text interpreter beceraecompiler. ceForth 328

66

switches smoothly between interpreting mode andpilomy mode, and becomes a
very powerful programming and debugging environmenan operating system.

CRR .(Compiler Primitives) CRR

' (- xt) TOKEN NAME? IF EXIT THEN ERROR
2 ALLOT (n--) CP +!;;

S, (w--)CP@!2LITCP +!;;

:: [COMPILE] (-- ; <string>) ', ;; IMMEDIATE

CRR

. COMPILE (--)R>DUP @, 2+ >R ;;

:: LITERAL doLIT doLIT, , ;; IMMEDIATE

28" (-)(CHAR") -2 LIT ALLOT 22 LIT WORD
COUNT + ALIGNED CP ! ;;

CRR .(Name Compiler) CRR

» 2UNIQUE (a--a)

DUP NAME?

?DUP IF COUNT 1F LIT AND SPACE TYPE ."| $LIT reD ef "

THEN DROP ;;

t$n(a--)
DUP @
IF 2UNIQUE

(a) DUP NAME> CP !
(a) DUP LAST !\ for OVERT

(a) 2-

(la) CONTEXT @ SWAP ! EXIT

THEN ERROR

CRR .(FORTH Compiler) CRR

:: $COMPILE (a--)

NAME? ?DUP

IF C@ 80 LIT AND

IF EXECUTE ELSE , THEN EXIT
THEN NUMBER?

IF LITERAL EXIT

THEN ERROR

:» OVERT (--) LAST @ CONTEXT !;;

DOLIT EXIT, [OVERT ;; COMPILE-ONLY IMMEDIATE
21 (--) DOLIT $COMPILE 'EVAL ! ;;
21 (- ; <string>) TOKEN $,n (' doLIST) 6 LIT A0

Search dictionary for following name, and retishcode field
address if a command is found; otherwise, printstnieag with?.

-]

ALLOT Allocaten bytes of memory on top of dictionary.

; Compile an integewto dictionary, and add it to the growing toke
list of the command under construction. The piiveicompiler.

[COMPILE] | Compile the code field address of the next commHrmmbmpiles an
immediate command, even if it would otherwise becexed.

COMPILE Compile the code field address of the r@xhmand. It forces
compilation of a command at run time.

LITERAL Compile an integer literal. It first compile®LIT , followed by an

integer on top of stack. WheloLIT is executed, it extracts the

67

integer in the next program word and pushes ihenstack.

$’II

Compile a count string. String text is takeonfirthe input stream
and terminated by a double quote. A token (such asor $"|)
must be compiled before the string to form a slitegal.

?UNIQUE

Display a warning message to show thahtdrae of a new
command is the same as a command already in thierdicy.

$,n

Build a new header in the dictionary usingriaee string already
in theWORDbuffer. Fill in the link field with the address LAST.
The top of the dictionary is now the code fieldaaiew command,
ready to accept new tokens.

$COMPILE

Process a string at and compile a new token in the dictionary.
Increment dictionary pointéLP. Ready to compile next token.

OVERT

Link a new command to the dictionary and mialevailable for
dictionary search. Chang@&ONTEXTto point to the name field of
this new command, and extend the dictionary claindlude a new
command.

Terminate a compound command. Compild&ExdT command to
terminate a token list. Link this command to thetidnary, and
change the text interpreter to interpreting mode.

Activate compiling mode by writing the addressf@fOMPILEinto
variable'EVAL .

Create a new compound command. Take the next gtpag to
build a new header. Now, its code field is on tbfhe dictionary,
and is ready to accept tokens.

Defining Commands

Defining commands are molds to create many comméradshare the same run time

execution behavior.

CRR .(Defining Words) CRR

:: CODE (-- ; <string>) TOKEN $,n OVERT ;;
:» CREATE (--; <string>) CODE 1615 LIT, ;;

:: VARIABLE (--

; <string>) CREATE O LIT, ;;

:: CONSTANT (n --; <string>) CODE 1604 LIT, , ;

CODE

Create a new primitive command that is intendecontain pseudo
instructions.

CREATE

Create a new data array without allocatirgory.

VARIABLE

Create a new variable, initialized to 0.

CONSTANT

Create an integer constant.

13.6. Tools
Memory Dump

DUMP command displays 256 bytes of data startirgraemory address on top of
stack. It dumps 16 bytes to a line. Aline beguith the address of the first byte,

68

followed by 16 bytes shown in hex, 3 columns paeby At the end of a line are the
16 bytes shown in ASCII characters. Non-printaiblaracters are replaced by
underscores (ASCII 95).

DUMP dumps RAM memory as well as flash memory. RAlmory is from 0O to
$8FF, and flash memory, which is actually a datayadeclared in ceForth_328.pde,
is from $900 to $1FFF.

The dictionary contains all command records definetie system, ready for
execution and compilation. WORDS command allows tgpoexamine the

dictionary and to look for the correct names of amends in case you are not sure of
their spellings. WORDS follows the dictionary linkthe system variable
CONTEXT and displays the names of all commandkendictionary. The
dictionary links can be traced easily becauseittkefield in the header of a command
points to the name field of the previous command, the link field is two bytes
below the corresponding name field.

CRR .(Tools) CRR

2dm+ (bu--b+tu)
OVER 5 LIT U.R SPACE FOR AFT COUNT 3 LIT U.R THEN NEXT ;;
::DUMP (b --)
$10 LIT
FOR AFT CR $10 LIT 2DUP dm+ ROT ROT
SPACE TYPE
THEN NEXT DROP ;;

CRR

= >NAME (xt--na|F)
CONTEXT
BEGIN @ DUP
WHILE 2DUP NAME> XOR
IF 2-
ELSE SWAP DROP EXIT
THEN
REPEAT SWAP DRORP ;;
2D (a--)
?DUP IF COUNT $1F LIT AND TYPE SPACE
ELSE SPACE ."| $LIT {noName}" THEN ;;
. SEE (--; <string>)
'CR
BEGIN
20 LIT FOR
2+ DUP @ DUP IF >NAME THEN ?DUP
IF SPACE .ID ELSE DUP @ U. THEN
NEXT KEY OD LIT = \ can't use ESC on terminal
UNTIL DROP ;;
> WORDS (--)
CR CONTEXT
BEGIN @ ?DUP
WHILE DUP SPACE .ID 2-
REPEAT ;;
- FORGET (--)
TOKEN NAME? ?DUP
IF 2- DUP CP!

69

@ DUP CONTEXT ! LAST !
DROP EXIT
THEN ERROR
dm+ Display 16 bytes from addrebs Return new addre$s-16 for the
nextdm+
DUMP Display 256 bytes from addrelssA line begins with an address,
followed by 16 bytes in hex and 16 bytes in ASCII.
>NAME From a code field addregs of a command, return its name field
addressia. If xt is not a valid code field address, return 0.
.ID Display the name of a command, given its name feldresa. It
replaces non-printable characters in a name byrsookes.
SEE Search the next word in the input stream fmyramand, and

decompile the first 32 program words in its codédfi Display an
error message if the next word is not a valid comeindt scans the
code field and looks for tokens. If it finds a wlloken, display its
name. If a word in the code field is not a tokesst [display its value.

WORDS Display all names in the dictionary. The thgmrder of commands is
reversed from compiling order. The last defined o@nd is
displayed first.

FORGET Search the next string in the input streanafcommand. If it is a
valid command, delete it and all subsequent commaecatds from
the dictionary.

13.7. Hardware Reset

When ATmega328P microcontroller on Arduino Unoasvered up, or when it is
reset, its FORTH Virtual Machine initializes itsnfe State Machine to start running.
The program counter P is initialized with the corgeat location $900. The code
field address of command COLD is placed at $90€hbymetacompiler. The first
thing COLD does is call a diagnostic routinelAGNOSE:to run a series of tests,
verifying that the FORTH Virtual Machine is workipgoperly. It is superfluous
once the ceForth_328 is fully debugged. Howewveimplementing the ceForth_328,
DIAGNOSE s extremely helpful in simulation and in verifigat. In about 1000
cycles, you can observe most pseudo instructioesut®d, and verify that they
execute correctly.

.» DIAGNOSE (-)
$65 LIT
\ EMIT
\'F' prove UM+ 0< \carry, TRUE, FALSE
OLITO<-2LITO< \OFFFF
UM+ DROP \ FFFF (-1)
3 LIT UM+ UM+ DROP \3
$43 LIT UM+ DROP \'F
\ EMIT
\'0' logic: XOR AND OR
$4F LIT $6F LIT XOR \20h
$FO LIT AND
$4F LIT OR
\ EMIT
\'r' stack: DUP OVER SWAP DROP

70

8 LIT 6 LIT SWAP
OVER XOR 3 LIT AND AND
$70 LIT UM+ DROP \'r'
\ EMIT
\ 't'-- prove BRANCH ?BRANCH
O LIT IF $3F LIT THEN
-1 LIT IF $74 LIT ELSE $21 LIT THEN
\' EMIT
\'h' -- @ ! test memeory address
$68 LIT $80 LIT !
$80 LIT @
\ EMIT
\'M' -- prove >R R> R@
$4D LIT >R R@ R> AND
\ EMIT
\'l' -- prove 'next' can run
61 LIT $A LIT FOR 1 LIT UM+ DROP NEXT
\' EMIT
\'emi' -- prove mul, dupy, popy
$656D LIT $100 LIT UM*
SWAP $100 LIT UM*
SWAP DROP
\ EMIT EMIT
\' C' -- prove div
$2043 LIT O LIT $100 LIT UM/MOD
\ EMIT EMIT

DIAGNOSE | Test the following primitive commands in the celRo@28:LIT , 0<,
QBRANCHJM+ DRORXOR AND OR DUR OVER SWAPR
BRANCH@'! , >R, R@R>, NEXT, UM* andUM/MOD

COLD Initialize the ceForth_328 system to start HBRext interpreter. i
first execute®IAGNOSEto run a few tests on most of the primitive
commands, displays a sign-on message, and thers jtoQJIT.
COLD is the first compound command executed after paypesr
after chip reset. Its address is placed in merumation $900,
which contains an address the FORTH Virtual Machises to start
its Finite State Machine.

13.8. Structures
Control Structures

Commands which build control structures in a toke&nareIMMEDIATE commands
which are executed in compiling mode, not compdedokens. Control structures
are as follows:

IF...ELSE...THEN

IF...THEN

FOR...NEXT

FOR...AFT...THEN...NEXT

BEGIN...UNTIL

BEGIN...AGAIN

71

BEGIN...WHILE...REPEAT

| use two characteis andA to denote some addresses on the data stacgoints to
a location to where a branch commands would jump £opoints to a location where
a new address will be stored when the addressavie.

CRR .(Structures) CRR

:: <MARK (-- a) HERE ;;

" <RESOLVE (a--), ;;

:>MARK (-- A)HEREOLIT, ;;

:: >RESOLVE (A --) <MARK SWAP ! ;;

CRR

- FOR (-- a) COMPILE >R <MARK ;; IMMEDIATE
:» BEGIN (-- a) <MARK ;; IMMEDIATE

" NEXT (a--) COMPILE doNEXT <RESOLVE ;; IMMEDIA TE

- UNTIL (a --) COMPILE QBRANCH <RESOLVE ;; IMMED IATE
CRR

2 AGAIN (a--) COMPILE BRANCH <RESOLVE ;; IMMED IATE

2 IF(--A) COMPILE QBRANCH >MARK ;; IMMEDIATE
2 AHEAD (-- A) COMPILE BRANCH >MARK ;; IMMEDIATE
:: REPEAT (A a--) AGAIN >RESOLVE ;; IMMEDIATE

CRR
:: THEN (A --) >RESOLVE ;; IMMEDIATE
" AFT (a--aA) DROP AHEAD BEGIN SWAP ;; IMMEDI ATE

- ELSE (A -- A) AHEAD SWAP THEN ;; IMMEDIATE
“WHEN (aA--aAa)lFOVER;; IMMEDIATE
mWHILE (a--Aa) IFSWAP ;; IMMEDIATE

CRR .(compilers) CRR

;o ABORT" (-- ; <string>) COMPILE abort" $," ;; | MMEDIATE
0 $" (- ; <string>) COMPILE $"| $," ;; IMMEDIAT E

.M (--; <string>) COMPILE ."| $," ;; IMMEDIAT E

CRR

.((-) 29 LIT PARSE TYPE ;; IMMEDIATE

2\ (--)$A LIT WORD DROP ;; IMMEDIATE

2 (29 LIT PARSE 2DROP ;; IMMEDIATE

- IMMEDIATE 80 LIT LAST@ @ ORLAST @ ! ;;

<MARK Leave addresa of the current program word on the stack.

<RESOLVE| Compile addresa into the current program word.

>MARK Compile a 0 into current program word. Push itsrasigA on stack.

>RESOLVE| Store address of current program word in addéems top of stack.

FOR Begin aFOR-NEXTloop. Compile &R command and leave the
address of the next woedon the stack.

BEGIN Begin a indefinite loop. Leave addressf the current program word
on the stack.

NEXT Compile adoNEXT command with target addreas

THEN Resolve branch addressfatvith current program word address.

UNTIL Compile aQBRANCIKommand with target addreas

AGAIN Compile aBBRANCHommand with target address

IF Compile aQBRANCIKommand, and leave its addressn stack.

72

AHEAD

Compile aBRANCHommand, and leave its addrassn stack.

REPEAT

Compile aBBRANCHommand with target addressUse the address ¢
the next program word to resolve the address téttie QBRANCH
command aA.

of

AFT

Compile aBRANCHommand and leave its addres®\aReplace the
address left by FORwith the address of the next program word.

ELSE

Compile aBBRANCHommand. and push the address of the next
program word on stack. Swap two address on staesolRe the
address on top of stack with current program waoldless.

WHILE

Compile aQBRANCIommand and leave its addréssn the stack.

Prior addresa is swapped to the top of stack.

String Structures

A string structure in a token list begins with argy command token, followed by a

count string.

Commands which build string struetuare also IMMEDIATE

commands.

ABORT" Compile an error message. This error mesgadesplayed when the
top of the stack is non-zero.

) Compile a string literal, which will be displeg at run time.

$" Compile a string literal. When it is executed]y the address of the
string is left on the data stack for the followicgmmands to access
this string.

(Display the following string, delimited by).

\ Start a comment. Ignore all characters until @hlihe.

(Start a comment. Ignore the following stringliméed by).

IMMEDIATE | Set the immediate bit in the name field of the tieftned command.
Such a command will be executed, not compiledpmmiling mode.

13.9. Initialize System Variables

When the ceForth_328 powers up, the P registaitialized by an address fetched
from location $900. At the end of cefMETA328.kfjlthe metacompiler stores the

address o€OLDin this location.

The metacompiler also storelb&it words in a

table from $90A to $918 to initialize 8 variables, that the FORTH Virtual Machine
can run properly. The following table shows theagables, their addresses, their
initial values and their functions.

CRR
900 ORG
COoLD

$90A ORG
$880

$10
SINTERPRET
0

lastH forth_ @
$320

lastH forth_ @

#1
#i
#1
#1
#1

73

QUIT

write-mif-file
forth_forget H
FLOAD cefSIM328.F

Variable Address| Initial | Function

Value
reset vector| $900 $1ACC| Address ofCOLDto start ceForth 328 system.
'TIB $90A $880 Address of Terminal Input Buffer.
BASE $90C $0A Number base for numeric conversions.
'EVAL $90E $15F8 | Execution vector of text intergnetinitialized to

point to$INTERPRET. It may be changed to
point to$COMPILEiIn compiling mode.

HLD $910 $0 Pointer to numeric output string.

CONTEXT | $912 $1C7C| Pointer to name field of last command in
dictionary.

CP $914 $320 Pointer to top of dictionary, firgegmemory
location to add new commands.

LAST $916 $1C7C| Pointer to name field of last command in
dictionary.

'ABORT $918 $16A6 | Address ofQUIT command to handle error
conditions.

The ceForth_328 is now completely built in the &rdjctionary. In cefMETA328.f
file, the target dictionary is now copied into ttoen.mif file by the command
write-mif-file.

14. cefSIM328.f

The metacompiler redefined most F# commands inracdieuild the ceForth_328
target dictionary. Before we load in the simulatbe metacompiler must be
removed. The commands in cefMETA328.f

forth_forget H
removes all the metacompiler commands. F# ismedtand the following
commands load in ceForth_328 simulator in cefSIMB28

FLOAD cefSIM328.f

An accurate and fast logic simulator is extremellgble in designing and testing a
new CPU or a virtual machine. It is also very utef software development if it is
difficult to debug software in actual hardware. isTteForth_328 simulator served
me well in the process of developing the ceFortl8 8&tem.

This ceForth_328 simulator faithfully replicatee tlbgic behavior of the ceForth_328
on a cycle-by- cycle basis. The ceForth_328 FORirtdal Machine (FVM) is
composed of a set of registers and two stacks. pBage Finite State Machine (FSM)
runs the FVM to execute pseudo instructions storedmemory array. It is very
simple to simulate this behavior logically in a siator.

74

The source code of this simulator is in cefSIM328.F is loaded at the end of
cefMETA328.F, which builds the ceForth_328 systama F# memory arragm.

The simulator reads program words from this array @xecutes pseudo instructions
contained in this array.

14.1. Registersand Memory

HEX
$1F CONSTANT LIMIT (stack depth)
$7FFF CONSTANT RANGE (program memory size in words)
VARIABLE CLOCK (slot is in the last 2 bits)
VARIABLE BREAK
CREATE REGISTER $300 ALLOT
:C+'DUP>RC@ + R>C!;
DECIMAL
REGISTER CONSTANT P
REGISTER 4 + CONSTANT |
REGISTER 8 + CONSTANT I1
REGISTER 9 + CONSTANT I2
\ REGISTER 10 + CONSTANT I3
\ REGISTER 11 + CONSTANT 14
\ REGISTER 12 + CONSTANT I5
REGISTER 13 + CONSTANT RP
REGISTER 14 + CONSTANT SP
REGISTER 16 + CONSTANT T
REGISTER 24 + CONSTANT IP
REGISTER 32 + CONSTANT WP
REGISTER $100 + CONSTANT RSTACKO
REGISTER $200 + CONSTANT SSTACKO
HEX
: RSTACK RP C@ LIMIT AND 2 LSHIFT RSTACKO + ;
: SSTACK SP C@ LIMIT AND 2 LSHIFT SSTACKO + ;
: CYCLE 1 CLOCK +!;
: JUMP CLOCK @ 3 OR CLOCK !;
: RPUSH (' n --, push n on return stack)
1 RP C+! RSTACK W! ;
: RPOPP (-- n, pop n from return stack)
RSTACK W@ -1 RP C+!;
: SPUSH (n --, push n on data stack)
1 SP C+!
TW@ SSTACK W!
T!,
: SPOPP (-- n, pop n from data stack)
TW@
SSTACKW@ T W!
-1 SP C+!;
: continue
P W@ RAM@ DUP | W!
100 /MOD SWAP 11 C!
FF AND 12 C!
2P +!;

Command | Function

LIMIT Limit stacks depths are 32 levels.

RANGE Limit program size to 32kB, the size of tR&AMarray

75

CLOCK A variable that has a 30-bit count field an#@-bit phase field. The
phase field paces FSM to fetch program words aedwdion pseudo
instructions.

BREAK A variable holding a breakpoint address.

REGISTER| Base address of registers and stack arrays.

CYCLE IncrementCLOCKto run FSM.

JUMP Force a 3 into phase field @LOCK In next cycle CLOCKis
incremented and the phase field is cleared to lhhenTa new program
word will be fetched and its pseudo instructiond e executed.

RPUSH Push integer d on return stack.

RPOPP Pop return stack and leave integer on systak.

SPUSH Push integer d on parameter stack.

SPOPP Pop parameter stack and leave integer tamsgtack.

continue Fetch next program word and store theeRgbs instructions in 11 and

12, to be executed in sequence by FSM.

14.2. Pseudo Instructions

Following are pseudo instructions in the FORTH MattMachine simulated in this
simulator. These pseudo instructions were impldeteim C code, which were
discussed earlier in the ceForth_328.pde sketcimey &re now coded in FORTH.
It is interesting to compare the same set of pséustauctions implemented in two
different programming languages.

:next, IP W@ RAM@ P W!
2 1P +! JUMP ;
:nop, JUMP;
: bye, ABORT" Simulation done.";
\:grx, ?RX ?DUP IF SPUSH -1 ELSE 0 THEN SPUSH
:grx, KEY SPUSH -1 SPUSH ;
: txsto, SPOPP TX! ;
cinline, PW@ RAM@ SPUSH 2 P +!;
. dolit, IP W@ RAM@ SPUSH 2 IP +! next, ;
: dolist, IP W@ RPUSH P W@ IP W! next, ;
: exit, RPOPP IP W! next, ;
: execu, IP W@ RPUSH SPOPP P W! JUMP ;
: donext, RPOPP ?DUP IF 1- RPUSH IP W@ RAM@ IP W!
ELSE 2 IP +! THEN next, ;
: gbran, SPOPP IF 2 IP +! ELSE IP W@ RAM@ IP ! THE N next, ;
sbran, IP W@ RAM@ IP W! next, ;
. store, SPOPP SPOPP SWAP RAM! ;
;at, SPOPP RAM@ SPUSH ;
. istore, SPOPP SPOPP SWAP RAM! ;
iat, SPOPP RAM@ SPUSH ;
.icat, SPOPP RAMC@ SPUSH ;
: cstor, SPOPP SPOPP SWAP RAMC! ;
. cat, SPOPP RAMC@ SPUSH ;
: rpat, 9C RAM@ SPUSH ;
: rpsto, SPOPP 9C RAM! ;
: rfrom, RPOPP SPUSH ;
: rat, RPOPP DUP RPUSH SPUSH ;
: tor, SPOPP RPUSH ;
. spat, 9E RAM@ SPUSH ;
: spsto, SPOPP 9E RAM! ;
: drop, SPOPP DROP ;

76

: dup, SPOPP DUP SPUSH SPUSH ;
: swap, SPOPP SPOPP SWAP SPUSH SPUSH ;
: over, SPOPP SPOPP DUP SPUSH SWAP SPUSH SPUSH ;
: zless, SPOPP $8000 AND $8000 = $FFFF AND SPUSH ;
: andd, SPOPP SPOPP AND SPUSH ;
:orr, SPOPP SPOPP OR SPUSH ;
: xorr, SPOPP SPOPP XOR SPUSH ;
: uplus, SPOPP SPOPP + DUP $FFFF AND SPUSH
$10000 AND IF 1 ELSE 0 THEN SPUSH ;
: dovar, P @ SPUSH ;

Instruction | Function

next, Continue processing next token pointed téPbyncrement IP.

nop, No operation.

grx Push received character on stack. Also puSRUE flag.

txsto, Send a character on top of stack to tratemit

inline, Push next word pointer to by P on stackacrément P.

dolit, Push next word pointer to by IP on stackncréement IP.

dolist, Push IP on the return stack. Copy P iRtarhd start processing a
new token list.

exit, Pop the return stack back to IP. Returmtinéerrupted token list.

execu, Push IP on return stack. Pop parametek sticP, and start
executing the pseudo instructions starting at P.

donext, If top of return stack is not 0, decrenieand then jump to address
pointed to by IP, thus repeating a loop. If topedfirn stack is O,
pop it off the return stack, increment IP, and &#vs loop.

gbran, If top of stack is 0, branch to addresstedimo by IP. If top of stack
is not 0, increment IP, and continue processingtieent token list.

bran, Branch to address pointed to by IP.

store, Store the second element on stack to ams&ldn top of stack.

cstore, Store the second byte element on staak &ml@ress on top of stack.

at, Replace top of stack by the contents it addeess

cat, Replace top of stack by the byte contentddtesses.

icat, Not used.

iat, Not used.

istore, Not used

icstore, Not used.

rfrom Pop the return stack and push it on the patanstack.

rat Pop top of return stack and push it on thempatar stack.

tor Pop parameter stack and push it on the retagks

drop, Pop the parameter stack.

dup, Duplicate top of parameter stack.

swap, Swap the top two elements on the parameiek. st

over, Duplicate and push the second element opdremeter stack.

zless, If top of stack is negative, replace it vathRUE flag; else replace it
with a FALSE flag.

andd, Pop top of parameter stack and AND it tanéhe top element.

orr, Pop top of parameter stack and OR it to tive top element.

XOrr, Pop top of parameter stack and XOR it tortee top element.

77

uplus, Add top two elements on parameter stackaceghem with a double
integer sum.

dovar, Push the address in P on the parameter. stack

14.3. Finite Sate Machine

Following is the Finite State Machine (FSM) in FGRVirtual Machine (FVM)
implemented in the simulator. The FSM paces thmukitor through pseudo
instructions stored iRAMmemory, with a master clock, simulated bgl20CK

variable. The lowest two bits DLOCKis a Phase Counter. The value in the Phase
Counter indicates which phase is currently beirgcated. If it is Phase 0,

contine command is executed. Ifitis Phase 1, the pseginuction in 11 is
executed. Ifitis Phase 2, the pseudo instructidf is executed. There is nothing
to do in Phase 3, and Phase 0 follows immediately.

HEX

CREATE CODE-TABLE

'nop, , 'bye, ,'qrx, ,'txsto,,
"inline, , ' dolit, , ' dolist, , ' exit, ,
'execu, , 'donext, , ' gbran, , 'bran, ,
' store, , 'at, ,'cstor, ,'cat, ,
"istore, , 'iat, ,'rfrom, ,'rat, ,
"tor, ,'dovar, , 'next, ,'drop, ,
"dup, ,'swap, ,'over, ,'zless,,
"andd, ,'orr, ,'xorr, ,"'uplus,,
"icat, ,

. executecode (code --)
DUP 21 > ABORT" lllegal code "
CELLS CODE-TABLE + @ EXECUTE ;

. .stack (add #) FOR AFT DUP @ U. 4 - THEN NEXT D ROP CR;
;.sstack "S"T @ U.

SSTACK SP C@ .stack ;
c.rstack ." R:" RSTACK RP C@ .stack ;

. .registers " IP="IP@ . ."P="P @ .." I=" | @ U.
M=t11C@. M 12="12C@ .
CR;

;S ." CLOCK="CLOCK @ . .registers
.sstack .rstack ;

: SYNCO continue ;

: SYNCL1 11 C@ executecode ;

: SYNC2 12 C@ executecode ;

CREATE SYNC-TABLE

'continue , ' SYNC1, 'SYNC2, 'JUMP ,

: sync CLOCK @ 3 AND cells
SYNC-TABLE + @ EXECUTE ;

CODE-TABLE | An array containing the execution addresses dhalpseudo
instructions.

executecode From the byte code of a pseudo ingtnygtick up its execution
address ilCODE-TABLEand execute it.

.stack Display the contents of a stack.

78

.sstack

Display the contents of data stack.

rstack Display the contents of return stack.

registers Display the contents of all the relévagisters.

S Show all the registers and stacks at this cycle.

SYNCO Phase 0. Fetch and decode next program word

SYNC1 Phase 1. Execute pseudo instruction in 11

SYNC2 Phase 2. Execute pseudo instruction in 12

SYNC-TABLE | A array containing 4 execution addresses to beut@dan 4
phases of FSM.

sync From the phase field of variabl&@ OCK execute the command

appropriate for that phase, selected fi®@fNC-TABLE This is
the Finite State Machine of the FORTH Virtual Mawehi

14.4. User Interface

This simulator has a very simple text-based uderfece. The most used

commands are:

:C sync CYCLES;
: RESET REGISTER $300 ERASE 0 CLOCK !
$900 RAM@ P ! (start of code table in flash)

RESET

:G (addr--)

CR ." Press any key to stop." CR

BREAK'!

BEGIN sync P @ BREAK @ =
IF CYCLE C EXIT

ELSE CYCLE

THEN
?KEY
UNTIL ;

:PUSH (n) T @ SPUSH T ! ;

: POP SPOPP ;

:D P @ CELL- FOUR FOUR;

:M SHOW ;

:RUN CR ." Press ESC to stop." CR
BEGIN C KEY 1B = UNTIL ;

: HELP CR ." cEF Simulator, copyright Offete Enter prises, 2009"
CR ." C: execute next cycle"
CR ." S: show all registers"
CR ." D: display next 8 words"
CR ." addr M: display 128 words from addr"
CR ." addr G: run and stop at addr"
CR ." RUN: execute, one key per cycle"

CR;
Command Function
C Run one clock cycle and display all registers stadks.
reset Clear theREGISTERarray, simulating hardware reset.
G Run and stop at address given on stack. Thiyvey \

79

efficient way to set breakpoints and then runatill
breakpoint is triggered. It allows you to execatiarge
portion of the program and stop only at a specified
location.
PUSH Push a new integer into the T register ana staick.
POP Discard contents in T and pop data stack laokTi
D Display memory starting at address in P.
M Dump 256 bytes in memory usisgow command.
RUN Continue stepping with any key, terminated I3CE
HELP Display instructions to use the simulator.

Cis the single stepper in simulator. It runs tisFor one cycle, and displays all
registers and stacks. This is the most useful canahto debug the ceForth_328 in
the early development stage. You can see allidatkregisters and stacks. In the
ceForth_328 system, the first command execut&@DkD which executes a
diagnostic wordDIAGNOSE DIAGNOSEuns simple tests on most pseudo
instructions. By single stepping throuDPAGNOSE you can validate most pseudo
instructions. If all tests IDIAGNOSEun successfully, it is very likely the
ceForth_328 will run correctly.

reset clears thdREGISTERarray, and initializes the simulator to run from a
location whose address is stored in $900.

This simulator is most effective in debugging sksaguences of program words to
verify that the sequences are executed correctifter ceForth_328 pseudo
instructions are verified, use tecommand to execute a long stretch of program and
break only at a specified location. This allowgésegments of programs to be
tested. If the simulator runs forever and caneath the break point you specified,
you can stop th& command by hitting a key on the keyboard to teatant.

When F# runs the metacompiler to compile ceFortB, B2lisplays names and code
field addresses of all commands compiled into &ngett dictionary. The display is a
symbol table. You can look up a command and fied¢ade field address. The
code field addresses are the best place to setyeak point. To debug a command,
find its code field address and enter it with@eommand. The simulator will

break at the beginning of this command, and youwsanthe C command to single
step through it.

Typing lots ofC commands is tedious. TRJNcommand lessens your typing chore.
After executingRUN the simulator displays registers and stacks andgs.

Pressing any key will single step Slot Machinedoe cycle. You can run many
steps easily this way. When you want to $Rii\ press the ESC key.

To examine memory, type an address followed byMbhemmand. It will display
256 bytes of memory starting from that address. e hommand displays 8
program words starting at this address.

If you want to start debugging at a particular &ddr type the address followed by the
P command. This address is stored in the programteoregister, P, andor RUN

80

commands will single step words starting at thisnmoey address.

If you want to change the data stack to run sinfatvith the data you want on the
stack, us€?USHandPOPcommands. Type a number followedPySH and this
number is pushed on the data stack in the simulatéou can enter as many numbers
on stack as you like in this way. If you want teadrd a number off the data stack,
type POR

The above commands allow you to set up ceForthsB@8lator exactly the way you
want before running simulation.

81

Appendix eForth_328 Commands

- (n1 n2 -- n3) Subtract n2 from nl (n1-n2=n3).

' <name> (-- addr) Find <name> and leave its addre

! (n addr --) Store n to addr.

j[e] (--) Initialize the serial 1/0 devices.

(n -- n/base) Convert next digit of n and adw ibutput string

#> (n--addrnl) Terminate numeric conversioayieg addr and count nl.

#S (n--) Convert all significant digits in n tatput string.

#TIB (-- addr) Return address of variable stomignber of characters

received in terminal input buffer.

$" <string> (-- addr) Compile a string literal. tRen its address at run time.

S| (-- addr) Return address of following striitgrial at run time.

$.n (addr --) Build a new dictionary header uding string at addr.

$COMPILE | (addr --) Compile string at addr to dictionary as a toketiteral.

$INTERPRET| (addr --) Interpret string a addr. Execute itofvert it to a number.

(<text>) (--) Ignore comment text.

(parse) (addr n char -- | Scan string delimited by char. Return found stang its offset
addr n delta) delta.

* (n1 n2 -- n3) Signed multiply. Leave product.

*/ (n1 n2 n3 -- n4) Signed multiply and divide. Meaquotient of (n1*n2)/n3.

*MOD (n1 n2 n3 -- n4) Signed multiply and divideeave remainder of (n1*n2)/n3.

, (n--) Add n to parameter field of the most r@bedefined word.

. (n--) Display signed number with a trailing ika

S <text>" () Compile <text> message. At rum#é display text message.

N (--) Display following string literal as axemessage.

.(<text>) () Display <text> received from thmput stream.

.ID (addr --) Display nhame of a command at addr.

.OK (--) Display ok> message.

R (nnl--) Display n right justified in a fietef n1 character width.

/ (n1 n2 -- quot) Signed division. Leave quotiehhd/n2.

/MOD (N1 n2 --rem Signed division. Leave quotient and remainder édhR1
quot)

: <hame> () Begin a compound command of <name>.

; (--) Terminate a compound command.

? (addr --) Display contents in addr.

?DUP (n--nn|0) Duplicate top of stack ifdtriot a 0.

?KEY (--charT|F) Return input character angkfror a false if no input.

?RX (--charT|F) Return input character ané tar a false if no input.

?UNIQUE (addr --) Display a "reDef" message if agdan existing command.

@ (addr -- n) Replace addr by number fetched frddr.a

[(-) Switch from compilation to interpretation.

[COMPILE] (--) Compile the word <name> in the input streasran token.

<name>

\ <text> (-) Ignore text till end of line.

] (-) Switch from interpretation to compilation.

"H (bot eot cur -- Backspace. Backup the cursor by one character.
bot eot cur)

+ (n1 n2 -- n3) Add nl1 and n2.

+! (n addr --) Add n to number at addr.

< (n1 n2 -- flag) True if n1 less than n2.

<# (--) Start numeric output conversion.

<MARK (-- addr) Push current program address anlkst

<RESOLVE (addr --) Compile addr to dictionary.

= (n1 n2 -- flag) True if n1 equals n2.

> (n1 n2 -- flag) True if n1 greater than n2.

>CHAR (n -- char) Convert n to a printable charactear. Non-printable characte

82

is converted to an underscore character.

>IN (-- addr) Return address of a variable pomptio current character being
interpreted.

>MARK (-- addr) Compile 0 to dictionary. Push #ddress on stack

>NAME (ca -- na) Convert a code field address tmme field address.

>R (n--) Pop top and push it on return stack.

>RESOLVE (addr --) Store address of current progveord in addr.

>UPPER (addr --) Convert a count string at addrtper case.

0< (n -- flag) True if n is negative.

0= (n -- flag) True ifnis 0.

1- (n --n-1) Decrement top.

1+ (n -- n+1) Increment top.

2- (n --n-2) Decrement top by 2.

2! (d addr --) Store a double integer to addr.

2* (n -- 2n) Multiply top by 2.

2/ (n --n/2) Divide top by 2.

2@ (addr -- d) Fetch a double integer from addr.

2+ (n -- n+2) Increment top by 2

2DROP (d-) Pop two numbers off stack.

2DUP (d--dd) Duplicate a double integer on stack

ABORT (--) Clean up stack and jump to addresaBORT.

'ABORT (-- addr) Return address to handle errawdion.

abort" (flag --) If flag is true, display followgnmessage and ABORT.

ABS (n--u) Return absolute value of top.

accept (addr n -- addr | Accept n characters to buffer at addr. Replacéim actual

nl) count nl

AFT (--) Branch to THEN to skip a branch in FOR-KIEloop.

AHEAD (--) Branch forward to address in next word.

ALIGNED (n--nl) Adjust n to the word boundary.

ALLOT (+n--) Add +n bytes to parameter field detmost recently word.

AND (n1 n2 -- n3) Logical bit-wise AND.

BASE (-- addr) Contain radix for numeric conversi

BEGIN (--) Start an indefinite loop.

BL (--32) Push 32 on stack.

BRANCH (flag --) Branch to address in next prognaord if flag is 0.

C! (n addr --) Store a byte to addr.

C@ (addr -- n) Fetch a byte from addr.

CHAR (-- char) Push first character in the followingttsking.

<string>

CHARS (n char --) Send n characters char to thpubdevice.

CMOVE (addr addrl n --) Copy n bytes starting at addr to memory startingdalr1.

CODE (--) Start a new primitive command.

<name>

COLD () Initialize FORTH system and start téxterpreter.

COMPILE (--) Retrieve address of the following command aompile it as a

<name> token.

CONSTANT | (n--) Define a constant. At run-time, n is pusledhe stack.

<name>

CONTEXT (-- addr) Return address of a variablanfiiog to name field of last word
in dictionary.

COUNT (addr -- addr+1 | Replace addr with address and count of a coumigstri

n)

CP (--addr) Return address of a variable pajntinfirst free space on
dictionary.

CR (-) Display a new line. Carriage return ainé ffeed.

CREATE (--) Define an array. At run-time, its addresteis on the stack.

<name>

DECIMAL (-) Set number base to decimal.

83

DIAGNOSE () Exercise all primitive commands figbugging.

DIGIT (n -- char) Convert digit u to a character.

DNEGATE (d -- di1) Negate a double integer on stack.

do$ (--addr) Return the address of the following compiled string

doCON (--n) Return contents of next program word.

doLIST (--) Start processing a new nested list.

doLIT (--n) Push an inline literal.

doNEXT (--) Terminate a single index loop.

doVAR (-- addr) Return address of next programdwor

DROP (n--) Discard top of stack.

DUMP (addrn --) Dump n bytes of memory startingnfi addr.

DUP (n1 -- n2) Duplicate top of stack.

ELSE (--) Terminate <true> clause, continue aterTHEN.

EMIT (char --) Initialize the serial 1/0 devices.

ERASE (addrn --) Clear a n byte array at addr

ERROR (addr --) Display error message at addrjamg to ABORT.

EVAL -) Interpret input stream in terminal inplouffer.

'EVAL (-- addr) Return address of variable conitagr$INTERPRET or

$COMPILE.

EXECUTE (addr --) Execute the command at addr.

EXIT (--) Terminate execution of current compowammand.

EXPECT (addrn --) Accept n characters into buffeaddr.

EXTRACT (n base -- n/base Extract the least significant digit n1 from n. rdisided by
nl) base.

FILL (addr n char --) Fill an array at addresshwitcharacters char.

find (ava--cana|a| Search dictionary at va for a string at a. Retarawed na if
0) succeeded, else return a and 0.

FOR (n--) Setup loop. Repeat loop until limitsndiecremented to 0.

FORGET (--) Delete command <name> and all words addeahadrds.

<name>

HERE (-- addr) Address of next available dictign@cation.

HLD (-- addr) Return address of a variable poigtio next converted digit.

HOLD (char --) Add character char to the numbgngtunder conversion.

IF (flag --) If flag is zero, branches forward<talse> or after THEN.

IMMEDIATE | (--) Set immediate bit in name field of last coemd added.

KEY (-- char) Get an ASCII character from the Begrd. Does not echo.

KTAP (bot eot cur char| Process a control character, CR or backspace.
-- bot eot cur)

LAST (-- char) Get an ASCII character from thg/k@ard. Does not echo.

LITERAL (n--) Compile number n. At run-time, ngished on the stack.

M* (n1 n2 --d) Multiply n1 and n2. Return doublgeéger product.

M/MOD (d n -- mod quot)| Divide double integer d by n1l. Return remaindeat gootient.

MAX (n1 n2 -- n3) n3 is the larger of n1 and n2.

MIN (n1 n2 -- n3) n3 is the smaller of n1 and n2.

MOD (n1 n2 -- mod) Signed divide. Leaver remainaienl/n2.

NAME? (addr -- ca na | a| Search dictionary for name at addr. Return coeld iddress
F) and name field address if a command is found,pis a false

NAME> (na -- ca) Convert a name field address tode field address.

NEGATE (n1 -- n2) Two's complement.

NEXT (--) Decrement index and repeat loop umiiléx is less than 0

NOT (n1 -- n2) Bit-wise one's complement.

NUMBER? (addr--nT | Convert a string at addr to an integer and pusheafltag. If it
addr F) is not a number, push a false flag.

OR (n1 n2 -- n3) Logical bit-wise OR.

OVER (n1 n2 --nln2 | Make copy of second item on stack.
nl)

OVERT (--) Change CONTEXT to add a new commandittionary.

PACK$ (addr n-- addrl)| Copy a string at addr vétigth n, to a count string at addrl.

84

PAD (--addr) Return address of a scratch pad.are

PARSE (char -- addr n) Parse terminal input buffera string terminated by char.
Return its address and length.

PEEK (addr -- n) Fetch a byte from addr.

POKE (n addr --) Store a byte to addr.

QBRANCH (flag --) Branch to address in next wordlaf is zero.

QUERY (-- addr) Leave address of a scratch afed least 84 bytes.

QUIT (--) Return to terminal, no stack change hmessage.

R@ (--n) Copy top of return stack on stack.

R> (--n) Pop top of return stack and push it @tls

REPEAT (--) Unconditional backward branch to BRGI

ROT (n1 n2 n3 -- n2 | Rotate third item to top. "rote"

n3 nl)
SAME? (addrl addr2 n -1 Compare two strings at addrl and addr2 for n bytes.

aadrl addr2 flag

string1>string2, returns a positive integer. Ifrgifi <string2,
return a negative integer. If strings are identicaturn a 0.

SEE <name> | (--) Decompile the word <name>.

SIGN (n--) If n is negative, add a - sign to thember output string.

SPACE (--) Display a space.

str (n -- addr n1) Convert signed integer n to meuric output string at addr,
length n1.

SPACES (n--) Display n spaces.

SWAP (n1 n2 -- n2 n1) Exchange top two stack items.

TAP (bot eot cur char| Accept and echo a character and bump the cursor.

-- bot eot cur)

THEN (--) Terminate the IF-ELSE structure.

TIB (-- addr) Push address of terminal input buff

‘TIB (--addr) Return address of variable poigtio terminal input buffer.

tmp (-- addr) Return address of a temporary égia

TOKEN (--addr) Parse next string delimited baspinto a word buffer 2 bytes
above the top of dictionary.

TX! (char --) Send character c to the output device

TYPE (addr +n --) Display a string of +n charaststarting at address addr.

U. (n--) Display unsigned number with trailingabk.

U.R (nnl--) Display unsigned number n rightifiistl in a field of n1
characters.

U< (n1 n2 -- flag) Unsigned compare. Return truali€n2.

UmM* (n1 n2 --d) Unsigned multiply. Return doublgeger product.

UM/MOD (d n -- mod quot)| Unsigned divide. Return remainder and quotient.

UM+ (n1 n2 --d) Unsigned add. Return double integgam.

UNTIL (flag --) Repeat <loop-body> until the flaginon-zero.

UPPER (char -- charl) Convert a character to uppse.

VARIABLE (--) Define a variable. At run-time, <name> leavis address.

<name>

WHILE (flag --) Repeat <loop-body> and <true> dawvhile the flag is
non-zero.

WITHIN (n1 n2 n3 -- flag) | Return true flag if n1<=n3<n2. Else, return falkef

WORD (char -- addr) Get the char delimited string <tefkbm the input stream and

<text> leave as a counted string at addr.

WORDS (--) Display all commands in the dictionary

XOR (n1 n2 -- n3) Logical bit-wise exclusive OR.

85

