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ceForth_23 
 

Preface--How to Write Forth in C 

 
In 1990, when Bill Muench and I developed eForth Model for microcontrollers, memory was 

scarce and the only way to implement eForth was assembly. At that time, there were several 

Forth systems written in C, the most notable ones were Wil Baden‟s thisForth, and Mitch 

Bradley‟s Forthmacs. However, these two implementations were targeted to large computers, 

base on Unix environment. I studied them, but could not understand them in their convoluted 

make processes. I did not have sufficient knowledge on C and Unix to build eForth from 

scratch. 

 

In Silicon Valley Forth Interest Group, we intermittently had long discussions on how to write 

Forth in C. John Harbold, an expert C programmer, assured me that it was possible to write 

Forth in C, and showed me code fragments on how to do it. But, they were way above my head. 

 

In 2009, I started to think seriously on my problems with C, and problems in writing Forth in C. 

I realized that a Virtual Forth Machine (VFM) could be written easily in C, just like in any 

other assembly language. VFM was simply a set of Forth primitive commands, very simple to 

write in assembly of a particular microcontroller, or in C, which was designed for an idealized, 

general purpose CPU. My problems were in the construction of a Forth dictionary. Forth 

dictionary is a linked list of Forth commands, in the form of records. Each record has 4 fields, a 

fixed length link field, a variable length name field, a fixed length code field, and a variable 

length parameter field. The elementary C compiler, as I understood, did not have data 

constructs for building and linking of these records. You needed the convoluted ways in 

thisForth and Forthmac to build and link these records. 

 

Chuck Moore showed me how to write assembler and how to build the dictionary in MuP21, in 

a metacompiler. I had used his metacompiler to build eForth systems for P8, P24, eP16 and 

eP32 chips. A Forth metacompiler was much more powerful than any macro assembler, and C. 

All I had to do was to allocate a huge data array, and built the dictionary with all the records. 

This data array could then be copied into VFM code in an assembly file, or in a C source file. If 

I defined VFM with a set of byte code as its pseudo instructions, the dictionary would contain 

only data and no executable C code. The beauty in byte code was that it completely isolated the 

Forth system from the underlying microcontroller, and the Forth system could be ported to any 

microcontroller with  C compiler. 

 

In a direct threaded Forth model, a record of primitive command contains only byte code. A 

compound command has one byte code in its code field, and a token list in its parameter field. 

Tokens are code field address of other Commands.  

 

Embedding eForth dictionary into a data array fits nicely with the fundamental programming 

model of C, in that executable C code are compiled into code segments, and data and variables 

are compiled into data segments. C as a compiled language does not execute code in data 
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segments, and consider writing code or data into code segments illegal. Forth as an interpretive 

language, does not distinguish code from data, and encourages user to add new code into its 

dictionary. I made the compromise to put all VFM code in a code segment, and all Forth 

commands in a data segment. I accept the limitation that no new pseudo instruction will be 

added to the baseline VFM, while new compound commands can be added to the Forth 

dictionary freely. 

 

The design of an eForth system can now be separated into two independent tasks: building a 

VFM machine targeting to various microcontrollers, including C, and building an eForth 

dictionary. You can use independent tools which are best suited for the particular task. 

I chose F# to build the eForth dictionary, because I had used it for years. Currently, C, C++, and 

C#. in my understanding, do not have the necessary tools to build the dictionary together with 

the VFM. 

 

In 2009, I wrote two versions of eForth in C: ceForth 1.0 with 64 primitives, and ceForth 1.1 

with 32 primitives. They were compiled by gcc under cygwin. I did them for my own ego, just 

to show that I could. I did not expect they could be used for any practical purpose. 

 

In 2011, I was attracted to Arduino Uno kits and ported eForth to it as 328eForth. One of the 

problems with this implementation was that it was not compatible with the prevailing Arduino 

IDE tool chain. I needed to add new Forth commands to the dictionary in flash memory. Under 

Arduino, you were not allowed to write to flash memory at run time. To get the privilege of 

writing to flash memory, I had to take over the bootload section which was used by Arduino 

IDE to write to flash memory.  

 

To accommodate Arduino, I ported ceForth 1.1 to Arduino Uno in the form of a sketch, 

ceForth_328.cpp, which was essentially a C program. Observing the restriction that I could not 

write anything into flash memory, I extended eForth dictionary in the RAM memory. It worked. 

However, you had only 1.5KB of RAM memory left over for new Forth commands, and you 

could not save these new commands before you lost power. As I stated then, it was only a 

teaser to entice new people to try Forth on Arduino Uno. For real applications, you had to use 

328eForth. 

 

In 2016, a friend, Derek Lai, in the Taiwan FIG group gave me a couple of WiFiBoy Kits he 

and his son Ricky built. It used an ESP8266 chip with an integrated WiFi radio. I found that a 

simpler kit NodeMCU with the same chip cost only $3.18 on eBay. It was the cheapest and 

most powerful microcontroller kit ever, with a 32 bit CPU at 160 MHz, 150 KB of RAM, 4 MB 

of flash, and many IO devices. On top of all these, it is 802.11 WiFi ready. 

 

The manufacturer of ESP8266, Espressif Systems in Shanghai, China, released a number of 

Software Development Kits, and left it to the user community to provide software support for 

this chip. Many engineers took up the challenge and supplied a wide range of programming 

tools for the community. Espressif later hired a Russian engineer Ivan Grokhotkov to extend 

Arduino IDE to compile ESP8266 code. This new Arduino IDE extension made it possible for 
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hobbyists like me to experiment with IoT. Large memories in ESP8266 solved the problems I 

had with ATmega328 on Arduino Uno and made ESP8266 a good host for Forth. 

 

I was pleasantly surprised that ceForth was successfully ported to NodeMCU Kit in a single day. 

There were only very few changes to fit a VFM into ESP8266, and the eForth dictionary 

required no change at all. It was all because of the portability in C code. It generally took me 

two weeks to port eForth to a new microcontroller. Most of this time was wasted in dealing 

with quirks in a particular assembler, and to impose a VFM on an unyielding CPU architecture. 

Here C behaved like a sweet universal assembler. 

 

With a Forth written in C on Arduino IDE, I was able to get several NodeMCU Kits to talk to 

one another over a WiFi network. I still do not understand the Tensilica L106 chip inside 

ESP8266 at all, and I do not understand WiFi and all its protocols. What I did was to look up 

library functions I needed to do the few things I had to do. IoT for Dummies!. 

 

It looks that a simple Forth written in C does have values. Therefore, I updated ceForth 1.0 to 

ceForth 2.3, and hope that you will find some use of it. Several important improvements were 

implemented: 

It was moved to C++ under Microsoft Visual Studio Community 2017, so that you can compile 

and test it on a modern Windows PC. 

A much simpler byte code sequencer replaced the finite state machine running VFM. 

The stacks were changed to 256 level circular buffers, so they would never overflow or 

underflow. 
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Chapter 1. Running ceForth 
 

 

A couple of years ago, I was asked the availability of my earlier books and Forth 

implementations. Paper copies were mostly gone. Electronic copies I saved on my computer 

seemed outdated. They all cried out loud asking for new lives, with new formats on newer 

computers.  

 

My 86eForth 1.0 was the worst. It was compiled by MASM on a PC-DOS computer in 1990. 

MASM was long discontinued and I had to find better ways to resurrect it. Then I learnt that 

MASM was still available, but hidden behind C++ in Visual Studio. 

 

ceForth 1.0 and 1.1 were developed with gcc on cygwin. Cygwin was a reduced Linux running 

on PC, but it was a foreign system to Windows. I had totally forgotten how to compile and run 

it. Time to move on with Visual Studio. 

 

Install Visual Studio Community 2017 

 

ceForth_23.cpp is a Visual Studio C++ Windows Console Application. It is a streamlined 

C program to be compiled by Visual Studio C++, and then run under Windows. To run ceForth, 

you have to first install Visual Studio IDE. Then you can copy ceForth_23.cpp to it and get 

it running. 

 

Download Visual Studio Community 2017 or the latest version from www.microsoft.com and 

install it on your PC. Open Visual Studio, and you will see its logo: 

 

 
 

After a while, you will see its start page:  
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Click File>New>Project  

In the Installed Panel, select Templates>Visual C++, and in the central panel, select 

Win32 Console Application. In the Name box at bottom, enter ceForth for your 

project, or a project name you prefer: 
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Click OK to create a new project. Watch the location of you new project in the Location box. 

Mine is in c:\users\ting\documents\visual studio 2017\projects. Yours 

surely will be different. 

 

 
 

Visual Studio created a new project for you, and gives you a template file ceForth.cpp. 

Copy the contents of ceForth_23.cpp supplied in ceForth_23.zip file, and paste them 

into ceForth.cpp.  

 

Compile ceForth 

 

Next you have to copy the rom_23.h file into ceForth project, with ceForth.cpp and other 

files supplied by Visual Studio: 
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In the Solution Explorer Panel, right click Header Files, and then select Add>Existing 

Items…. Now select rom_23.h to add it to this project. Now your Visual Studio windows 

should look something like this: 

 

 
 

With both ceForth.cpp and rom_23.h included in your project, you are ready to build 

ceForth.  
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Click Build>Rebuild Solution, and Visual Studio goes to work. After a while, in the 

Output Panel, it will report a few lines of progress, and end with this message: 

 
===== Rebuild All, 1 succeeded, 0 failed, 0 skipped ===== 

 

 
 

All is well. Ready to test.  

 

Test ceForth 

 

Click Debug>Start debugging. Wait some more. Finally, you will see the Debug 

window: 

 



9 

 

 
 

On top of it, you have the Console Window: 

 

 
 

Success! ceForth is running. 

 

Press Enter key a number of times. ceForth displays an empty stack with „ok>‟ prompts. 
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Type WORDS, and you get a screen of command names representing a complete ceForth system: 

 

 
 

Now, enter this universal greeting command: 
: TEST CR .” HELLO, WORLD!” ; 

and then type TEST: 
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ceForth is now fully functioning. 
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Chapter 2. ceForth Virtual Forth Engine 
 

 

ceForth_23.cpp 

 

The file ceForth_23.cpp is a C++ program which can be compiled by Visual Studio IDE, 

and run as a Windows Console Application. This file serves perfectly as a specification of a 

Virtual Forth Engine, in terms of C functions. 

 

Before diving directly into ceForth, I would like to give you an overview of a Forth system with 

a Virtual Firth Machine (VFM) under it, so you can better understand how the whole thing is 

implemented. 

 

 A VFM executes a set of pseudo instructions, in the form byte code. 

 All Forth commands are stored in a large data array, called a dictionary. 

 Each command is a record. All records are linked in the dictionary. 

 Each command record contains 4 fields, a link field, a name field, a code field, and a 

parameter field. The link field and name field allow the dictionary to be searched for a 

command from its ASCII name. The code field contains executable byte code. The parameter 

field contains optional code and data needed by the command. 

 There are two types of commands: primitive commands containing executable byte code, 

and compound commands containing token lists. A token is a code field address pointing to 

code field of a command. 

 A sequencer executes byte code sequences stored in code fields of primitive commands. 

 An inner interpreter terminates a primitive command and executes the next token in a 

token list. 

 An address interpreter executes nested token lists. 

 A return stack is required to process nested token lists 

 A data stack is required to pass parameters among commands  

 A text interpreter processes command lists entered from a terminal. 

 

The text interpreter interprets or executes a list of Forth commands, separated by spaces: 
<list of commands> 

It can also create new commands to replace lists of commands: 
:  <name>  <list of commands>  ; 

These new commands are called compound commands, in which lists of commands are 

compiled into token lists. 

 

All computable problems can be solved by repeatedly creating new commands to replace lists 

of existing commands. It is very similar to natural languages. New words are created to replace 

lists of existing words. Thoughts and ideas are thus abstracted to a higher level. Real 

intelligence is best represented by deeply nested lists. Forth is real intelligence, in contrast to 

artificial intelligence. It is also the simplest and most efficient way to explore solution spaces 

far and wide, and to arrive at optimized solutions for any computable problem. 
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Now let‟s read the source code in ceForth_23.cpp, to see how this VFM is actually 

implemented. 

 

Preamble 

 

In the beginning of ceForth_23.cpp, I put in several comment lines to document the 

progressing of ceForth implementation. After the comments, there are several include 

instructions to pull in header files, and several macro define instructions to facilitate 

compilation the rest of C code. 
 

stdafx.h is a precompiled header required by Visual Studio C++ compiler.  
#include "stdafx.h" 

 

stdlib.h is a standard library header file needed by ceForth.  
#include <stdlib.h> 

 

rom_23.h is the Forth dictionary produced by ceForth metacompiler. 
#include "rom_23.h" 

 

Default value of a FALSE flag is 0, and of TRUE, -1. ceForth considers any non-zero number as 

a TRUE flag. Nevertheless, all ceForth commands which generate flags would return a -1 for 

TRUE. 
# define  FALSE  0 

# define  TRUE  -1 

 

LOGICAL is a macro enforcing the above policy for logic commands to return the correct 

TRUE and FALSE flags. 
# define  LOGICAL ? TRUE : FALSE 

 

LOWER(x,y) returns a TRUE flag if x<y. 
# define  LOWER(x,y) ((unsigned long)(x)<(unsigned long)(y)) 

 

pop is a macros which stream-line the often used operations to pop the data stack to a register 

or a memory location. As the top element of the data tack is cached in register top, popping is 

more complicated, and pop macro helps to clarify my intention. 
# define pop top = stack[(char) S--] 

 

Similarly, push is a macro to push a register or contents in a memory location on the data stack. 

Actually, the contents in top register must be pushed on the data stack, and the source data is 

copied into top register. 
# define push stack[(char) ++S] = top; top = 

 

Registers and Arrays 
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ceForth uses a large data array to hold it dictionary of commands. There are lots of variables 

and buffers declared in this array. Besides this data array, the VFM needs many registers and 

arrays to hold data to support all its operations. Here is the list of these registers and arrays: 

 
long rack[256] = { 0 }; 

long stack[256] = { 0 }; 

long long int d, n, m; 

unsigned char R, S; 

long top, I, P, IP; 

unsigned char* cData; 

unsigned char bytecode; 

 

The following table explains the functions of these registers and arrays: 

 

Register/Array Functions 

P Program counter, pointing to byte code in data[]. 

IP Instruction pointer for address interpreter for token lists 

WP Scratch register, generally pointing to parameter field 

bytecode Byte code register for byte code to be executed 

Rack[256] Return stack, a 256 cell circular buffer 

R One byte return stack pointer 

Stack[256] Data stack, a 256 cell circular buffer 

S One byte data stack pointer 

top Cached top element of the data stack 

d,m,n Scratch registers for 64 bit integers for multiply and divide 

cData A byte pointer to access data[] array in bytes 

data[4096] An array containing Forth dictionary 

 

Data stack and return stack are implemented as 256 element circular buffers stack[256] 

and rack[256]. Stack pointers S and R are byte values, ensuring that the stacks would 

never overflow or underflow. With this design, I eliminated many commands which would be 

necessary to manage the stacks.  

  

Dictionary Array 

 
All Forth commands are stored in a data[4096] array, as a linked list, and is generally called 

a dictionary. Each record in this list contains 4 fields: a 32 bit link field, a variable length name 

field, a 32 bit code field, and a variable length parameter field. In a primitive command, the 

parameter field has additional byte code. In a high level compound command, the parameter 

field contains a sequence of tokens which are code field addresses pointing to the code field of 

other Forth commands. 

 

The dictionary in data[] array is generated by a separated Forth program called a 

metacompiler. It is discussed in the Chapter 3 of this manual. This dictionary is saved in a file 
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rom_23.h, and incorporated into the Virtual Forth Machine by the command #include 

rom_23.h. The beginning and ending of rom_23.h are shown here: 

 
long data[4096] = { 

/* 00000000 */ 0x00000000, 

/* 00000004 */ 0x00000000, 

… 

); 

 

Later, I will go through the metacompiler, and explain how this dictionary is constructed. 

 

VFM Functions 

 

Then come all the VFM pseudo instructions, coded as C functions. Each pseudo instruction will 

be assigned a byte code. A byte code sequencer is designed to execute byte code placed in code 

fields of primitive commands in the dictionary. Byte code are machine instructions of VFM, 

just like machine instructions of a real computer. 

 

bye ( -- ) Return control from Forth back to Windows. Close the Windows Console opened for 

Forth. 
void bye(void) 

{ exit(0); } 

 

qrx ( -- c T|F ) Return a character and a true flag if the character has been received. If no 

character was received, return a false flag 
void qrx(void) 

{ push(long) getchar(); 

 if (top != 0) 

  push TRUE; } 

 

txsto ( c -- ) Send a character to the serial terminal. 
void txsto(void) 

{ putchar((char)top); 

 pop; } 

 

next() is the inner interpreter of the Virtual Forth Machine. Execute the next token in a token 

list. It reads the next token, which is a code field address, and deposits it into Program Counter 

P. The sequencer then jumps to this address, and executes the byte code in it. It also deposits 

P+4 into the Work Register WP, pointing to the parameter field of this command. WP helps 

retrieving the token list of a compound command, or data stored in parameter field. 
void next(void) 

{ P = data[IP>>2]; 

 WP = P + 4; 

 IP += 4; } 

 

dovar( -- a ) Return the parameter field address saved in WP register. 
void dovar(void)  

{ push WP; } 
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docon ( -- n ) Return integer stores in the parameter field of a constant command. 
void docon(void) 

{ push data[WP>>2]; } 

 

dolit ( -- w) Push the next token onto the data stack as an integer literal. It allows numbers to 

be compiled as in-line literals, supplying data to data stack at run time.  
void dolit(void) 

{ push data[IP>>2]; 

 IP += 4; 

 next(); } 

 

dolist ( -- ) Push the current Instruction Pointer (IP) the return stack and then pops the 

Program Counter P into IP from the data stack. When next() is executed, the tokens in the 

list are executed consecutively.  
void dolist(void) 

{ rack[(char)++R] = IP; 

 IP = P; 

 next(); } 

 

exitt ( -- ) Terminate all token lists in compound commands. EXIT pops the execution 

address saved on the return stack back into the IP register and thus restores the condition before 

the compound command was entered. Execution of the calling token list will continue. 
 void exitt(void) 

{ IP = (long)rack[(char)R--]; 

 next(); } 

 

execu ( a -- ) Take the execution address from data stack and executes that token. This 

powerful command allows you to execute any token which is not a part of a token list. 
void execu(void) 

{ P = top; 

 WP = P + 4; 

 pop; } 

 

donext ( -- ) Terminate a FOR-NEXT loop. The loop count was pushed on return stack, and is 

decremented by donext. If the count is not negative, jump to the address following donext; 

otherwise, pop the count off return stack and exit the loop. 
void donext(void) 

{ if (rack[(char)R]) { 

  rack[(char)R] -= 1; 

  IP = data[IP>>2]; } 

 else {IP += 4; 

  R--; } 

 next(); } 

 

qbran ( f -- ) Test top as a flag on data stack. If it is zero, branch to the address following 

qbran; otherwise, continue execute the token list following the address.  
void qbran(void) 

{ if (top == 0) IP = data[IP>>2]; 
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 else IP += 4; 

 pop; 

 next(); } 

 

bran ( -- ) Branch to the address following bran.  
void bran(void) 

{ IP = data[IP>>2]; 

 next(); } 

 

store ( n a -- ) Store integer n into memory location a. 
void store(void) 

{ data[top>>2] = stack[(char) S--]; 

 pop; } 

 

at ( a -- n) Replace memory address a with its integer contents fetched from this location. 
void at(void) 

{ top = data[top>>2]; } 

 

cstor ( c b -- ) Store a byte value c into memory location b. 
void cstor(void) 

{ cData[top] = (char)stack[(char) S--]; 

 pop; } 

 

cat ( b -- n) Replace byte memory address b with its byte contents fetched from this location. 
void cat(void) 

{ top = (long)cData[top]; } 

 

rfrom ( n -- ) Pop a number off the data stack and pushes it on the return stack.  
void rfrom(void) 

{ push rack[(char)R--]; } 

 

rat ( -- n ) Copy a number off the return stack and pushes it on the return stack.  
void rat(void) 

{ push rack[(char)R]; } 

 

tor ( -- n ) Pop a number off the return stack and pushes it on the data stack.  
void tor(void) 

{ rack[(char)++R] = top; 

 pop; } 

 

drop ( w -- ) Discard top stack item. 
void drop(void) 

{ pop; } 

 

dup ( w -- w w ) Duplicate the top stack item. 
void dup(void) 

{ stack[(char) ++S] = top; } 

 

swap ( w1 w2 -- w2 w1 ) Exchange top two stack items. 
void swap(void) 
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{ w = top; 

 top = stack[(char) S]; 

 stack[(char) S] = w; } 

 

over ( w1 w2 -- w1 w2 w1 ) Copy second stack item to top. 
void over(void) 

{ push stack[(char) S - 1]; } 

 

zless ( n – f )  Examine the top item on the data stack for its negativeness. If it is negative, 

return a -1 for true. If it is 0 or positive, return a 0 for false. 
void zless(void) 

{ top = (top < 0) LOGICAL; } 

 

andd ( w w -- w ) Bitwise AND. 
void andd(void) 

{ top &= stack[(char) S--]; } 

 

orr ( w w -- w ) Bitwise inclusive OR. 
void orr(void) 

{ top |= stack[(char) S--]; } 

 

xorr ( w w -- w ) Bitwise exclusive OR. 
void xorr(void) 

{ top ^= stack[(char) S--]; } 

 

uplus ( w w -- w cy ) Add two numbers, return the sum and carry flag. 
void uplus(void) 

{ stack[(char) S] += top; 

 top = LOWER(stack[(char) S], top); } 

 

nop ( -- ) No operation.  
void nop(void) 

{ next(); } 

 

qdup ( w -- w w | 0 ) Dup top of stack if it is not zero. 
void qdup(void) 

{ if (top) stack[(char) ++S] = top; } 

 

rot ( w1 w2 w3 -- w2 w3 w1 ) Rot 3rd item to top. 
void rot(void) 

{ w = stack[(char) S - 1]; 

 stack[(char) S - 1] = stack[(char) S]; 

 stack[(char) S] = top; 

 top = w; } 

 

ddrop ( w w -- ) Discard two items on stack. 
void ddrop(void)  

{ drop(); drop(); } 
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ddup ( w1 w2 -- w1 w2 w1 w2 ) Duplicate top two items. 
void ddup(void) 

{ over(); over(); } 

 

plus ( w w -- sum ) Add top two items. 
void plus(void) 

{ top += stack[(char) S--]; } 

 

inver ( w -- w ) One's complement of top. 
void inver(void) 

{ top = -top - 1; } 

 

negat ( n -- -n ) Two's complement of top. 
void negat(void) 

{ top = 0 - top; } 

 

dnega ( d -- -d ) Two's complement of top double. 
void dnega(void) { inver(); tor(); inver(); push 1; 

     uplus(); rfrom(); plus(); } 

 

subb ( n1 n2 -- n1-n2 ) Subtraction. 
void subb(void) 

{ top = stack[(char) S--] - top; } 

 

abss ( n -- n ) Return the absolute value of n. 
void abss(void) 

{ if (top < 0) 

  top = -top; } 

 

great ( n1 n2 -- t ) Signed compare of top two items. Return true if n1>n2. 
void great(void)  

{ top = (stack[(char) S--] > top) LOGICAL; } 

 

less ( n1 n2 -- t ) Signed compare of top two items. Return true if n1<n2. 
void less(void)  

{ top = (stack[(char) S--] > top) LOGICAL; } 

 

equal ( w w -- t ) Return true if top two are equal. 
void equal(void)  

{ top = (stack[(char) S--] == top) LOGICAL; } 

 

uless ( u1 u2 -- t ) Unsigned compare of top two items. 
void uless(void)  

{ top = LOWER(stack[(char) S], top) LOGICAL; (char) S--; } 

 

ummod ( udl udh u -- ur uq ) Unsigned divide of a double by a single. Return mod and quotient. 
void ummod(void) 

{ d = (long long int)((unsigned long)top); 

 m = (long long int)((unsigned long)stack[(char) S]); 
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 n = (long long int)((unsigned long)stack[(char) S - 1]); 

 n += m << 32; 

 pop; 

 top = (unsigned long)(n / d); 

 stack[(char) S] = (unsigned long)(n%d); } 

 

msmod ( d n -- r q ) Signed floored divide of double by single. Return mod and quotient. 
void msmod(void) 

{ d = (signed long long int)((signed long)top); 

 m = (signed long long int)((signed long)stack[(char) S]); 

 n = (signed long long int)((signed long)stack[(char) S - 1]); 

 n += m << 32; 

 pop; 

 top = (signed long)(n / d); 

 stack[(char) S] = (signed long)(n%d); } 

 

slmod ( n1 n2 -- r q ) Signed divide. Return mod and quotient. 
void slmod(void) 

{ if (top != 0) { 

  w = stack[(char) S] / top; 

  stack[(char) S] %= top; 

  top = w; 

 } } 

 

mod ( n n -- r ) Signed divide. Return mod only. 
void mod(void) 

{ top = (top) ? stack[(char) S--] % top : stack[(char) S--]; } 

 

slash ( n n -- q ) Signed divide. Return quotient only. 
void slash(void) 

{ top = (top) ? stack[(char) S--] / top : (stack[(char) S--], 0); } 

 

umsta ( u1 u2 -- ud ) Unsigned multiply. Return double product. 
void umsta(void) 

{ d = (unsigned long long int)top; 

  m = (unsigned long long int)stack[(unsigned char) S]; 

  m *= d; 

  top = (unsigned long)(m >> 32); 

  stack[(unsigned char) S] = (unsigned long)m; } 

 

star ( n n -- n ) Signed multiply. Return single product. 
void star(void) { top *= stack[(unsigned char) S--]; } 

 

mstar ( n1 n2 -- d ) Signed multiply. Return double product. 
void mstar(void) 

{ d = (unsigned long long int)top; 

 m = (unsigned long long int)stack[(char) S]; 

 m *= d; 

 top = (unsigned long)(m >> 32); 

 stack[(char) S] = (unsigned long)m; } 
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ssmod ( n1 n2 n3 -- r q ) Multiply n1 and n2, then divide by n3. Return mod and quotient. 
void ssmod(void) 

{ d = (signed long long int)top; 

 m = (signed long long int)stack[(char) S]; 

 n = (signed long long int)stack[(char) S - 1]; 

 n += m << 32; 

 pop; 

 top = (signed long)(n / d); 

 stack[(char) S] = (signed long)(n%d); } 

 

stasl ( n1 n2 n3 -- q ) Multiply n1 by n2, then divide by n3. Return quotient only. 
void stasl(void) 

{ d = (signed long long int)top; 

 m = (signed long long int)stack[(char) S]; 

 n = (signed long long int)stack[(char) S - 1]; 

 n += m << 32; 

 pop; pop; 

 top = (signed long)(n / d); } 

 

pick ( ... +n -- ... w ) Copy the nth stack item to top. 
void pick(void)  

{ top = stack[(char) S - (char)top]; } 

 

pstor ( n a -- ) Add n to the contents at address a. 
void pstor(void)  

{ data[top>>2] += stack[(char) S--], pop; } 

 

dstor ( d a -- ) Store the double integer to address a. 
void dstor(void) 

{ data[(top>>2) + 1] = stack[(char) S--]; 

 data[top>>2] = stack[(char) S--]; 

 pop; } 

 

dat ( a -- d ) Fetch double integer from address a. 
void dat(void)  

{ push data[top>>2]; 

 top = data[(top>>2) + 1]; } 

 

count ( b -- b+1 +n ) Return count byte of a string and add 1 to byte address.  
void count(void)  

{ stack[(char) ++S] = top + 1; 

 top = cData[top]; } 

 

maxx ( n1 n2 -- n ) Return the greater of two top stack items. 
void maxx(void) 

{ if (top < stack[(char) S]) pop; 

 else (char) S--; } 

 

minn ( n1 n2 -- n )  Return the smaller of top two stack items. 
void minn(void) 

{ if (top < stack[(char) S]) (char) S--; 
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 else pop; } 

 

Byte Code Array 

 

There are 67 functions defined in VFM as shown before. Each of these functions is assigned a 

unique byte code, which become the pseudo instructions of this VFM. In the dictionary, there 

are primitive commands which have these byte code in their code field. The byte code may spill 

over into the subsequent parameter field, if a primitive command is very complicated. VFM has 

a byte code sequencer, which will be discussed shortly, to sequence through byte code list. The 

numbering of these byte code in the following primitives[] array does not follow any perceived 

order.  

 

Only 67 byte code are defined. You can extend them to 256 if you wanted. You have the 

options to write more functions in C to extend the VFM, or to assemble more primitive 

commands using the metacompiler I will discuss later, or to compile more compound 

commands in Forth, which is far easier. The same function defined in different ways should 

behave identically. Only the execution speed may differ, inversely proportional to the efforts in 

programming. 
void(*primitives[64])(void) = { 

 /* case 0 */ nop, 

 /* case 1 */ bye, 

 /* case 2 */ qrx, 

 /* case 3 */ txsto, 

 /* case 4 */ docon, 

 /* case 5 */ dolit, 

 /* case 6 */ dolist, 

 /* case 7 */ exitt, 

 /* case 8 */ execu, 

 /* case 9 */ donext, 

 /* case 10 */ qbran, 

 /* case 11 */ bran, 

 /* case 12 */ store, 

 /* case 13 */ at, 

 /* case 14 */ cstor, 

 /* case 15 */ cat, 

 /* case 16  rpat, */ nop, 

 /* case 17  rpsto, */ nop, 

 /* case 18 */ rfrom, 

 /* case 19 */ rat, 

 /* case 20 */ tor, 

 /* case 21 spat, */ nop, 

 /* case 22 spsto, */ nop, 

 /* case 23 */ drop, 

 /* case 24 */ dup, 

 /* case 25 */ swap, 

 /* case 26 */ over, 

 /* case 27 */ zless, 

 /* case 28 */ andd, 

 /* case 29 */ orr, 

 /* case 30 */ xorr, 
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 /* case 31 */ uplus, 

 /* case 32 */ next, 

 /* case 33 */ qdup, 

 /* case 34 */ rot, 

 /* case 35 */ ddrop, 

 /* case 36 */ ddup, 

 /* case 37 */ plus, 

 /* case 38 */ inver, 

 /* case 39 */ negat, 

 /* case 40 */ dnega, 

 /* case 41 */ subb, 

 /* case 42 */ abss, 

 /* case 43 */ equal, 

 /* case 44 */ uless, 

 /* case 45 */ less, 

 /* case 46 */ ummod, 

 /* case 47 */ msmod, 

 /* case 48 */ slmod, 

 /* case 49 */ mod, 

 /* case 50 */ slash, 

 /* case 51 */ umsta, 

 /* case 52 */ star, 

 /* case 53 */ mstar, 

 /* case 54 */ ssmod, 

 /* case 55 */ stasl, 

 /* case 56 */ pick, 

 /* case 57 */ pstor, 

 /* case 58 */ dstor, 

 /* case 59 */ dat, 

 /* case 60 */ count, 

 /* case 61 */ dovar, 

 /* case 62 */ max, 

 /* case 63 */ min, 

}; 

 

These byte code are executed by a special function execute(code), which passes the byte 

code code to the byte code array primitives[code] to call the corresponding function: 

 
void execute(unsigned char code) 

{ if (code < 64) { primitives[code](); } 

 else { printf("\n Illegal code= %x P= %x", code, P); } } 

 

Byte Code Sequencer 

 

To start the VFM running, some of the registers have to be initialized in the main() function 

required by Visual Studio C++ IDE. At the very end of ceForth_23.cpp file, and we have a 

byte code sequencer to execute pseudo instructions stored in the data[] array.  
/* 

* Main Program 

*/ 

int main(int ac, char* av[]) 
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{ P = 0; 

 WP = 4; 

 IP = 0; 

 S = 0; 

 R = 0; 

 top = 0; 

 cData = (unsigned char *)data; 

 printf("\nceForth v2.3, 13jul17cht\n"); 

 while (TRUE) { 

  bytecode = (unsigned char)cData[P++]; 

  execute(bytecode);  

 } } 

 

The while(TRUE) loop loops forever. Going through each loop, the sequencer reads the next 

byte code pointed to by P. The byte code is executed by execute(bytecode). The the next byte 

code is read and executed. And so forth. It behaves just like a real computer sequencing through 

its instructions stored in memory. 

 

In the earlier implementations of ceForth, I copied the Finite State Machine in eP32 chip. It 

assumed that 32 bit words were read in Phase 0, and 4 byte code were decoded. In the next 4 

phases, these byte code were executed. Phase 5 is needed to return to Phase 0. 

 

Since I can read data[] either in words or in bytes, it is much simpler to sequence through the 

byte code list one byte at a time. The sequencer discussed above is much simpler than the 

earlier finite state machines. However, tokens are 32 bit addresses, and are accessed more 

conveniently with work addressing. 

 

main() initializes P to 0. VFM starts by executing byte code stored in memory location 0 in the 

Forth dictionary. The byte code at location 0 are: 
dolist()  nop()  nop()  nop() 

COLD 

 

dolist() expects a token list at location 4. Therefore WP must be initialized to 4, pointing to 

COLD. This token list has only one element. COLD eventually drops into QUIT, which contains 

an infinite loop, and never returns back to this list. 
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Chapter 3. Metacompilation of the ceForth 
 

 

Metacompilation 

 

In Forth community, metacompilation means compiling a new Forth system using an existing 

Forth system. As Forth system is generally consider an operating system supporting Forth 

programming language, metacompilation is the highest level of art in Forth programming. For 

people not converse in the art of Forth, it is black magic.  

 

Metacompilation always reminds me of metamorphosis, transformation of a caterpillar into a 

butterfly. 

 

When Chuck Moore invented Forth in 1960‟s, he quickly found Forth was powerful enough to 

regenerated itself and easily migrated to any computer in his sight. It was so mysterious to 

others that he felt confident to release complete source code with his implementations, without 

the fear that others might reverse-engineer his Forth system. He stores his source code in 1024 

byte blocks of memory on tapes and disks. Without his Forth system and his block editor, 

nobody could read his code. He was able to reprogram so many telescope computers, that the 

International Astronomy Society adopted Forth as the official programming language for 

observatory automation in 1974. 

 

It was not until 1978 that the Forth Interest Group (FIG) in Silicon Valley engineered 6 figForth 

systems for the then most popular microcomputers. FIG released figForth in the form of 

assembly files so that non-Forth programmers could implement them on their own 

microcomputers with various operating systems, and understand what was going on in these 

Forth systems. 

 

In 1990, Bill Muench and I developed eForth Model, with a very small set (33) of primitive 

commands so that it could be ported easily to microcontrollers. It was implemented on 30 some 

different microprocessors and microcontrollers by many volunteers. In the meantime, I also 

worked with Chuck Moore on his new Forth chip, MuP21. He reduced its instructions to 25, 

and fit a 20-bit microprocessor on a small die, with an NTSC video coprocessor and a DRAM 

memory coprocessor. It was a marvelous design, but we ran out of money before it was 

perfected. 

 

I compared the designs of eForth and the MuP21, and found great similarity, in spite of the 

completely different origins of these two designs. eForth is a software design and the MuP21 is 

a hardware design. However, they both were based on primitive instruction sets with about 30 

instructions. Many instructions were identical in these two instruction sets. Those instructions 

which were different, were different because of hardware constraints. I was able to implement 

eForth on the MuP21. A real Forth language on a real Forth chip. Chuck gave me a 

metacompiler to compile eForth on MuP21. 
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After the MuP21, Chuck and I went our separate ways. He founded iTV, and Intellesys, and 

Green Arrays to built multiprocessor chips based on the MuP21 core. I discovered FPGAs, and 

developed scalable P-series microcontrollers based on the same core, implementing 16-, 24- 

and 32-bit versions of the P-microcontrollers. 

 

In 2000, a young fellow in Taiwan, Mr. Cheah-shen Yap, ported eForth to Windows to become 

the F# system. It could call all Windows APIs to build applications running on a PC. I used it to 

write metacompilers for P-microcontrollers, including P24, eP16 and eP32. For these 

processors, F# metacompiler had assemblers to assemble, and then built Forth dictionary, which 

was loaded into the memory to start Forth running on these machines. However, for the ceForth, 

I build a Virtual Forth Machine in C, and modified the F# metacompiler to compile a dictionary 

to be incorporated into the C program. The C program is compiled as a C++ Windows Console 

program on Visual Studio, and opens a DOS like window accepting your commands. 

 

In this Chapter, I will discuss how the F# metacompiler construct the Forth dictionary used in 

ceForth_23.cpp. The discussion follows the source files in their loading sequence. 

 

The immediate goal of ceForth metacompiler is to build three defining commands: INST, 

CODE, and :: (colon-colon). They are cookie cutters which create classes of commands to 

build the target dictionary in a data array. 

 

INST creates a set of byte code assembly commands. An assembly command assembles one 

byte code into the code fields of primitive commands in target dictionary. Examples are: 
0 INST nop, 

1 INST bye   ,   2 INST qrx,    3 INST txsto,  4 INST docon,  

5 INST dolit,    6 INST dolist, 7 INST exit,   8 INST execu, 

 

CODE creates new primitive commands. It compiles the link field and name field of a new 

primitive command in target dictionary. Its code field is now open to the byte code assemblers 

to assemble byte code. Examples are: 
CODE NOP next, 

CODE BYE bye, next, 

CODE EMIT txsto, next,   

CODE DOLIT dolit, next,  

CODE DOLIST dolist, next, 

CODE EXIT exit, next, 

 

:: (colon-colon) creates new compound commands. It compiles the link field and name field 

of a new compound command in target dictionary. It then adds a byte code dolist, to the 

code field. Its parameter field is now ready to build a new token list. Examples are: 
:: WITHIN ( u ul uh -- t ) \ ul <= u < uh 

  OVER - >R - R> U< ;; 

:: >CHAR ( c -- c ) 

  $7F LIT AND DUP $7F LIT BL WITHIN 

  IF DROP ( CHAR _ ) $5F LIT THEN ;; 

:: ALIGNED ( b -- a ) 3 LIT + FFFFFFFC LIT AND ;; 

:: HERE ( -- a ) CP @ ;; 
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:: PAD ( -- a ) HERE 50 LIT + ;; 

:: TIB ( -- a ) 'TIB @ ;; 

 

CODE and :: (colon-colon) also mark the code field addresses of the new commands they 

created. When these commands are later executed, they compile their respective code field 

addresses into the token list under construction. 

 

INST, CODE and :: (colon-colon) are defined in cefASMa_23.f. 

 

Building ceForth Dictionary 

 

All source code of the ceForth eForth system is contained in the ceForth_23.zip file. F# system 

and its Windows utilities are also included here. 

 

Unzip file ceForth_23.zip and put all the files into a folder named “ceForth_23”.  

 

 
 

Start F# by double clicking F#.exe in the ceForth_23 folder, and a file select window is opened: 
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F# organizes projects using .fex files. Each .fex file loads all the files needed in a project. 

Metacompiler of ceForth_23 is contained in the ceMETAa_23.fex. Click Open button to run it. 

 

F# opens a console window, loads the ceForth metacompiler and generates a new ceForth 

dictionary Lot of text scrolled up in this console window. Here is a picture of the lines scrolled 

up: 

 

 
 

The first number of lines show a number of files loaded. The last file loaded is cefMETAa_23.f, 

which loads in the metacompiler, and start building ceForth dictionary. The contents of 

ceMETAa_23.fex are as following: 
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\ ceForth_23, 10jul17cht 

\ cEFa  10sep09cht 

\ Goal is to produce a dictionary file to be compiled by a C compiler 

\ Assume 31 eForth primitives are coded in C 

\ Each FORTH word contains a link field, a name field, a code field 

\    and a parameter field, as in standard eForth model 

\ The code field contains a token pointing to a primitive word 

\ Low level primitive FORTH words has 1 cell of code field 

\ High level FORTH word has doList in code field and a address list 

\ Variable has doVAR in code field and a cell for value 

\ Array is same as variable, but with many cells in parameter field 

\ User variable has doUSE in code, and an offset as parameter 

\ 

\ 

 

 FLOAD .\init.f         \ initial stuff 

 FLOAD .\win32.f        \ win32 system interface 

 FLOAD .\consolei.f     \ api and constant defination 

  

 FLOAD .\ui.f           \ user interface helper routine ( reposition ) 

  

 FLOAD .\console.f      \ the main program 

 FLOAD .\ansi.f 

 FLOAD .\fileinc.f 

 FLOAD .\cefMETAa_23.f 

  

cr .( Version FIX 12SEP09CHT ) 

         

         

 

Files loaded by ceMETAa_23.fex are for these purposes: 

 
init.f Extend F# core to manage vocabulary and constants 
win32.f WinAPI interface and CallBack 
consolei.f API constants and prototypes 
ui.f Windows user interface 
console.f Create main console window 
conmenu.f Windows console and menu 
bufferio.f Buffered console input and output 
ansi.f Add words for ANSI Forth compatibility 
fileinc.f Windows file interface API 
cefMETAa_23.f ceForth metacompiler 
cefASMa_23.f ceForth assembler of byte code pseudo instructions 
cefKERNa_23.f Compile ceForth primitive commands 
cEFa_23.f Compile ceForth compound commands 
 

cefMETAa_23.f allocates a large data array RAM in F# memory, to host the dictionary target 

to ceForth system. The contents in the RAM array will be saved as a text file rom_23.h, which 
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will eventually be copied into the data[] array in Visual Studio ceForth_23.cpp to run 

ceForth on Windows PC. 

 

When cefKERNa_23.f is being loaded, new primitive commands are added to the RAM array 

dictionary. F# and ceForth are derived from the same eForth Model, and they have much the 

same command set. When a new command is added to the target dictionary, a new word is also 

added to the F# dictionary, representing a new token in the target dictionary. The name of this 

token is the same as the name of the new command in target, and the name of an existing word 

in F#. We are in fact redefine a F# word. For example the first primitive command HLD causes 

this line of message: 
 HLD 208 redef HLD 

 

It means that a new command HLD is defined in target dictionary, and its code field address is 

0x208, which will be used to compile a token of 0x208 when HLD is encountered in the token 

list of a compound command. Since HLD was an existing F# word, a warning message 

“redef HLD” is issued. The list continues until all primitive commands are compiled, as 

shown here: 

 

 
 

Then, cEFa_23.f file is loaded, and all the compound commands are compiled. 
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Finally, the system variables are compiled, the entire target dictionary is finished, and is written 

out to the rom_23.h file. 

 

Copy rom_23.h into ceForth_23 project and you can build and test ceForth_23 on Visual 

Studio. 

 

Metacompiler  

 

Metacompiler is a term used by Forth programmers to describe a program to build a new Forth 

system on an existing Forth system. The new Forth system may run on the same platform as the 

old Forth system. It may be targeted to a new platform, or to a new CPU. The new Forth system 

may share a large portion of Forth code with the old system, hence the term metacompilation. 

In a sense, a metacompiler is very similar to a conventional cross assembler/compiler. 

 

The ceForth metacompiler is contained in file cefMETAa_23.f. It allocates a data array RAM, 

and deposits records of primitive commands and compound commands to build a dictionary for 

ceForth. The Virtual Forth Machine (VFM) was programmed in ceForth_23.cpp, as a set 

of C functions represented by a set of byte code. These byte code are assembled into the code 

fields of primitive commands. The addresses of code fields become tokens compiled as token 

lists in the parameter fields of compound commands 

 

After setting up the environment to build a target dictionary, cefMETAa_23. loads source 

code from three other files to do the building: 

 

cefASMa_23.f ceForth assembler 
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cefKERNa_23.f Assemble primitive commands  

cEFa_23.f Compile compound commands  

 

Source code in cefMETAa_23.f is lengthy, and it is best to comment each command to bring 

out its function and meaning. 

 

debugging? ( -- a ) A variable containing a switch to turn break points on and off. When 

debugging? is set to -1, compilation will stop and the data stack is dumped when a “cr” 

command is executed. Sprinkling “cr” commands in the source code file allows you to watch 

the progress of metacompilation and even stops it when necessary. 
variable debugging? 

\ -1 debugging? ! 

 

.head ( a – a ) Display name of a command that is about to be compiled. It is used to display a 

symbol table. You can look up the code field address of any command in this table. 
: .head ( addr -- addr ) 

   SPACE >IN @ 20 WORD COUNT TYPE >IN ! 

   DUP .  

   ; 

 

cr ( -- ) Stop metacompilation if debugging? is -1, and dump data stack. If you press 

control-A, metacompilation is aborted. Otherwise, metacompilation continues. It is a NOOP if 

debugging? is 0. 
: CR CR 

   debugging? @ 

   IF .S KEY 0D = IF ." DONE" QUIT THEN 

   THEN 

   ; 

 

break ( -- ) Pause metacompilation and dump data stack. If you press Return, 

metacompilation is aborted. Otherwise, metacompilation continues. It sets a break point. 
: BREAK CR 

   .S KEY 0D = IF ." DONE" QUIT THEN 

   ; 

 

During metacompilation, Forth commands will be redefined so that they assemble byte code or 

compile tokens into the target dictionary. There are numerous occasions when the original 

behavior of a Forth command must be exercised. To preserve the original behavior of a Forth 

command, it is assigned a different name. Thereby after a command is redefined, you can still 

exercise its original behavior by invoking the alternate name. 

 

For example, “DUP” is a Forth command that duplicates the top number on the data stack in the 

F# system. Then in the cefKERNa_23.f file, a new “DUP” command is defined to compile a 

DUP token in the target ceForth system. If you still need to duplicate a number, you must use 

the alternate command “forth_dup” as shown below. All the F# commands you need to use 

later must be redefined as “forth_xxx” commands. If you neglect to redefine them, you will 

find that the system behaves very strangely. 
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: forth_dup DUP ; 

: forth_drop DROP ; 

: forth_over OVER ; 

: forth_swap SWAP ; 

: forth_@ @ ; 

: CRR cr ; 

 

ceForth executes commands and accesses data in the dictionary, range 0-3FFF. In F# we 

allocated a 32k byte memory array, “RAM”, to hold the ceForth target dictionary. This array 

contains code and data to be copied into ceForth data[] array, to be compiled by 

ceForth_23.cpp, and eventually to be executed as a Windows Console Application. 

 
RAM ( -- a) Memory array in F# for the ceForth target dictionary. It has a logical base address of 0 for 

the ceForth. Commands and data words in the target are stored in this array. 
CREATE RAM  8000 ALLOT 

 

RESET ( -- ) Clear “RAM” image array, preparing it to receive code and data for the ceForth. 
: RESET   RAM 8000 0 FILL ;   RESET 

 

RAM@ ( a – n ) Replace a logical address on stack with data stored in “RAM” dictionary. 
: RAM@    RAM +  @ ; 

 

RAMC@ ( a – c ) Replace a logical address on stack with byte data stored in “RAM” dictionary. 
: RAMC@   RAM +  C@ ; 

 

RAM! ( a n -- ) Store second integer on stack into logical address of “RAM” dictionary. 
: RAM!    RAM +  ! ; 

 

RAM! ( a c -- ) Store second byte on stack into logical address of “RAM” dictionary. 
: RAMC!   RAM +  C! ; 

 

FOUR ( a -- ) Display four consecutive words in target dictionary. 
: FOUR   (  a -- ) 4 FOR AFT  DUP RAM@ 9 U.R  4 + THEN NEXT  ; 

 

SHOW ( a – a+128 ) Display 128 words in target from address “a”. It also returns a+128 to 

“show” the next block of 128 words. 
: SHOW ( a)   10 FOR AFT  CR  DUP 7 .R SPACE 

      FOUR SPACE FOUR  THEN NEXT ; 

 

SHOWRAM ( -- ) Display the entire ceForth dictionary of 2K words. 
: showRAM 0 0C FOR AFT SHOW THEN NEXT DROP ; 

 

The ceForth  metacompiler builds a target dictionary for the ceForth in RAM. This dictionary eventually 

will be imported to the ceForth_23 project so that this dictionary will be incorporated in ceForth. Visual 

Studio IDE requires that the dictionary be written in a file conforming to its long data[] array format, 

which consists of a header with a body containing memory information in hexadecimal numbers. The 

header and first few lines of the body are as follows: 
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This dictionary is written to a text file rom_23.h. Here are the commands to open this file, 

writing data to it, and closing it. 

 

hFile ( -- handle ) A variable holding a file handle. 
VARIABLE hFile 

 

CRLF-ARRAY ( -- a ) A byte array containing CR and LF characters. 
CREATE CRLF-ARRAY 0D C, 0A C, 

 

CRLF ( -- ) Insert a carriage return and a line feed into the currently opened file. 
: CRLF    

      hFile @  

      CRLF-ARRAY 2 

      PAD ( lpWrittenBytes ) 

      0 ( lpOverlapped ) 

      WriteFile 

      IF ELSE ." write error" QUIT THEN 

   ; 

 

open-mif-file ( -- ) Open a file named rom_23.h for writing. 
: open-mif-file 

   Z" rom_23.h" 

   $40000000 ( GENERIC_WRITE ) 

   0 ( share mode ) 

   0 ( security attribute ) 

   2 ( CREATE_ALWAYS ) 

   $80 ( FILE_ATTRIBUTE_NORMAL ) 

   0 ( hTemplateFile ) 

   CreateFileA hFile ! 

   ; 

 

write-mif-header ( -- ) Write a header required by Visual Studio into current file. 
: write-mif-header 

   CRLF 

      hFile @  

      $" long data[4096] = {"  

      PAD ( lpWrittenBytes ) 
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      0 ( lpOverlapped ) 

      WriteFile 

      IF ELSE ." write error" QUIT THEN 

   ; 

 

write-mif-trailer ( -- ) Write last line of text into current file. 
: write-mif-trailer 

   CRLF 

      hFile @  

      $" 0 } ; "  

      PAD ( lpWrittenBytes ) 

      0 ( lpOverlapped ) 

      WriteFile 

      IF ELSE ." write error" QUIT THEN 

   ; 

 

write-mif-data ( -- ) Write a 4K word image of the ceForth dictionary from memory 

array “RAM” to the rom_23.h file.  
: write-mif-data 

   0 ( initial RAM location ) 

   $800 FOR AFT 

      CRLF 

      hFile @  

      OVER ( 4 / )  ( byte address ) 

      <# 2F HOLD 2A HOLD 20 HOLD  

          7 FOR # NEXT  

      20 HOLD 2A HOLD 2F HOLD #> 

      PAD ( lpWrittenBytes ) 

      0 ( lpOverlapped ) 

      WriteFile 

      IF ELSE ." write error" QUIT THEN 

      hFile @  

      OVER RAM@  

      <# 2C HOLD 7 FOR # NEXT 78 HOLD 30 HOLD 20 HOLD #> 

      PAD ( lpWrittenBytes ) 

      0 ( lpOverlapped ) 

      WriteFile 

      IF ELSE ." write error" QUIT THEN 

      CELL+ 

   THEN NEXT 

   DROP ( discard RAM location ) 

   ; 

 

close-mif-file ( -- )Close rom_23.h file. 
: close-mif-file 

   hFile @ CloseHandle DROP 

   ; 

 

write-mif-file ( -- ) open rom_23.h file, write a header, write data, write trailer, and then 

closes the file. rom_23.h containing 4K words of the ceForth dictionary. 
: write-mif-file 



36 

 

   open-mif-file 

   write-mif-header 

   write-mif-data 

   write-mif-trailer 

   close-mif-file 

   ; 

    

The ceForth metacompiler continues to load the byte code assembler in cefASM_23.f. In the 

assembler, all byte code of VFM are defined, and the ways they are assembled into code fields 

of primitive commands. Means to compile link fields and name fields to form headers of 

commands are also defined. It is now almost ready to assemble primitive commands for ceForth. 
CR .( include assembler ) 

FLOAD cefASMa_23.f 

 

After the assembler is built, we are ready to build the kernel part of ceForth dictionary. All 

primitive commands are assembled in cefKERNa_23.f file. The kernel starts at location 

0x200, leaving rooms for the Terminal Input Buffer TIB in the area 0x1000x1FF. System 

variables from 0x80-0xFF. 
$200 ORG 

CR .( include kernel ) 

FLOAD cefKERNa_23.f 

 

With the kernel in place, high level compound commands are compiled immediately after the 

kernel, by loading cEFa_23.f. The top ceForth dictionary is at 0x1F70 so far. It is pushed on 

data stack by the commands „H forth_@‟, to be used later to initialize the system variable CP. 

With 4096 words allocated in data[] array, the space is about half full. You can compile 

substantial application in this dictionary. If you need more space, just allocate a bigger array. 
CRR .( include eforth )  

FLOAD cEFa_23.f 

H forth_@ 

 

ceASMa_23.f, cdKERNa_23.f, and cEFa_23.f files will be discussed in separate 

chapters. Finally, several system variables must be initialized so that the Forth interpreter can 

work properly on boot. 

 

When ceForth boots up, the P register is initialized to 0 and WP to 4, so we have to have some 

valid byte code at this location. The ceForth boot up routine is the command COLD. Therefore, 

in memory location 0, we assemble dolist, COLD commands. 

 
CRR 

0 ORG  

dolist, aanew  

COLD 

 

System variables are in the area between 0x90-0xAF. They contain vital information for the 

ceForth system to work properly. Only the following system variables have to be initialized: 

 
$90 ORG $100                             #,  



37 

 

$94 ORG $10                              #,  

$98 ORG lastH forth_@                    #,  

$9C ORG                                  #,  

$A0 ORG lastH forth_@                    #,  

$A4 ORG $INTERPRET                         

$A8 ORG QUIT                                    

$AC ORG 0                                #, 

 

System 

Variable 

Address Initial 

Value 

Function 

'TIB 0x90 0 Pointer to Terminal Input Buffer. 
BASE 0x94 0x10 Number base for hexadecimal numeric 

conversions. 
CONTEXT 0a98 0x1F48 Pointer to name field of last command in 

dictionary. 
CP 0x9C 0x1F70 Pointer to top of dictionary, first free memory 

location to add new commands. It is saved by 

"h forth_@" on top of the source code page. 
LAST 0xA0 0x1F48 Pointer to name field of last command. 
'EVAL 0xA4 0x153C Execution vector of text interpreter, initialized 

to point to $INTERPRET. It may be changed to 

point to $COMPILE in compiling mode. 
'ABORT 0xA8 0x167C Pointer to QUIT command to handle error 

conditions. 
tmp 0xAC 0 Scratch pad. 
 

 

At last, write the contents of dictionary to rom_23.h. 
write-mif-file 

 

Simulate ceForth 
 

I wrote a simulator for ceForth. It is in cefSIMa_23.f file. It is loaded next: 
FLOAD cefSIMa_23.F 

 

Now, you can simulate ceForth, by typing: 
-1 G 

 

And the simulator signs on: 
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Type WORDS to display names of all Forth commands in ceForth: 

 

 
 

Type 200 100 DUMP to dump the beginning of ceForth disctionary: 
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In the ASCII dump on the right, you can see the names of the first few primitive commands. If 

you look carefully in the word dump on the left, you can probably identify the link fields, the 

name fields, and the codes field of these primitive commands. 

 

This simulator reproduces very accurately what the ceForth system does on Windows. It is 99% 

assured that if ceForth works in the simulator, it would work in Windows. I relied on it heavily 

in getting ceForth to work. 

 

The simulator will be discussed in details in a later Chapter 7. 
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Chapter 4. ceForth Assembler 
 

 

Byte Code Assembler 

 
The cefASMa_23.f file contains a byte code assembler for ceForth. It packs up to 4 byte 

code into one 32-bit program word. It first clears a program location pointed to by a variable 

“hw”, initiating to 4 byte code of NOP’s. Assembly commands are executed to insert byte code 

into consecutive bytes, from right to left. Unused bytes contain NOP. Assembly commands 

make necessary decisions as to whether to add more byte code to the current program word, or 

start a new program word. 

 

ceForth uses 8-bit byte code in primitive commands. 4 Byte code are packed into one 32-bit 

word, and are executed from right to left, Byte code 1 to Byte code 4, as shown below: 

 

31---------24 23---------16 15----------8 7------------0 

Byte code 4 Byte code 3 Byte code 2 Byte code 1 

 

Assembly commands for byte code are defined by a defining word INST. Defining words in 

Forth makes this byte code assembler very simple and very efficient. 

 

The ceForth system is based on the Direct Threading Model, in which a primitive command has 

byte code in its code field and parameter field. To assemble a primitive command, the 

assembler first build a header, with a link field and a name field. After that, the assembler 

simply packs consecutive bytes with byte code until the primitive commands is completed. 

 

H ( -- a )A variable pointing to the next free memory cell on top of the target dictionary.  
VARIABLE H 

 

LASTH ( -- a )A variable pointing to the name field of the current target command under 

construction. 
variable lastH 0 lastH !                  \ init linkfield address lfa 

 

nameR! ( d -- )Compile a 32-bit value, “d”, in the name field of the current command in 

target dictionary.  
: nameR! ( d -- ) 

   H @ RAM!                             \ store double to code buffer 

   4 H +!                             \ bump nameH 

   ; 

 

COMPILE-ONLY ( -- ) Patch Bit 6 in first byte of name field in current target command. 

Text interpreter checks it to avoid executing compiler commands. 
: compile-only 40 lastH @ RAM@ XOR lastH @ RAM! ; 

 

IMMEDIATE ( -- )Patch Bit 7 in first byte of name field in current target command. 

Compiler checks it to execute commands while compiling. 
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: IMMEDIATE    80 lastH @ RAM@ XOR lastH @ RAM! ; 

 

Hw ( -- a )A variable pointing to a new program word being constructed. 

Hi ( -- a )A variable pointing to a byte to pack the next byte code.  

Bi ( -- a )A variable pointing to a byte to pack the next ASCII character.  
VARIABLE Hi   VARIABLE Hw VARIABLE Bi ( for packing) 

 

ALIGN ( -- )Initialize pointer “Hi” to start assembling a new program word.  
: ALIGN   10 Hi ! ; 

 

ORG ( a -- )Initialize pointer “H” to a new address to start assembling.  
: ORG   DUP . CR H !  ALIGN ; 

 

mask ( -- a ) An array of 4 masks to isolate one 8-bit byte code from a 32-bit word. A 

byte code can be assembled in one of 4 bytes selected by “Hi”. 
CREATE mask  FF , FF00 , FF0000 , FF000000 ,  

 

#, ( d -- ) Compile “d” to top of target dictionary. It is the most basic assembler and 

compiler. The ceForth assembler is an extension of this basic assembly command. 
: #,   ( d ) H @ RAM!  4 H +! ; 

 

,W ( d -- ) OR “d” to the program word pointed to by “Hw”. It generally fills the address 

field in the current program word. 
: ,w   ( d ) Hw @ RAM@  OR  Hw @ RAM! ; 

 

,I ( d -- ) Use “Hi” to select one machine instruction in “d” and assemble it into the 

program word selected by “Hw”.  
: ,I   ( d ) Hi @ 10 =  IF  0 Hi !  H @ Hw !  0 #,  THEN 

             Hi @ mask + @ AND  ,w  4 Hi +! ; 

 

SPREAD ( b – d ) Repeat 8-bit byte code “b” in all 4 bytes to form a 32-bit word. “mask” 

uses it to select a byte for assembling. 
: spread ( b - d ) DUP 100 * DUP 100 * DUP 100 * + + + ; 

 

,B ( b -- ) Pack byte “b” into current program word. Pointer “Bi” determines which byte 

field to pack.  
: ,B   ( c ) Bi @ 0 = IF 1 Bi ! H @ Hw ! 0 #, ,w EXIT THEN 

             Bi @ 1 = IF 2 Bi ! 100 * ,w EXIT THEN 

             Bi @ 2 = IF 3 Bi ! 10000 * ,w EXIT THEN 

             0 Bi ! 1000000 * ,w ; 

 

INST ( b -- ) Define a set of byte code assembly commands. It creates a byte code 

assembly command like a constant. When a byte code assembly command is later executed, 

this byte “b” is retrieved and a byte code is assembled into the current program word by 

command “,I”. 
: INST CONSTANT DOES> R> @ spread ,I ; 
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INST is a defining word, which is used to create a class of commands. These commands then 

assemble byte code in the code field of a primitive command in the target dictionary. INST 

takes a byte code number on data stack and creates a CONSTANT first. However, when this 

new command is executed, it retrieves the constant value, and actually assembles a byte code 

on top of target dictionary, which is allocated to a new code field for a new primitive command 

in target dictionary. This is accomplished by the commands R> @ spread ,I, between 

DOES> and “:”. In fact, INST defines the ceForth assembler. 

 

nop, ( -- ) First byte code assembly command defined by “INST”. 
0 INST nop, 

 

aanew ( -- ) Fill current program word with nop, and initialize Hi and hw to assemble 

new byte code in the next program word. 
: aanew BEGIN Hi @ 10 < WHILE nop, REPEAT 0 Bi ! ; 

 

begin ( – a ) Mark the current top of dictionary. This is where new tokens will be 

compiled later. 
: begin aanew H @ ; 

 

ceForth Byte Code 
 

Here are all the byte code assembly commands to be used to assemble byte code in primitive 

commands to build ceForth kernel. They are all created by INST. 
 
decimal 

\ 0 INST nop, 

1 INST bye,      2 INST qrx,    3 INST txsto,  4 INST docon,  

5 INST dolit,    6 INST dolist, 7 INST exit,   8 INST execu, 

9 INST donext,  10 INST qbran, 11 INST bran,  12 INST store, 

13 INST at,     14 INST cstor, 15 INST cat,   16 INST rpat, 

17 INST rpsto , 18 INST rfrom, 19 INST rat,   20 INST tor, 

21 INST spat  , 22 INST spsto, 23 INST drop,  24 INST dup, 

25 INST swap,   26 INST over,  27 INST zless, 28 INST andd, 

29 INST orr,    30 INST xorr,  31 INST uplus, 32 INST next,  

33 INST qdup,   34 INST rot,   35 INST ddrop, 36 INST ddup,  

37 INST plus,   38 INST inver, 39 INST negat, 40 INST dnega,  

41 INST subb,   42 INST abss,  43 INST equal, 44 INST uless,  

45 INST less,   46 INST ummod, 47 INST msmod, 48 INST slmod,  

49 INST mod,    50 INST slash, 51 INST umsta, 52 INST star,  

53 INST mstar,  54 INST ssmod, 55 INST stasl, 56 INST pick,  

57 INST pstor,  58 INST dstor, 59 INST dat,   60 INST count,  

61 INST dovar,  62 INST max,   63 INST min,    

 

Command Headers 
 

In ceForth, all commands are compiled in a target dictionary, and linked as a list. Each 

command has a link field of one 32-bit word, a variable length name field in which the first 

byte contains a length followed by the ASCII code of the name, null filled to a 32-bit word 

boundary, a one word code field, and a variable-length parameter field containing 32-bit tokens 
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or byte code. A primitive command has byte code in its code field. A compound command has 

a dolist, byte code  in its code field, and a token list in its parameter field. Here are 

commands to build headers, which include link and name fields. 

 

(makehead) ( -- ) Build a header for a new target command. The header includes a link 

field and a name field. The address of the name field in the last target command is stored in 

“lasth”, and is compiled into the link field. “H” points to the name field of the new command, 

and is copied into “lasth”. Now, the following string is packed into the name field, starting 

with its length byte, and null filled to the word boundary. Now, “H” points to the code field of 

this new target command. 
: (makeHead) 

   aanew 20 word                          \ get name of new definition 

   lastH @ nameR!                         \ fill link field of last word 

   H @ lastH !                            \ save nfa in lastH 

   DUP c@ ,B                              \ store count 

   count FOR AFT 

      count ,B                            \ fill name field 

   THEN NEXT 

   DROP aanew 

   ; 

 

makehead ( -- ) Build a header with (makehead) and save the name string to define a 

compiler command in metacompiler. It displays the name and code field address. A string can 

be used repeatedly by saving and restoring its pointer in “>IN”. 
: makeHead 

   >IN @ >R                               \ save interpreter pointer 

   (makeHead)  

   R> >IN !                               \ restore word pointer 

   ; 

 

$LIT ( -- ) Compile a packed string for a string literal inside a token list. It works similarly 

as (makehead). However, the name string is delimited by space character (ASCII 0x20), while 

a string literal is delimited by a double-quote character (ASCII 0x22). 
: $LIT ( -- ) 

   aanew 22 WORD 

   DUP c@ ,B ( compile count ) 

   count FOR AFT 

      count ,B ( compile characters ) 

   THEN NEXT    DROP aanew ; 

 

Compilers for Primitive and Compound Commands 
 

We are now at the peak of our metacompiler. We had built all the tools to compile new 

commands into the target dictionary, which will eventually run ceForth. All commands have a 

link field and a name field. Primitive commands have an additional code field. Compound 

commands have a code field and a parameter field. Two defining commands are now created to 

build the primitive and compound commands. CODE creates a headers for primitive commands, 

and its following code field can now be packed with byte code. :: (colon-colon) creates 



44 

 

a header for a compound command, and its following parameter field can be stuffed with a 

token list. 
 

CODE ( -- ) Create a new primitive command in ceForth target dictionary. It creates a new 

header with a link field and a name field, and is ready to assemble byte code in the following 

code field. It also creates an assembly command in the metacompiler, storing its code field 

address. When this assembly command is encountered by metacompiler, it compiles its code 

field address as a token to extend the token list currently under construction.  
: CODE makeHead begin .head CONSTANT  DOES> R> @ #, ;            

 

:: (colon-colon, -- ) Create a new compound command in ceForth target dictionary. 

It creates a link field and a name field, and then add a byte code dolist, in the code field. 

Now, a token list can be built in its parameter field, to become a new compound command in 

target dictionary. It also creates an assembly command in the metacompiler, storing its code 

field address. When this assembly command is encountered by metacompiler, it compiles its 

code field address as a token to extend the token list currently under construction. 
: ::   makeHead begin .head CONSTANT dolist, aanew DOES> R> @ 

#, ; 

 

Defining word is an advanced topic in Forth. A defining word is used to create a class of new 

commands. The command DOES> separates the compiling behavior of the defining word, and 

the run time behavior of the new commands it later creates. Another way to look at it, a 

defining word can be specified: 

 
:  <Defining word>  <Compiler>  DOES>   <Interpreter>  ; 

 

In CODE, it compiles a new command by making its header by makeHead, obtaining its code 

field address by begin, printing its name and code field address with .head, and finally 

create a constant with the code field address by CONSTANT. However, when the new command 

thus created is later executed, top of return stack is pointing at its parameter field, where the 

code field address was stored. Retrieve this cfa by R>, fetch it contents by @, and then add this 

address to the current token list by “#,”. 

 

In :: (colon-colon), a new compound command is created much like CODE first as a 

CONSTANT with its cfa. Now, a byte code dolist, is assembled into the new code field. The 

parameter field is open for a new token list. All commands following will be compiled as 

tokens. The new compound command thus created, just like the primitive commands created by 

CODE, will add its code field address to the token list on top of the target dictionary. 

 

Clear as mud? There are 4 levels of Forth expertise: 

Level 1: Type a list of commands and get them executed. 

Level 2: Create a new compound command to replace a list of existing commands. 

Level 3: Create a defining word to create a class of similarly behaving commands. 

Level 4: Metacompilation. 
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You are now between Level 3 and Level 4. Do not be discouraged if you do not understand 

everything. I am trying to show you a working Level 4 system. There is nothing beyond it. 

There is no Level 5. 
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Chapter 5. ceForth Primitive Commands 
 

 

The kernel of ceForth_23 is defined in file cefKERNa_23.f. It is a collection of primitive 

commands, executing byte code. The byte code it refers to are C function defined in 

ceForth_23.cpp. 

 

In Forth dictionary, each command has a record containing 4 fields: a link field pointing to the 

name field of its prior command, a name field containing ASCII characters for the name of this 

command, a code field pointing to executable byte code of this command, and a parameter field 

containing data used by this command. There are two types of commands used in eForth: low 

level primitive commands whose parameter field contains more byte code; and high level 

compound commands whose parameter fields contain tokens lists. In this ceForth_23 

implementation, a token is the code field address of a command in dictionary. Tokens are 4 

bytes in length. The length of a parameter field varies depending upon the complexity of the 

command.  

 

In the code field of a primitive command, there are 4 byte code in the code field. More byte 

code may spill over into the following parameter field. A byte code sequence must be 

terminated by a special byte code named next(). The function of next() is to fetch the token 

pointed to by the Interpreter Pointer IP, increment IP to point to the next token in a token list, 

and execute the token just fetched. Since a token points to a code field containing executable 

byte code, executing a token means jumping indirectly to the code field pointed to by the token. 

next() thus allows the Virtual Forth Engine to execute a token list with very little CPU 

overhead. In ceForth_23, next() is defined as: 
void next(void) { P = data[IP>>2]; IP += 4; jump();  } 

 

In a compound command, the code field contains one byte code (6) which executes a function 

dolist(),which processes the token list in the parameter field following the code field. 

dolist() pushes the contents in IP onto the return stack, copies the address of the first token 

in its code field into IP and then calls next(). next()  then executes the token list in the 

parameter field: 
void dolist(void) { rack[(unsigned char)++R] = IP; IP = P; next(); } 

 

The last token in the token list of a compound command must be a primitive command EXIT. 

It executes exitt(), and thus undoes what dolist() accomplished. exitt() pops the top 

item on the return stack into the IP register. Consequently, IP points to the token following the 

compound command just executed. exitt() then invokes next() which continues processing of 

the calling token list, briefly interrupted by the last compound command in this token list.  
CODE EXIT exitt, next, 

void exitt(void) { IP = (cell) rack[(unsigned char)R--]; next(); } 

 

next() is the inner interpreter of primitive words, and dolist() is the interpreter of 

compound command and are often referred to as an address interpreter. They are the foundation 

of a Virtual Forth Engine.  
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The collection of primitive commands is generally called the kernel of a Forth system. These 

primitive commands contain byte code, which cause C function in the Virtual Forth Machine to 

be executed to perform atomic operations by the host computer. 

 

In the kernel of ceForth_23, most primitive commands have one byte code followed by the 

inner interpreter next(), which has a byte code of 0x20. However, primitive commands may 

have one byte code, or as many byte code as necessary. The assembler in ceForth_23 uses a 

special command COLD to construct the header of a primitive command, which includes a link 

field and a name field. After the header is constructed, byte code are added at will. The names 

of assembly instructions are simply the names of the corresponding C functions, terminated 

with a , (comma) character. 

 

To show you clearly the relationship between a primitive command and the corresponding C 

function in VFM, I will put them together, as much as I can. Hopefully, you can bridge the gap 

between a VFM and a Forth machine that you can interact with. 

 

System Variables 
 

 A set of system variables are implemented as constants pointing to specific addresses in the 

variable area, allocated in the beginning of the dictionary.  

 

HLD ( -- a ) Return a pointer to a buffer below PAD to build a numeric output string. 
CODE HLD      80 docon, next, #,       \ scratch 

 

SPAN  ( -- a ) Hold a character count received by EXPECT. 
CODE SPAN     84 docon, next, #,       \ #chars input by EXPECT 

 

>IN  ( -- a ) Hold the current character pointer while parsing input stream. 
CODE >IN      88 docon, next, #,       \ input buffer offset 

 

#TIB  ( -- a ) Hold the current character count in terminal input buffer. Terminal Input Buffer is 

in the next variable „TIB. 
CODE #TIB     8C docon, next, #,       \ #chars in the input buffer 

 

‘TIB ( -- a )  Hold the current address of terminal input buffer. 
CODE 'TIB     90 docon, next, #,       \ ptr to TIB 

 

BASE  ( -- a ) Store the current radix base for numeric I/O. Default to 0x10. 
CODE BASE     94 docon, next, #,       \ number base 

 

CONTEXT  ( -- a ) Return a pointer to the last name field in Forth dictionary.  
CODE CONTEXT  98 docon, next, #,       \ first search vocabulary 

 

CP  ( -- a ) Point to the top of the Forth dictionary. New commands are compiled here. 
CODE CP       9C docon, next, #,       \ dictionary code pointer 
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LAST ( -- a )  Return a pointer to the last name field in Forth dictionary. It is updated only when 

a valid new command is compiled successfully. 
CODE LAST     A0 docon, next, #,       \ ptr to last name compiled 

 

‘EVAL ( -- a )  Hold the execution vector for EVAL. Default to $INTERPRET while 

interpreting commands. It is changed to $COMPILE while compiling a new compound 

command. 
CODE 'EVAL    A4 docon, next, #,       \ interpret/compile vector 

 

‘ABORT  ( -- a ) Hold the execution vector for error handler. Default to QUIT. 
CODE 'ABORT   A8 docon, next, #,       \ ptr to error handler 

 

tmp  ( -- a ) A temporary storage location used in parsing and searching commands. 
CODE tmp      AC docon, next, #,       \ ptr to converted # string 

 

System Interface Commands 

 

NOP (--)  No operation. 
CODE NOP next, 

void nop(void) 

{ next(); } 

 

BYE ( --  )  Return to Windows. 
CODE BYE bye,  

void bye(void) 

{ exit(0); } 

 

?RX ( -- c T | F ) Return input character and true, or a false if no input.received. 
CODE ?RX qrx, next, 

void qrx(void) 

{ push(long) getchar(); 

 if (top != 0) push TRUE; } 

 

TX! ( c -- ) Send a character to the serial terminal. 
CODE TX! txsto, next,   

void txsto(void) 

{ putchar((char)top); 

 pop; } 

 

Inner Interpreter 

 

next() is the inner interpreter of the Virtual Forth Machine. Execute the next token in a token 

list. 
void next(void) { P = data[IP>>2]; IP += 4; jump();  } 

 

NOP ( -- ) No operation.  
CODE NOP next, 

void nop(void) { jump(); }  
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DOCON ( -- n ) Return integer stores in the next cell in current token list. 
CODE DOCON docon, next,   

void next(void) 

{ P = data[IP>>2]; 

 WP = P + 4; 

 IP += 4; } 

 

DOLIT ( -- w) Push the next token onto the data stack as an integer literal. It allows numbers to 

be compiled as in-line literals, supplying data to the data stack at run time.  
CODE DOLIT dolit, next,  

void dolit(void) 

{ push data[IP>>2]; 

 IP += 4; 

 next(); } 

 

DOLIST ( -- ) Push the current Instruction Pointer (IP) the return stack and then pops the 

Program Counter P into IP from the data stack. When next() is executed, the tokens in the list 

are executed consecutively. Dolist, is in the code field of all compound commands. The 

token list in a compound command must be terminated by EXIT. 
CODE DOLIST dolist, next, 

void dolist(void) 

{ rack[(char)++R] = IP; 

 IP = WP; 

 next(); } 

 

EXIT ( -- ) Terminate all token lists in compound commands. EXIT pops the execution address 

saved on the return stack back into the IP register and thus restores the condition before the 

compound command was entered. Execution of the calling token list will continue. 
CODE EXIT exit, next, 

void exitt(void) 

{ IP = (long)rack[(char)R--]; 

 next(); } 

 

EXECUTE ( a -- ) Take the execution address from the data stack and executes that token. This 

powerful command allows you to execute any token which is not a part of a token list. 
CODE EXECUTE execu, next, 

void execu(void) 

{ P = top; 

 WP = P + 4; 

 pop; } 

 

DONEXT ( -- ) Terminate a FOR-NEXT loop. The loop count was pushed on return stack, and is 

decremented by DONEXT. If the count is not negative, jump to the address following DONEXT; 

otherwise, pop the count off return stack and exit the loop. DONEXT is compiled by NEXT. 
CODE DONEXT donext, next, 

void donext(void) 

{ if (rack[(char)R]) { 

  rack[(char)R] -= 1; 

  IP = data[IP>>2]; } 



50 

 

 else {IP += 4; 

  R--; } 

 next(); } 

 

QBRANCH ( f -- ) Test top element as a flag on data stack. If it is zero, branch to the address 

following QBRANCH; otherwise, continue execute the token list following the address. 

QBRANCH is compiled by IF, WHILE and UNTIL. 
CODE QBRANCH qbran, next, 

void qbran(void) 

{ if (top == 0) IP = data[IP>>2]; 

 else IP += 4; 

 pop; 

 next(); } 

 

BRANCH ( -- ) Branch to the address following BRANCH. BRANCH is compiled by AFT, ELSE, 

REPEAT and AGAIN. 
CODE BRANCH bran, next, 

void bran(void) 

{ IP = data[IP>>2]; 

 next(); } 

 

Memory Access Commands 
 

! ( n a -- ) Store integer n into memory location a. 
CODE ! store, next, 

void store(void) 

{ data[top>>2] = stack[(char) S--]; 

 pop; } 

 

@ ( a -- n) Replace memory address a with its integer contents fetched from this location. 
CODE @ at, next, 

void at(void) 

{ top = data[top>>2]; } 

 

C! ( c b -- ) Store a byte value c into memory location b. 
CODE C! cstor, next, 

void cstor(void) 

{ cData[top] = (char)stack[(char) S--]; 

 pop; } 

 

C@ ( b -- n) Replace byte memory address b with its byte contents fetched from this location. 
CODE C@ cat, next, 

void cat(void) 

{ top = (long)cData[top]; } 

 

+! ( n a -- ) Add n to the contents at address a. 
CODE +! pstor, next,  

void pstor(void) 

{ data[top>>2] += stack[(char) S--], pop; } 
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2! ( d a -- ) Store the double integer to address a. 
CODE 2! dstor, next,  

void dstor(void) 

{ data[(top>>2) + 1] = stack[(char) S--]; 

 data[top>>2] = stack[(char) S--]; 

 pop; } 

 

2@ ( a -- d ) Fetch double integer from address a. 
CODE 2@ dat, next,  

void dat(void) 

{ push data[top>>2]; 

 top = data[(top>>2) + 1]; } 

 

COUNT ( b -- b+1 +n ) Return count byte of a string and add 1 to byte address. 
CODE COUNT count, next,  

void count(void) 

{ stack[(char) ++S] = top + 1; 

 top = cData[top]; } 

 

Stack Commands 

 

>R ( n -- ) Pop a number off the data stack and pushes it on the return stack.  
CODE R> rfrom, next, 

void tor(void) 

{ rack[(char)++R] = top; 

 pop; } 

 

R@ ( -- n ) Copy a number off the return stack and pushes it on the return stack.  
CODE R@ rat, next, 

void rat(void) 

{ push rack[(char)R]; } 

 

>R( -- n ) Pop a number off the return stack and pushes it on the data stack.  
CODE >R tor, next, 

void tor(void) 

{ rack[(char)++R] = top; 

 pop; } 

 

DROP ( w -- ) Discard top stack item. 
CODE DROP drop, next, 
void drop(void) 

{ pop; } 

 

DUP ( w -- w w ) Duplicate the top stack item. 
CODE DUP dup, next, 

void dup(void) 

{ stack[(char) ++S] = top; } 

 

SWAP ( w1 w2 -- w2 w1 ) Exchange top two stack items. 
CODE SWAP swap, next, 
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void swap(void) 

{ WP = top; 

 top = stack[(char) S]; 

 stack[(char) S] = WP; } 

 

OVER ( w1 w2 -- w1 w2 w1 ) Copy second stack item to top. 
CODE OVER over, next, 

void over(void) 

{ push stack[(char) S - 1]; } 

 

?DUP ( w -- w w | 0 ) Dup top of stack if its is not zero. 
CODE ?DUP qdup, next,  

void qdup(void) 

{ if (top) stack[(char) ++S] = top; } 

 

ROT ( w1 w2 w3 -- w2 w3 w1 ) Rot 3rd item to top. 
CODE ROT rot, next,  

void rot(void) 

{ WP = stack[(char) S - 1]; 

 stack[(char) S - 1] = stack[(char) S]; 

 stack[(char) S] = top; 

 top = WP; } 

 

2DROP ( w w -- ) Discard two items on stack. 
CODE 2DROP ddrop, next,  

void ddrop(void) 

{ drop(); drop(); } 

 

2DUP ( w1 w2 -- w1 w2 w1 w2 ) Duplicate top two items. 
CODE 2DUP ddup, next,  

void ddup(void) 

{ over(); over(); } 

 

PICK ( ... +n -- ... w ) Copy the nth stack item to top. 
CODE PICK pick, next,  

void pick(void) 

{ top = stack[(char) S - (char)top]; } 

 

Logic Commands 

 

0< ( n – f )  Examine the top item on the data stack for its negativeness. If it is negative, return 

a -1 for true. If it is 0 or positive, return a 0 for false. 
CODE 0< zless, next, 

void zless(void) 

{ top = (top < 0) LOGICAL; } 

 

= ( w w -- t ) Return true if top two are equal. 
CODE = equal, next,  

void equal(void) 

{ top = (stack[(char) S--] == top) LOGICAL; } 
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U< ( u1 u2 -- t ) Unsigned compare of top two items. 
CODE U< uless, next,  

void uless(void) 

{ top = LOWER(stack[(char) S], top) LOGICAL; (char) S--; } 

 

< ( n1 n2 -- t ) Signed compare of top two items. 
CODE < less, next,   

void less(void) 

{ top = (stack[(char) S--] < top) LOGICAL; } 

 

NOT ( w -- w ) One's complement of top. 
CODE NOT inver, next,  

void inver(void) 

{ top = -top - 1; } 

 

AND ( w w -- w ) Bitwise AND. 
CODE AND andd, next, 

void andd(void) 

{ top &= stack[(char) S--]; } 

 

OR ( w w -- w ) Bitwise inclusive OR. 
CODE OR orr, next, 

void orr(void) 

{ top |= stack[(char) S--]; } 

 

XOR ( w w -- w ) Bitwise exclusive OR. 
CODE XOR xorr, next, 

void xorr(void) 

{ top ^= stack[(char) S--]; } 

 

MAX ( n1 n2 -- n ) Return the greater of two top stack items. 
CODE MAX max, next, 

void max(void) 

{ if (top < stack[(char) S]) pop; 

 else (char) S--; } 

 

MIN ( n1 n2 -- n )  Return the smaller of top two stack items. 
CODE MIN min, next, 

void min(void) 

{ if (top < stack[(char) S]) (char) S--; 

 else pop; } 

 

Math Commands 

 

UM+ ( w w -- w cy ) Add two numbers, return the sum and carry flag. 
CODE UM+ uplus, next, 

void uplus(void) 

{ stack[(char) S] += top; 

 top = LOWER(stack[(char) S], top); } 
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+ ( w w -- sum ) Add top two items. 
CODE + plus, next, 

void plus(void) 

{ top += stack[(char) S--]; } 

 

NEGATE ( n -- -n ) Two's complement of top. 
CODE NEGATE negat, next,  

void negat(void) 

{ top = 0 - top; } 

 

DNEGATE ( d -- -d ) Two's complement of top double. 
CODE DNEGATE dnega, next,  

void dnega(void) 

{ inver(); 

 tor(); 

 inver(); 

 push 1; 

 uplus(); 

 rfrom(); 

 plus(); } 

 

- ( n1 n2 -- n1-n2 ) Subtraction. 
CODE - subb, next,  

void subb(void) 

{ top = stack[(char) S--] - top; } 

 

ABS ( n -- n ) Return the absolute value of n. 
CODE ABS abss, next, 

void abss(void) 

{ if (top < 0) 

  top = -top; } 

 

UM/MOD( udl udh u -- ur uq ) Unsigned divide of a double by a single. Return mod and quotient. 
CODE UM/MOD ummod, next, 

void ummod(void) 

{ d = (long long int)((unsigned long)top); 

 m = (long long int)((unsigned long)stack[(char) S]); 

 n = (long long int)((unsigned long)stack[(char) S - 1]); 

 n += m << 32; 

 pop; 

 top = (unsigned long)(n / d); 

 stack[(char) S] = (unsigned long)(n%d); } 

 

M/MOD ( d n -- r q ) Signed floored divide of double by single. Return mod and quotient. 
CODE M/MOD msmod, next, 

void msmod(void) 

{ d = (signed long long int)((signed long)top); 

 m = (signed long long int)((signed long)stack[(char) S]); 

 n = (signed long long int)((signed long)stack[(char) S - 1]); 

 n += m << 32; 
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 pop; 

 top = (signed long)(n / d); 

 stack[(char) S] = (signed long)(n%d); } 

 

/MOD ( n1 n2 -- r q ) Signed divide. Return mod and quotient. 
CODE /MOD slmod, next,  

void slmod(void) 

{ if (top != 0) { 

  WP = stack[(char) S] / top; 

  stack[(char) S] %= top; 

  top = WP; 

 } } 

 

MOD ( n n -- r ) Signed divide. Return mod only. 
CODE MOD mod, next,  

void mod(void) 

{ top = (top) ? stack[(char) S--] % top : stack[(char) S--]; } 

 

/ ( n n -- q ) Signed divide. Return quotient only. 
CODE / slash, next,  

void slash(void) 

{ top = (top) ? stack[(char) S--] / top : (stack[(char) S--], 0); } 

 

UM* ( u1 u2 -- ud ) Unsigned multiply. Return double product. 
CODE UM* umsta, next,    

void umsta(void) 

{ d = (unsigned long long int)top; 

 m = (unsigned long long int)stack[(char) S]; 

 m *= d; 

 top = (unsigned long)(m >> 32); 

 stack[(char) S] = (unsigned long)m; } 

 

* ( n n -- n ) Signed multiply. Return single product. 
CODE * star, next,  

void star(void) 

{ top *= stack[(char) S--]; } 

 

M* ( n1 n2 -- d ) Signed multiply. Return double product. 
CODE M* mstar, next,  

void mstar(void) 

{ d = (signed long long int)top; 

 m = (signed long long int)stack[(char) S]; 

 m *= d; 

 top = (signed long)(m >> 32); 

 stack[(char) S] = (signed long)m; } 

 

*/MOD ( n1 n2 n3 -- r q ) Multiply n1 and n2, then divide by n3. Return mod and quotient. 
CODE */MOD ssmod, next,  

void ssmod(void) 

{ d = (signed long long int)top; 

 m = (signed long long int)stack[(char) S]; 
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 n = (signed long long int)stack[(char) S - 1]; 

 n += m << 32; 

 pop; 

 top = (signed long)(n / d); 

 stack[(char) S] = (signed long)(n%d); } 

 

*/ ( n1 n2 n3 -- q ) Multiply n1 by n2, then divide by n3. Return quotient only. 
CODE */ stasl, next,  

void stasl(void) 

{ d = (signed long long int)top; 

 m = (signed long long int)stack[(char) S]; 

 n = (signed long long int)stack[(char) S - 1]; 

 n += m << 32; 

 pop; pop; 

 top = (signed long)(n / d); } 

 

Miscellaneous Commands 

 

BL ( – 0x20 ) Push blank character on stack. 
CODE BL 20 docon, next, #, 

 

CELL ( – 4 ) Push cell size on stack. 
CODE CELL 4 docon, next, #, 

 

CELL+ ( a -- a ) Add cell size in byte to address. 
CODE CELL+ 4 docon, plus, next, #, 

void cellp(void) { top += 4; } 

 

CELL- ( a -- a ) Subtract cell size in byte from address. 
CODE CELL- 4 docon, subb, next, #, 

void cellm(void) { top -= 4; } 

 

CELLS ( n -- n ) Multiply top by cell size in bytes. 
CODE CELLS 4 docon, star, next, #, 

void cells(void) { top *= 4; } 

 

CELL/ ( n -- n ) Divide top by cell size in bytes. 
CODE CELL/ 4 docon, slash, next, #, 

void cellsl(void) { top /= 4; } 

 

1+ ( a – a+1 ) Increment top. 
CODE 1+ 1 docon, plus, next, #, 

 

1- ( a – a-1 ) Decrement top. 
CODE 1- 1 docon, subb, next, #, 

 

DOVAR( -- a ) Return address of the next cell in current token list 
CODE DOVAR dovar, next, 

void dovar(void) 

{ push WP; } 
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Control Structure Commands 
 

Above we have all the primitive commands in the kernel of ceForth. Many of the primitive 

commands are not used in programming, but are used to construct branching and looping 

control structures in token lists of compound commands. They compile integer and address 

literals in token lists, and resolve the address fields in address literals. They allow Forth to 

incorporate nested structures in simple linear token lists to solved complex problems. 
 

;; ( -- ) Terminate a token list in compound commands by compiling the token EXIT. 
: ;; EXIT ; 

 

BEGIN Mark current location in target for later address resolution. 
: BEGIN ( -- a ) begin ; 

 

AGAIN Terminate a begin-again loop, and assemble a bra instruction to “BEGIN”. 
: AGAIN ( a -- ) BRANCH #, ; 

 

UNTIL Terminate a begin-until loop if top is not cleared. 
: UNTIL ( a -- ) QBRANCH #, ; 

 

IF Start a conditional branch structure. Assemble a QBRANCH instruction. 
: IF ( -- a ) QBRANCH BEGIN 0 #, ; 

 

ELSE Resolve branch instruction at “IF”, and start a branch structure. Assemble a BRANCH 

instruction. 
: ELSE ( a1 -- a2 ) BRANCH BEGIN 0 #, forth_swap 

 BEGIN forth_swap RAM! ; 

 

THEN Terminate a conditional branch structure by resolving the branch instruction at “IF” or 

“ELSE”. 
: THEN ( a -- ) BEGIN forth_swap RAM! ; 

 

WHILE Start a conditional branch structure in a begin-while-repeat loop. Assemble a 

QBRANCH instruction. 
: WHILE ( a1 -- a2 a1 ) IF forth_swap ; 

 

REPEAT Terminate a begin-while-repeat loop, and assemble a bra instruction to “begin”. 
: REPEAT ( a -- ) BRANCH #, THEN ; 

 

AFT Branch the THEN in a FOR-NEXT loop to skip this branch the first time through the loop.  
: AFT ( a1 -- a3 a2 ) forth_drop BRANCH BEGIN 0 #, BEGIN forth_swap ; 

 

FOR Start a finite FOR-NEXT loop. 
: FOR ( -- a ) >R BEGIN ; 

 

NEXT Terminate a FOR-NEXT loop. 
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: NEXT ( a -- ) DONEXT #, ; 

 

LIT Compile an integer literal in a token list.. 
: LIT ( n -- ) DOLIT #, ; 
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Chapter 6. ceForth Compound Commands 
 

 

The dictionary of ceForth system contains records of all Forth commands. The low level 

primitive commands are discussed in the Kernel section. The high level compound commands 

are discussed here. All compound commands are defined in the file cEFa_23.f. They are 

discussed in their loading order. The loading order is very important in the ceForth 

metacompiler, because forward referencing is not allowed. All assembling and compiling 

processes are accomplished in a single pass. 

 

ceForth metacompiler behaves very similar to a regular Forth system. However, to compile 

primitive commands into a target dictionary, the command CODE was changed to accomplish 

this goal. To compile high level compound commands to the target dictionary, as we do in this 

cEFa_23.f file, a new set of commands :: (colon-colon) and :: (semicolon-

semicolon) are used instead of the Forth commands : (colon) and ; (semicolon). 

Unlike : (colon), :: (colon-colon) does not change to a compiling state, and the 

metacompiler remains in the interpretive state throughout. New commands defined by the 

metacompiler would just add new tokens to the target dictionary.  

 

Control structure commands like IF, ELSE, THEN, BEGIN, WHILE, REPEAT, etc, are 

all retained in the metacompiler so they can construct control structures properly in target 

dictionary. The only exception is the handling of literals. An integer encountered by 

metacompiler would remain on data stack. If you intended to compiler it as a literal in target 

dictionary, you would have to use the special command LIT. If you are familiar with Forth 

language, you would notice that the compound commands in cEFa_23.f read identically like 

regular Forth code, except that integer literals have to be handled explicitly.  

 

Common Commands 

 

?KEY ( -- c T| F ) Inspect the terminal device and returns a character and a true flag if the 

character has been received and is waiting to be retrieved. If no character was received, ?KEY 

simply returns a false flag.  
:: ?KEY  ?RX ;; 

 

KEY ( -- c ) Wait until a character is received from the terminal device and returns its ASCII 

code.  
:: KEY   BEGIN ?RX UNTIL ;;       

 

EMIT ( c -- ) Send a character on data stack to the terminal device.  
:: EMIT  TX! ;; 

 

WITHIN checks whether the third item on the data stack is within the range as specified by top 

two numbers on the data stack. The range is inclusive as to the lower limit and exclusive to the 
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upper limit. If the third item is within range, a true flag is returned on data stack. Otherwise, a 

false flag is returned. All numbers are assumed to be unsigned integers.  
:: WITHIN ( u ul uh -- t ) \ ul <= u < uh 

  OVER - >R - R> U< ;; 

 

>CHAR is very important in converting a non-printable character to a harmless 'underscore' 

character (ASCII 95). As eForth is designed to communicate with you through a serial I/O 

device, it is important that eForth will not emit control characters to the host and causes 

unexpected behavior on the host computer. >CHAR thus filters the characters before they are 

sent out by TYPE.  
:: >CHAR ( c -- c ) 

  $7F LIT AND DUP $7F LIT BL WITHIN 

  IF DROP ( CHAR _ ) $5F LIT THEN ;; 

 

ALIGNED changes the address to the next cell boundary so that it can be used to address 32 bit 

word in memory. 
:: ALIGNED ( b -- a ) 3 LIT + FFFFFFFC LIT AND ;; 

 

HERE returns the address of the first free location above the code dictionary, where new 

commands are compiled.  
:: HERE ( -- a ) CP @ ;; 

 

PAD returns the address of the text buffer where numbers are constructed and text strings are 

stored temporarily.  
:: PAD ( -- a ) HERE 50 LIT + ;; 

 

TIB returns the terminal input buffer where input text string is held.  
:: TIB ( -- a ) 'TIB @ ;; 

 

@EXECUTE is a special command supporting the vectored execution commands in eForth. It 

fetches the code field address of a token and executes the token.  
:: @EXECUTE ( a -- ) @ ?DUP IF EXECUTE THEN ;; 

 

CMOVE copies a memory array from one location to another. It copies one byte at a time. 
:: CMOVE ( b b u -- ) 

  FOR AFT OVER c@ OVER c! >R 1+ R> 1+ THEN NEXT 2DROP ;; 

 

MOVE copies a memory array from one location to another. It copies one word at a time. 
:: MOVE ( b b u -- ) 

  CELL/ FOR AFT OVER @ OVER ! >R CELL+ R> CELL+ THEN NEXT 2DROP ;; 

 

FILL fills a memory array with the same byte.  
:: FILL ( b u c -- ) 

  SWAP FOR SWAP AFT 2DUP c! 1+ THEN NEXT 2DROP ;; 

 

Numeric Output 

 

DIGIT converts an integer to an ASCII digit.  
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:: DIGIT ( u -- c ) 

  9 LIT OVER < 7 LIT AND + 

  ( CHAR 0 ) 30 LIT + ;; 

 

EXTRACT extracts the least significant digit from a number n. n is divided by the radix in BASE 

and returned on the stack.  
:: EXTRACT ( n base -- n c ) 

  0 LIT SWAP UM/MOD SWAP DIGIT ;; 

 

<# initiates the output number conversion process by storing PAD buffer address into variable 

HLD, which points to the location next numeric digit will be stored. 
:: <# ( -- ) PAD HLD ! ;; 

 

HOLD appends an ASCII character whose code is on the top of the parameter stack, to the 

numeric output string at HLD. HLD is decremented to receive the next digit. 
:: HOLD ( c -- ) HLD @ 1- DUP HLD ! C!  ;; 

 

#(dig) extracts one digit from integer on the top of the parameter stack, according to radix in 

BASE, and add it to output numeric string. 
:: # ( u -- u ) BASE @ EXTRACT HOLD ;; 

 

#S(digs) extracts all digits to output string until the integer on the top of the parameter stack 

is divided down to 0. 
:: #S ( u -- 0 ) BEGIN # DUP WHILE REPEAT ;; 

 

SIGN inserts a - sign into the numeric output string if the integer on the top of the parameter 

stack is negative. 
:: SIGN ( n -- ) 0< IF ( CHAR - ) 2D LIT HOLD THEN ;; 

 

#> terminates the numeric conversion and pushes the address and length of output numeric 

string on the parameter stack. 
:: #> ( w -- b u ) DROP HLD @ PAD OVER - ;; 

 

str converts a signed integer on the top of data stack to a numeric output string. 
:: str ( n -- b u ) DUP >R ABS <# #S R> SIGN #> ;; 

 

HEX sets numeric conversion radix in BASE to 16 for hexadecimal conversions. 
:: HEX ( -- ) 10 LIT BASE ! ;; 

 

DECIMAL sets numeric conversion radix in BASE to 10 for decimal conversions. 
:: DECIMAL ( -- ) 0A LIT BASE ! ;; 

 

Numeric Input 

 

wupper converts 4 bytes in a word to upper case characters. 
:: wupper ( w -- w' ) 5F5F5F5F LIT AND ;; 
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>upper  converts a character to upper case. 
:: >upper ( c -- UC ) 

  dup 61 LIT 7B LIT WITHIN IF 5F LIT AND THEN ;; 

 

DIGIT? converts a digit to its numeric value according to the current base, and NUMBER? 

converts a number string to a single integer.  
:: DIGIT? ( c base -- u t ) 

  >R ( CHAR 0 ) >upper 30 LIT - 9 LIT OVER < 

  IF 7 LIT - DUP 0A LIT  < OR THEN DUP R> U< ;; 

 

NUMBER? converts a string of digits to a single integer. If the first character is a $ sign, the 

number is assumed to be in hexadecimal. Otherwise, the number will be converted using the 

radix value stored in BASE. For negative numbers, the first character should be a - sign. No 

other characters are allowed in the string. If a non-digit character is encountered, the address of 

the string and a false flag are returned. Successful conversion returns the integer value and a 

true flag. If the number is larger than 2**n, where n is the bit width of a single integer, only the 

modulus to 2**n will be kept.  
:: NUMBER? ( a -- n T | a F ) 

  BASE @ >R  0 LIT OVER COUNT ( a 0 b n) 

  OVER c@ ( CHAR $ ) 24 LIT = 

  IF HEX SWAP 1+ SWAP 1- THEN ( a 0 b' n') 

  OVER c@ ( CHAR - ) 2D LIT = >R ( a 0 b n) 

  SWAP R@ - SWAP R@ + ( a 0 b" n") ?DUP 

  IF 1- ( a 0 b n)  

    FOR DUP >R c@ BASE @ DIGIT?  

      WHILE SWAP BASE @ * +  R> 1+  

    NEXT DROP R@ ( b ?sign) IF NEGATE THEN SWAP  

      ELSE R> R> ( b index) 2DROP ( digit number) 2DROP 0 LIT  

      THEN DUP  

  THEN R> ( n ?sign) 2DROP R> BASE ! ;;  

 

Text Output 
 

SPACE outputs a blank space character.  
:: SPACE ( -- ) BL EMIT ;; 

 

CHARS output n characters c.  
:: CHARS ( +n c -- ) 

  SWAP 0 LIT MAX 

  FOR AFT DUP EMIT THEN NEXT DROP ;; 

 

SPACES output n blank space characters.  
:: SPACES ( +n -- ) BL CHARS ;; 

 

TYPE outputs n characters from a string in memory. Non ASCII characters are replaced by a 

underscore character. 
:: TYPE ( B U -- ) 

  FOR AFT COUNT >CHAR EMIT THEN NEXT DROP ;; 
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CR outputs a carriage-return and a line-feed.  
:: CR ( -- ) ( =CR ) 

  0A LIT 0D LIT EMIT EMIT ;; 

 

do$ retrieve the address of a string stored as the second item on the return stack. do$ is a bit 

difficult to understand, because the starting address of the following string is the second item on 

the return stack. This address is pushed on the data stack so that the string can be accessed. This 

address must be changed so that the address interpreter will return to the token right after the 

compiled string. This address will allow the address interpreter to skip over the string literal and 

continue to execute the token list as intended. Both $"| and ."| use the command do$, 
:: do$ ( -- $adr ) 

  R> R@ R> COUNT + ALIGNED >R SWAP >R ;;  

 

$”| push the address of the following string on stack. Other commands can use this address to 

access data stored in this string. The string is a counted string. Its first byte is a byte count. 
:: $"| ( -- a ) do$ ;;  

 

”| displays the following string on stack. This is a very convenient way to send helping 

messages to you at run time. 
:: ."| ( -- ) do$ COUNT TYPE ;; 

 

.R displays a signed integer n , the second item on the parameter stack, right-justified in a field 

of +n characters. +n is on the top of the parameter stack. 
::  .R ( n +n -- ) 

  >R str R> OVER - SPACES TYPE ;; 

 

U.R displays an unsigned integer n right-justified in a field of +n characters. 
:: U.R ( u +n -- ) 

  >R <# #S #> R> OVER - SPACES TYPE ;; 

 

U. displays an unsigned integer u in free format, followed by a space. 
:: U. ( u -- ) <# #S #> SPACE TYPE ;; 

 

. (dot) displays a signed integer n in free format, followed by a space. 
::  . ( n -- ) 

  BASE @ 0A LIT  XOR 

  IF U. EXIT THEN str SPACE TYPE ;; 

 

? displays signed integer stored in memory a on the top of the parameter stack, in free format 

followed by a space. 
:: ? ( a -- ) @ . ;; 

 

Parser 

 

(parse) ( b1 u1 c --b2 u2 n ) From the source string starting at b1 and of u1 characters long, 

parse out the first word delimited by character c. Return the address b2 and length u2 of the 

word just parsed out and the difference n between b1 and b2. Leading delimiters are skipped 

over. (parse) is used by PARSE.  
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:: (parse) ( b u c -- b u delta ; <string> ) 

  tmp c! OVER >R DUP \ b u u 

  IF 1- tmp c@ BL = 

    IF              \ b u' \ 'skip' 

      FOR BL OVER c@ - 0< NOT 

        WHILE 1+ 

      NEXT ( b) R> DROP 0 LIT DUP EXIT \ all delim 

        THEN  R> 

    THEN OVER SWAP  \ b' b' u' \ 'scan' 

    FOR tmp c@ OVER c@ -  tmp c@ BL = 

      IF 0< THEN WHILE 1+ 

    NEXT DUP >R 

      ELSE R> DROP DUP 1+ >R 

      THEN OVER -  R>  R> - EXIT 

  THEN ( b u) OVER R> - ;; 

 

PACK$ copies a source string (b u) to target address at a. The target string is null filled to the 

cell boundary. The target address a is returned. 
:: PACK$ ( b u a -- a ) \ always word-aligned 

  DUP >R  

  2DUP + $FFFFFFFC LIT AND 0 LIT SWAP ! \ LAST WORD FILL 0 1ST 

  2DUP C! 1+ SWAP CMOVE  R> ;; 

 

PARSE scans the source string in the terminal input buffer from where >IN points to till the end 

of the buffer, for a word delimited by character c. It returns the address and length of the word 

parsed out. PARSE calls (parse) to do the dirty work.  
:: PARSE ( c -- b u ; <string> ) 

  >R  TIB >IN @ + 

  #TIB @ >IN @ - 

  R> (parse) >IN +! ;; 

 

TOKEN parses the next word from the input buffer and copy the counted string to the top of the 

name dictionary. Return the address of this counted string.  
:: TOKEN ( -- a ;; <string> )  

  BL PARSE $1F LIT MIN 

  HERE CELL+         \ S D N  

  PACK$  ;; 

 

WORD parses out the next word delimited by the ASCII character c. Copy the word to the top of 

the code dictionary and return the address of this counted string.  
:: WORD ( c -- a ; <string> ) 

  PARSE HERE CELL+ PACK$ ;; \ BM+ 

 

Dictionary Search  

 

NAME> ( nfa – cfa) Return a code field address from the name field address of a command. 
:: NAME> ( a -- xt ) COUNT 1F LIT AND + ALIGNED ;; 
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SAME? ( a1 a2 n – a1 a2 f) Compare n/4 words in strings at a1 and a2. If the strings are the 

same, return a 0. If string at a1 is higher than that at a2, return a positive number; otherwise, 

return a negative number. find compares the 1
st
 word  input string and a name. If these two 

words are the same, SAME? is called to compare the rest of two strings 
:: SAME? ( a a u -- a a f \ -0+ ) 

 $1F LIT AND CELL/  

 FOR AFT OVER R@ 4 LIT * + @ wupper 

   OVER R@ 4 LIT * + @ wupper  

   - ?DUP IF R> DROP EXIT THEN 

 THEN NEXT 

 0 LIT ;; 

 

find ( a va --cfa nfa, a F) searches the dictionary for a command. A counted string at a is the 

name of a token to be looked up in the dictionary. The last name field address of the dictionary 

is stored in location va. If the string is found, both the code field address and the name field 

address are returned. If the string is not the name a token, the string address and a false flag are 

returned.  
:: find ( a va -- xt na | a 0 ) 

  SWAP         \ va a 

  DUP @ tmp !  \ va a  \ get cell count 

  DUP @ >R     \ va a  \ #XOR --- count and 1st 3 char 

  cell+ SWAP      \ a' va  a'=a(#XOR)+4 

  BEGIN @ DUP  \ a' na na 

    IF DUP @ $FFFFFF3F LIT AND wupper 

      R@ wupper XOR \ ignore lexicon bits 

      IF cell+ -1 LIT 

      ELSE cell+ tmp @ SAME? 

      THEN 

    ELSE R> DROP SWAP cell- SWAP EXIT \ a 0 

    THEN 

  WHILE cell- cell-  \ a' la 

  REPEAT R> DROP SWAP DROP 

  cell- DUP NAME> SWAP ;; 

:: NAME? ( a -- cfa na | a 0 ) 

  CONTEXT find ;; 

 

Text Interpreter 
 

The text interpreter interprets source text received from an input device and stored in the 

Terminal Input Buffer.  To process characters in the Terminal Input Buffer, we need special 

commands to deal with the special conditions of backspace character and carriage return: 

 

^H ( bot eot cur c -- bot eot cur )Process back-space. Erase last character and 

decrement “cur”.  If “cur”=”bot”, do nothing because you cannot backup beyond beginning of 

input buffer. 
:: ^H ( b b b -- b b b ) \ backspace 

  >R OVER R> SWAP OVER XOR 

  IF ( =BkSp ) 8 LIT EMIT 

     1-         BL EMIT \ distructive 

     ( =BkSp ) 8 LIT EMIT \ backspace 
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  THEN ;; 

 

TAP Output character “c” to terminal, store “c” in “cur”, and increment “cur”, which points to 

the current character. “bot” and “eot” are the beginning and end of the input buffer. 
:: TAP ( bot eot cur c -- bot eot cur ) 

  DUP EMIT OVER C! 1+ ;; 

 

kTAP ( bot eot cur c -- bot eot cur )Processes character “c”. “bot” is the beginning 

of the input buffer, and “eot” is the end. “cur” points to the current character in the input buffer. 

“c” is normally stored at “cur”, which is incremented by 1. If “c” is a carriage-return, echo a 

space and make “eot”=”cur”.  If “c” is a back-space, erase the last character and decrement 

“cur”. 
:: kTAP ( bot eot cur c -- bot eot cur ) 

  DUP ( =Cr ) 0D LIT XOR 

  OVER ( =Lf ) 0A LIT XOR AND 

  IF ( =BkSp ) 8 LIT XOR 

    IF BL TAP ELSE ^H THEN 

    EXIT 

  THEN DROP SWAP DROP DUP  ;; 

 

ACCEPT ( b u – b u ) Accepts “u” characters into buffer at “b”, or until a carriage return.  The 

value of “u” returned is the actual count of characters received. 
:: ACCEPT ( b u -- b u ) 

  OVER + OVER 

  BEGIN 2DUP XOR 

  WHILE  KEY  DUP BL -  5F LIT U< 

    IF TAP ELSE kTAP THEN 

  REPEAT DROP  OVER - 

 ;; 

 

EXPECT ( b u1 -- ) accepts u1 characters to b. Number of characters accepted is stored in SPAN.  
:: EXPECT ( b u -- ) ACCEPT SPAN ! DROP ;; 

 

QUERY( -- ) is the command which accepts text input, up to 80 characters, from an input 

device and copies the text characters to the terminal input buffer. It also prepares the terminal 

input buffer for parsing by setting #TIB to the received character count and clearing >IN.  
:: QUERY ( -- ) 

  TIB 50 LIT ACCEPT #TIB ! 

  DROP 0 LIT >IN ! ;; 

 

ABORT ( -- ) resets system and re-enters into the text interpreter loop QUIT. It actually 

executes QUIT stored in „ABORT. This avoids forward-referencing to QUIT, as QUIT is yet to 

be defined. 
:: ABORT ( -- ) 'ABORT @EXECUTE ;; 

 

abort”| ( f -- ) A runtime string command compiled in front of a string of error message. If 

flag f is true, display the following string and jump to ABORT. If flag f is false, ignore the 

following string and continue executing tokens after the error message. 
:: abort" ( f -- ) 
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  IF do$ COUNT TYPE ABORT THEN do$ DROP ;; 

 

ERROR displays an error message at a with a ? mark, and ABORT. 
:: ERROR ( a -- )  

  space count type $3F LIT EMIT 

  $1B LIT ( ESC) EMIT 

  CR ABORT 

 

$INTERPRET executes a command whose string address is on the stack. If the string is not a 

command, convert it to a number. If it is not a number, ABORT. 
:: $INTERPRET ( a -- ) 

  NAME? ?DUP 

  IF C@ $40 LIT AND 

    abort" $LIT  compile only" ( ?even)  EXECUTE  EXIT 

  THEN  

  NUMBER? IF EXIT ELSE ERROR THEN  

 

[ (left-bracket) activates the text interpreter by storing the execution address of 

$INTERPRET into the variable 'EVAL, which is executed in EVAL while the text interpreter 

is in the interpretive mode.  
:: [ ( -- )  DOLIT $INTERPRET 'EVAL ! ;; IMMEDIATE 

 

.OK used to be a command which displays the familiar 'ok' prompt after executing to the end 

of a line. In ceForth_23, it displays the top 4 elements on data stack so you can see what is 

happening on the stack. It is more informative than the plain „ok‟, which only give you a warm 

and fuzzy feeling about the system. When text interpreter is in compiling mode, the display is 

suppressed. 
:: .OK ( -- ) CR 

  DOLIT $INTERPRET 'EVAL @ = 

  IF >R >R >R DUP . R> DUP . R> DUP . R> DUP . ."| $LIT  fg>"  

  THEN ;; 

 

EVAL has a loop which parses tokens from the input stream and invokes whatever is in 'EVAL 

to process that token, either execute it with $INTERPRET or compile it with $COMPILE. It 

exits the loop when the input stream is exhausted.  
:: EVAL ( -- ) 

  BEGIN TOKEN DUP @ 

  WHILE 'EVAL  @EXECUTE \ ?STACK 

  REPEAT DROP .OK ;; 

 

QUIT ( -- ) is the operating system, or a shell, of the eForth system. It is an infinite loop 

eForth will never leave. It uses QUERY to accept a line of text from the terminal and then let 

EVAL parse out the tokens and execute them. After a line is processed, it displays the top of 

data stack and wait for the next line of text. When an error occurred during execution, it 

displays the command which caused the error with an error message. After the error is reported, 

it re-initializes the system by jumping to ABORT. Because the behavior of EVAL can be 

changed by storing either $INTERPRET or $COMPILE into 'EVAL, QUIT exhibits the dual 

nature of a text interpreter and a compiler.  
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:: QUIT ( -- ) [ BEGIN QUERY EVAL AGAIN 

 

Command Compiler  

 

, (comma) adds the execution address of a token on the top of the data stack to the code 

dictionary, and thus compiles a token to the growing token list of the command currently under 

construction.  

 
:: , ( w -- )  HERE DUP CELL+ CP ! ! ;; 

 

LITERAL compiles an integer literal to the current compound command under construction. 

The integer literal is taken from the data stack, and is preceded by the token DOLIT. When this 

compound command is executed, DOLIT will extract the integer from the token list and push it 

back on the data stack. LITERAL compiles an address literal if the compiled integer happens to 

be an execution address of a token. The address will be pushed on the data stack at the run time 

by DOLIT.  
:: LITERAL ( n -- ) DOLIT DOLIT , , ;; IMMEDIATE  

 

ALLOT allocates n bytes of memory on the top of the dictionary. Once allocated, the compiler 

will not touch the memory locations. It is possible to allocate and initialize this array using the 

command’,’(comma). 
:: ALLOT ( n -- ) ALIGNED CP +! ;; 

 

$,” ( -- ) Compile a packed string. String text is taken from the input stream and 

terminated by a double quote. A token (such as . "| or $"|) must be compiled before the 

string to form a sting literal. 
:: $," ( -- ) ( CHAR " ) 22 LIT WORD COUNT + ALIGNED CP ! ;; 

 

?UNIQUE is used to display a warning message to show that the name of a new command 

already existing in dictionary. eForth does not mind your reusing the same name for different 

commands. However, giving many commands the same name is a potential cause of problems 

in maintaining software projects. It is to be avoided if possible and ?UNIQUE reminds you of it.  
:: ?UNIQUE ( a -- a ) 

  DUP NAME?  

  ?DUP IF COUNT 1F LIT AND SPACE TYPE ."| $LIT  reDef " 

  THEN DROP ;; 

 

$,n ( a -- ) builds a new name field in dictionary using the name already moved to the top of 

dictionary by PACK$. It pads the link field with the address stored in LAST. A new token can 

now be built in the target dictionary.  
:: $,n ( a -- ) 

  DUP @ IF ?UNIQUE 

    ( na ) DUP NAME> CP !  

    ( na ) DUP LAST ! \ for OVERT 

    ( na ) CELL- 

    ( la ) CONTEXT @ SWAP ! EXIT 

  THEN ERROR 
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' (tick) searches the next word in the input stream for a token in the dictionary. It returns 

the code field address of the token if successful. Otherwise, it displays an error message.  
:: ' ( -- xt ) 

  TOKEN NAME? IF EXIT THEN 

  ERROR 

 

[COMPILE] acts similarly, except that it compiles the next command immediately. It causes 

the following command to be compiled, even if the following command is usually an 

immediate command which would otherwise be executed.  
:: [COMPILE] ( -- ; <string> ) 

  '  , ;; IMMEDIATE 

 

COMPILE is used in a compound command. It causes the next token after COMPILE to be 

added to the top of the code dictionary. It therefore forces the compilation of a token at the run 

time.  
:: COMPILE ( -- ) R> DUP @ , CELL+ >R ;; 

 

$COMPILE builds the body of a new compound command. A complete compound command 

also requires a header in the name dictionary, and its code field must start with a dolist, 

byte code. These extra works are performed by : (colon). Compound commands are the 

most prevailing type of commands in eForth. In addition, eForth has a few other defining 

commands which create other types of new commands in the dictionary.  
:: $COMPILE ( a -- ) 

  NAME? ?DUP 

  IF @ $80 LIT AND 

    IF EXECUTE 

    ELSE , 

    THEN EXIT 

  THEN   

  NUMBER? 

  IF LITERAL EXIT 

  THEN ERROR 

   

OVERT links a new command to the dictionary and thus makes it available for dictionary 

searches.  
:: OVERT ( -- ) LAST @ CONTEXT ! ;;  

 

] (right-bracket) turns the interpreter to a compiler.  
:: ] ( -- ) DOLIT $COMPILE 'EVAL ! ;; 

 

: (colon) creates a new header and start a new compound command. It takes the following 

string in the input stream to be the name of the new compound command, by building a new 

header with this name in the name dictionary. It then compiles a dolist, byte code at the 

beginning of the code field in the code dictionary. Now, the code dictionary is ready to accept a 

token list. ](right-bracket) is now invoked to turn the text interpreter into a compiler, 

which will compile the following words in the input stream to a token list in the code dictionary. 

The new compound command is terminated by ; (semi-colon), which compiles an EXIT 
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to terminate the token list, and executes [ (left-bracket) to turn the compiler back to 

text interpreter.  
:: : ( -- ; <string> ) TOKEN $,n ] 6 LIT , ;; 

 

; (semi-colon) terminates a compound command. It compiles an EXIT to the end of the 

token list, links this new command to the dictionary, and then reactivates the text interpreter.  
:: ; ( -- ) DOLIT EXIT , [ OVERT  ;; IMMEDIATE 

 

Debugging Tools 

 

dm+ dumps u bytes starting at address b to the terminal. It dumps 8 words. A line begins with 

the address of the first byte, followed by 8 words shown in hex, and the same data shown in 

ASCII. Non-printable characters by replaced by underscores. A new address b+u is returned to 

dump the next line. 
:: dm+ ( b u -- b ) 

  OVER 6 LIT U.R  

  FOR AFT DUP @ 9 LIT U.R CELL+ 

  THEN NEXT ;; 

 

DUMP ( b u -- ) dumps u bytes starting at address b to the terminal. It dumps 8 words to 

a line. A line begins with the address of the first byte, followed by 8 words shown in hex. At the 

end of a line are the 32 bytes shown in ASCII code.  
:: DUMP ( b u -- ) 

  BASE @ >R HEX  1F LIT + 20 LIT / 

  FOR AFT CR 8 LIT 2DUP dm+ 

  >R SPACE CELLS TYPE R> 

  THEN NEXT DROP R> BASE ! ;; 

 

>NAME( xt -- na | F ) finds the name field address na of a token from its code field 

address xt. If the token does not exist in the dictionary, it returns a false flag. >NAME is the 

mirror image of the command NAME>, which returns the code field address of a token from its 

name field address. Since the code field is right after the name field, whose length is stored in 

the lexicon byte, NAME> is trivial. >NAME is more complicated because we have to search the 

dictionary to get the name field address.  
:: >NAME ( xt -- na | F ) 

  CONTEXT 

  BEGIN @ DUP 

  WHILE 2DUP NAME> XOR 

    IF 1- 

    ELSE SWAP DROP EXIT 

    THEN 

  REPEAT SWAP DROP ;; 

 

.ID ( a -- ) displays the name of a token, given its name field address. It also replaces 

non-printable characters in a name by under-scores.  
:: .ID ( a -- ) 

  COUNT $01F LIT AND TYPE SPACE ;; 
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WORDS( -- ) displays all the names in the dictionary. The order of commands is reversed 

from the compiled order. The last defined command is shown first.  
:: WORDS ( -- ) 

  CR CONTEXT 

  0 LIT TMP ! 

  BEGIN @ ?DUP 

  WHILE DUP SPACE  .ID CELL- 

    TMP @ 10 LIT < 

    IF 1 LIT TMP +! 

    ELSE CR 0 LIT TMP ! THEN 

  REPEAT ;; 

 

FORGET( -- ) searches the dictionary for a name following it. If it is a valid command, trim 

dictionary below this command. Display an error message if it is not a valid command. 
:: FORGET ( -- ) 

  TOKEN NAME? ?DUP 

  IF CELL- DUP CP !  

     @ DUP CONTEXT ! LAST ! 

     DROP EXIT 

  THEN ERROR 

 

COLD ( -- ) is the first high level compound command executed upon power-up. It sends 

out sign-on message, and then falls into the text interpreter loop through QUIT.  
:: COLD ( -- ) 

   CR ."| $LIT ceForth V4.3, 2017 " CR 

   QUIT 

     

 

Control Structures  

 

This set of commands is now compiled into target dictionary, to be used by the ceForth system 

under Windows. They are very similar to the set of metacompiler commands defined in 

cefKERNa_23.f, which were used to build control structures in the target dictionary. If you 

understand the differences between these two sets of control structure commands with identical 

names, you have pretty much mastered the metacompiler. 

 

Control structures in target dictionary are built with address literals BRANCH, QBRANCH, and 

DONEXT. The address fields following these tokens are resolved and filled in a single pass.  

 

In following discussion, I will use two address symbols ‘A’ and ‘a’, in the stack pictures to 

indicate two types of addresses. ‘A’ is the address of an empty cell, which will receive an 

address when later resolved. ‘a’ is generally the address of the current token list, and this 

address will be used to resolve the address at ‘A’. 

 

THEN( A -- ) terminates a conditional branch structure. It uses the address of next token to 

resolve the address literal at A left by IF or ELSE. 
:: THEN ( A -- ) HERE SWAP ! ;; IMMEDIATE 
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FOR ( -- a ) starts a FOR-NEXT loop structure in a colon definition. It compiles >R, which 

pushes a loop count on return stack. It also leaves the address of next token on data stack, so 

that NEXT will compile a DONEXT address literal with the correct branch address. 
:: FOR ( -- a ) COMPILE >R HERE ;; IMMEDIATE 

 

BEGIN ( -- a ) starts an infinite or indefinite loop structure. It does not compile anything, 

but leave the current token address on data stack to resolve address literals compiled later. 
:: BEGIN ( -- a ) HERE ;; IMMEDIATE 

 

NEXT ( a -- ) Terminate a FOR-NEXT loop structure, by compiling a DONEXT address 

literal, branch back to the address A on data stack. 
:: NEXT ( a -- )  COMPILE DONEXT , ;; IMMEDIATE 

 

UNTIL ( a -- )  terminate a BEGIN-UNTIL indefinite loop structure. It compiles a 

QBRANCH address literal using the address on data stack. 
:: UNTIL ( a -- ) COMPILE QBRANCH , ;; IMMEDIATE 

 

AGAIN ( a --  terminate a BEGIN-AGAIN infinite loop structure. . It compiles a BRANCH 

address literal using the address on data stack. 
:: AGAIN ( a -- ) COMPILE BRANCH , ;; IMMEDIATE 

 

IF ( -- A ) starts a conditional branch structure. It compiles a QBRANCH address literal, 

with a 0 in the address field. It leaves the address of this address field on data stack. This 

address will later be resolved by ELSE or THEN in closing the true clause in the branch 

structure. 
:: IF ( -- A )   COMPILE QBRANCH HERE 0 LIT , ;; IMMEDIATE 

 

AHEAD ( -- A ) starts a forward branch structure. It compiles a BRANCH address literal, 

with a 0 in the address field. It leaves the address of this address field on data stack. This 

address will later be resolved when the branch structure is closed. 
:: AHEAD ( -- A ) COMPILE BRANCH HERE 0 LIT , ;; IMMEDIATE 

 

REPEAT ( A a -- ) terminates a BEGIN-WHILE-REPEAT indefinite loop structure. . It 

compiles a BRANCH address literal with address a left by BEGIN, and usea the address of next 

token to resolve the address literal at A. 
:: REPEAT ( A a -- ) AGAIN THEN ;; IMMEDIATE 

 

AFT ( a -- a A ) jumps to THEN in a FOR-AFT-THEN-NEXT loop the first time 

through. It compiles a BRANCH address literal and leaves its address field on stack. This 

address will be resolved by THEN. It also replaces address A left by FOR by the address of 

next token so that NEXT will compile a DONEXT address literal to jump back here at run time. 
:: AFT ( a -- a A ) DROP AHEAD HERE SWAP ;; IMMEDIATE 

 

ELSE ( A – A ) starts the false clause in an IF-ELSE-THEN structure. It compiles a BRANCH 

address literal. It uses the current token address to resolve the branch address in A, and replace 

A with the address of its address literal. 
:: ELSE ( A -- A )  AHEAD SWAP THEN ;; IMMEDIATE 
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WHILE ( a – A a ) compiles a QBRANCH address literal in a BEGIN-WHILE-REPEAT loop. 

The address A of this address literal is swapped with address a left by BEGIN, so that REPEAT 

will resolve all loose ends and build the loop structure correctly. 
:: WHILE ( a -- A a )    IF SWAP ;; IMMEDIATE 

 

String Literals  
 

ABORT" ( -- ) compiles an error message. This error message is display if top item on the 

stack is non-zero. The rest of the commands in the command is skipped and eForth resets to 

ABORT. If top of stack is 0, ABORT” skips over the error message and continue executing the 

following token list. 
:: ABORT" ( -- ; <string> ) DOLIT abort" HERE ! $," ;; IMMEDIATE 

 

$" ( -- ) compiles a character string. When it is executed, only the address of the string is 

left on the data stack. You will use this address to access the string and individual characters in 

the string as a string array.  
:: $"     ( -- ; <string> ) DOLIT $"|    HERE ! $," ;; IMMEDIATE 

 

." (dot-quote) ( -- ) compiles a character string which will be displayed when the 

command containing it is executed in the runtime. This is the best way to present messages to 

the user.  
:: ."     ( -- ; <string> ) DOLIT ."|    HERE ! $," ;; IMMEDIATE 

 

Defining Commands  

 

CODE ( -- ) creates a command header, ready to accept byte code for a new primitive 

command. Without a byte code assembler, you can use the command , (comma) to add words 

with byte code in them. 
:: CODE ( -- ; <string> ) TOKEN $,n OVERT align ;; 

 

CREATE creates a new array without allocating memory. Memory is allocated using ALLOT.  
:: CREATE ( -- ; <string> ) CODE $203D LIT , ;; 

 

VARIABLE ( -- ) creates a new variable, initialized to 0.  
:: VARIABLE ( -- ; <string> ) CREATE 0 LIT , ;; 

 

CONSTANT ( n -- ) creates a new constant, initialized to the value on top of stack. 
:: CONSTANT CODE $2004  LIT , , ;; 

 

Immediate Commands  

 

In Forth, immediate commands are executed even during compilation of compound commands. 

As I discussed before, the text interpreter has two states: interpreting state and compiling state. 

In interpreting state, all commands are executed. In compiling state, all commands are compiled 

to build new token lists, except immediate command, which are executed even in the compiling 
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state. Immediate commands are used to build structures in token lists. All control structure 

commands are declared by IMMEDIATE command so they are executed in compiling state. 

 

A few commands are used to insert comments into command list, and the text interpreter 

ignores these commands and their associated comment strings. However, once a comment 

command is defined, you cannot use it to insert comments anymore, because after the 

metacompiler redefines a comment command, executing the redefine commands would add 

another token to the token list, and would not function as a comment command. This is why 

these immediate commands must be defined at the very end of the metacompilation process. 

 

.( (dot-paren) types the following string till the next ). It is used to output text to the 

terminal.  
(makeHead) .( ( -- ) dolist, aanew 29 LIT PARSE TYPE ;; IMMEDIATE 

 

\ (back-slash) ignores all characters till end of input buffer. It is used to insert comment 

lines in text.  
(makeHead) \ ( -- )  dolist, aanew $A LIT WORD DROP  ;; IMMEDIATE  

 

( ( paren) ignores the following string till the next ). It is used to place comments in source 

text.  
(makeHead) ( dolist, aanew 29 LIT PARSE 2DROP ;;        IMMEDIATE 

 

COMPILE-ONLY sets the compile-only lexicon bit in the name field of the new command just 

compiled. When the interpreter encounters a command with this bit set, it will not execute this 

command, but spit out an error message. This bit prevents structure commands to be executed 

accidentally outside of a compound command. 
 (makeHead) COMPILE-ONLY dolist, aanew $40 LIT LAST @ +! ;; 

 

IMMEDIATE sets the immediate lexicon bit in the name field of the new command just 

compiled. When the compiler encounters a command with this bit set, it will not compile this 

command into the token list under construction, but execute the token immediately. This bit 

allows structure commands to build special structures in a compound command, and to process 

special conditions when the compiler is running.  
 (makeHead) IMMEDIATE dolist, aanew $80 LIT LAST @ +! ;; 

 

The entire ceForth target dictionary is built. As shown in cefMETAa_23.f file, the dictionary 

will be written to rom_23.h file, after the system variables are initialized correctly. 
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Chapter 7. ceForth Simulator 

 
When I designed and built P series Forth chips, I wrote a simulator to simulate the logic 

functions of these CPU‟s, and to test the eForth system based on these chips. I modified eP32 

for ceForth, and the simulator was carried over. The simulator was very helpful in developing 

and debugging of a CPU and its associated operating system. Once the simulator said ‘ok’, 

the whole system, hardware and software, worked. 

 

After I changed the finite state machine in ceForth VFM, to a much simpler byte code 

sequencer, the simulator still behaved correctly, and did not need modification. Here I will show 

it in the finite state machine model. 

 

The source code of this simulator is in cefSIMa_23.F. It is loaded at the end of 

cefMETAa_23.F, which builds an eForth dictionary in memory array “RAM”. The simulator 

reads program words from this array and executes pseudo instructions contained in these 

program words. 

 

An accurate and fast logic simulator is extremely valuable in designing and testing a new CPU. 

It is also very useful in separating hardware and software development, so that hardware and 

software can be developed simultaneously. I wrote a simulator for 32 bit eP32 chip and it 

served me well in the process of designing and testing eP32 CPU and its associated eForth 

system simultaneously. 

 

Registers and Arrays 

 

A large array, REGISTER, is opened to host all registers and stacks. It is divided in two banks: 

a FROM bank and a TO bank. The FROM bank contains current values of all registers and all 

stack elements. A pseudo instruction takes data in the FROM bank, modifies them, and writes 

updated data into the TO bank. The rising edge of the master clock copies the TO to the FROM 

bank, and thus simulates a pseudo instruction. Logic functions are performed by Forth words 

and update values from the FROM bank to the TO bank. 

 

The clock in Finite State Machine, which fetches a program word from memory, and executes 4 

pseudo instructions in this word, is simulated by a 32-bit counter. The least significant 3 bits in 

this counter steps through phases 0 to 5 in 6 clock cycles. Then this 3-bit field is cleared to zero 

and the upper 29-bit field is incremented. Therefore, the upper 29-bit field in this counter gives 

an accurate program word count. 

 

First, we have to remove the metacompiler, and restore eForth so that it can now compile the 

simulator. “forth_forget h” truncates the eForth dictionary back to where “H” was 

defined. It thus deletes words defined in the metacompiler, assembler, kernel, and target 

commands. F# is cleaned to a pristine state to host a new application, which is the simulator. 
forth_forget H 

 

Command Function 
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LIMIT Limit stacks depths are 256 levels.  

RANGE  Limit program size to 32kB, the size of the „RAM‟ array 

CLOCK  A variable that has a 29-bit program word count field and a 3-bit SLOT field. 

The SLOT field sequences program word fetch and execution of up to 5 

instructions in the program word. 

BREAK   A variable holding breakpoint address. 

C+!  ( b c -- ) Add c to the byte pointed to by b. 

REGISTER  Base address of registers and stack arrays. 
 

HEX 

$1F CONSTANT LIMIT ( stack depth ) 

$7FFF CONSTANT RANGE ( program memory size in words ) 

VARIABLE CLOCK ( phase is in the last 3 bits ) 

VARIABLE BREAK 

 

CREATE REGISTER $300 ALLOT 

: C+! DUP >R C@ + R> C! ; 

 

DECIMAL 

REGISTER CONSTANT P 

REGISTER 4 + CONSTANT I 

REGISTER 8 + CONSTANT I1 

REGISTER 9 + CONSTANT I2 

REGISTER 10 + CONSTANT I3 

REGISTER 11 + CONSTANT I4 

REGISTER 13 + CONSTANT RP 

REGISTER 14 + CONSTANT SP 

REGISTER 16 + CONSTANT T 

REGISTER 24 + CONSTANT IP 

REGISTER 32 + CONSTANT WP 

REGISTER $100 + CONSTANT RSTACK0 

REGISTER $200 + CONSTANT SSTACK0 

HEX 

: RSTACK  RP C@ LIMIT AND 2 LSHIFT RSTACK0 + ; 

: SSTACK  SP C@ LIMIT AND 2 LSHIFT SSTACK0 + ; 

 

Register Function 

P Program counter 

I Instruction latch 

I1 Machine instruction in slot1 

I2 Machine instruction in slot2 

I3 Machine instruction in slot3 

I4 Machine instruction in slot4 

RP Return stack pointer 

SP Data stack pointer 

T Accumulator, top item on data stack 

IP Interpreter pointer 

WP Scratch register 
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RSTACK0 Origin of return stack 

SSTACK0 Origin of data stack 

RSTACK Address of top of return stack 

SSTACK Address of top of data stack 
 

Virtual Forth Machine 

 

The Finite State Machine paces the simulator through byte code stored in „RAM’ memory. 

Instead of using a single phase clock as master clock, we use a CLOCK variable as source of a 

multiple phase clock. The lowest three bits in CLOCK define 6 phases of the Finite State 

Machine. In phase 0, the next program word is fetched into Instruction latch I, and byte code in 

it are decoded and stored in registers I1-I4. In phase 1, byte code in I1 is executed. In phase 2, 

byte code in I2 is executed. Etc. In phase 5, the least significant 3 bits in CLOCK are set to 7. 

Then CLOCK is incremented and the least significant 3 bits are cleared to 0. Now we enter 

phase 0 again and fetch the next program word. 

 

JUMP also set the least significant 3 bits in CLOCK to 7. JUMP is used by all transfer 

instructions to force the finite state machine to enter phase 0 on the rising edge of the next clock. 

 
: CYCLE 1 CLOCK +! ; 

: JUMP  CLOCK @ 7 OR CLOCK ! ; 

: RPUSH ( n -- , push n on return stack ) 

        1 RP C+! RSTACK ! ; 

: RPOPP ( -- n , pop n from return stack ) 

        RSTACK @ -1 RP C+! ; 

: SPUSH ( n -- , push n on data stack ) 

        1 SP C+!  

        T @ SSTACK ! 

        T ! ; 

: SPOPP ( -- n , pop n from data stack ) 

        T @ 

        SSTACK @ T !  

 -1 SP C+! ; 

 

Command Function 

CYCLE Simulate rising edge of master clock by incrementing CLOCK. 

JUMP Fetch next program word by forcing a 7 into Slot Counter in CLOCK. On the rising 

edge of the master clock, CLOCK is incremented and clears Slot Counter to 0. The 

upper 29-bit field in CLOCK is incremented, indicating that a new word is fetched 

from memory. Thus the upper 29 bits in CLOCK keeps an accurate count of eP32 

words that have been executed. 

RPUSH Push double integer d on return stack. 

RPOPP Pop return stack and leave double integer on system stack. 

SPUSH Push double integer d on data stack. 

SPOPP  Pop data stack and leave double integer on system stack. 
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continue simulates functions performed in phase 0 in the Finite State Machine, which 

fetches the next program word from memory and stores it in instruction register I. Byte code are 

extracted to I1 to I5, and used to perform functions assigned to them. 

 

continue also increments the P register by 4, pointing to next program word to be executed. 

 

To execute a pseudo instruction or a byte code, the simulator takes current values in registers 

and stacks in the FROM bank, computes desired new values, and deposits them back in 

registers and stacks in the TO bank. On the rising edge of the master clock, which is simulated 

by command CYCLE, the contents of the TO bank are copied to the FROM bank. Pseudo 

instructions are defined as Forth commands in this simulator, and they read values in the FROM 

bank, make necessary changes, and store new values in the TO bank. 

 
: continue 

        P @ RAM@ DUP I ! 

        100 /MOD SWAP I1 C! 

        100 /MOD SWAP I2 C! 

        100 /MOD SWAP I3 C! 

        FF AND I4 C! 

 4 P +! ; 

 

next, is the inner interpreter of eForth. IP register is pointing to a token in a token list. The 

token contains a code field address of a Forth command. This address is fetched and stored in P 

register. IP is incremented by 4, pointing to the next token in the same token list. JUMP now 

jumps to this code field address and starts executing the first byte code in this address. 
: next, IP @ RAM@ P ! 

 4 IP +! JUMP ; 

 

Pseudo Instructions 
 

Following are the pseudo instructions of ceForth Virtual Forth Machine. They were defined as 

C routines in ceForth_23.cpp. Here they are defined using Forth commands. Please refer 

to Chapter 2 for their original definitions. 
 

: nop,    JUMP ; 

: bye,    ABORT" Simulation done." ; 

\ : qrx,    ?RX ?DUP IF SPUSH -1 ELSE 0 THEN SPUSH ; 

: qrx,    KEY DUP SPUSH SPUSH ; 

: txsto,  SPOPP TX! ; 

: inline, P @ RAM@ SPUSH 4 P +! ; 

: dolit,  IP @ RAM@ SPUSH 4 IP +! next, ; 

: dolist, IP @ RPUSH P @ IP ! next, ; 

: exit,   RPOPP IP ! next, ; 

: execu,  IP @ RPUSH SPOPP P ! JUMP ; 

: donext, RPOPP ?DUP IF 1- RPUSH IP @ RAM@ IP ! 

   ELSE 4 IP +! THEN next, ; 

: qbran,  SPOPP IF 4 IP +! ELSE IP @ RAM@ IP ! THEN next, ; 

: bran,   IP @ RAM@ IP ! next, ; 

: store,  SPOPP SPOPP SWAP RAM! ; 
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: at,     SPOPP RAM@ SPUSH ; 

: cstor,  SPOPP SPOPP SWAP RAMC! ; 

: cat,    SPOPP RAMC@ SPUSH ; 

: rpat,   B0 RAM@ SPUSH ; 

: rpsto,  SPOPP B0 RAM! ; 

: rfrom,  RPOPP SPUSH ; 

: rat,    RPOPP DUP RPUSH SPUSH ; 

: tor,    SPOPP RPUSH ; 

: spat,   B4 RAM@ SPUSH ; 

: spsto,  SPOPP B4 RAM! ; 

: drop,   SPOPP DROP ; 

: dup,    SPOPP DUP SPUSH SPUSH ; 

: swap,   SPOPP SPOPP SWAP SPUSH SPUSH ; 

: over,   SPOPP SPOPP DUP SPUSH SWAP SPUSH SPUSH ; 

: zless,  SPOPP 0< SPUSH ; 

: andd,   SPOPP SPOPP AND SPUSH ; 

: orr,    SPOPP SPOPP OR SPUSH ; 

: xorr,   SPOPP SPOPP XOR SPUSH ; 

: uplus,  SPOPP SPOPP UM+ SWAP SPUSH SPUSH ; 

: qdup,   SPOPP DUP SPUSH ?DUP IF SPUSH THEN ; 

: rot,    SPOPP SPOPP SPOPP ROT ROT SPUSH SPUSH SPUSH ; 

: ddrop,  SPOPP SPOPP 2DROP ; 

: ddup,   SPOPP SPOPP 2DUP SPUSH SPUSH SPUSH SPUSH ; 

: plus,   SPOPP SPOPP + SPUSH ; 

: inver,  SPOPP NOT SPUSH ; 

: negat,  SPOPP NEGATE SPUSH ; 

: dnega,  SPOPP SPOPP SWAP DNEGATE SWAP SPUSH SPUSH ; 

: subb,   SPOPP SPOPP SWAP - SPUSH ; 

: abss,   SPOPP ABS SPUSH ; 

: equal,  SPOPP SPOPP = SPUSH ; 

: uless,  SPOPP SPOPP SWAP U< SPUSH ; 

: less,   SPOPP SPOPP SWAP < SPUSH ; 

: ummod,  SPOPP SPOPP SPOPP SWAP ROT UM/MOD SWAP SPUSH SPUSH ; 

: msmod,  SPOPP SPOPP SPOPP SWAP ROT M/MOD SWAP SPUSH SPUSH ;  

: slmod,  SPOPP SPOPP SWAP /MOD SWAP SPUSH SPUSH ; 

: mod,    SPOPP SPOPP SWAP MOD SPUSH ; 

: slash,  SPOPP SPOPP SWAP / SPUSH ;  

: umsta,  SPOPP SPOPP UM* SWAP SPUSH SPUSH ;   

: star,   SPOPP SPOPP * SPUSH ; 

: mstar,  SPOPP SPOPP M* SWAP SPUSH SPUSH ;  

: ssmod,  SPOPP SPOPP SPOPP SWAP ROT */MOD SWAP SPUSH SPUSH ;  

: stasl,  SPOPP SPOPP SPOPP SWAP ROT */ SPUSH ;  

: pick,   SPOPP SP C+! SSTACK SPUSH ; 

: pstor,  SPOPP SPOPP OVER RAM@ + SWAP RAM! ; 

: dstor,  SPOPP SPOPP OVER CELL+ RAM! SPOPP SWAP RAM! ; 

: dat,    SPOPP DUP RAM@ SPUSH CELL+ RAM@ SPUSH ; 

: count,  SPOPP DUP 1+ SPUSH RAMC@ SPUSH ; 

: dovar,  P @ SPUSH ; 

: max,    SPOPP SPOPP MAX SPUSH ; 

: min,    SPOPP SPOPP MIN SPUSH ; 

 

The pseudo instructions are called from a byte code table, by the command executecode: 
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CREATE CODE-TABLE 

' nop,    , ' bye,    , ' qrx,    , ' txsto, ,  

' inline, , ' dolit,  , ' dolist, , ' exit,  ,  

' execu,  , ' donext, , ' qbran,  , ' bran,  ,  

' store,  , ' at,     , ' cstor,  , ' cat,   ,  

' rpat,   , ' rpsto,  , ' rfrom,  , ' rat,   ,  

' tor,    , ' spat,   , ' spsto,  , ' drop,  ,  

' dup,    , ' swap,   , ' over,   , ' zless, ,  

' andd,   , ' orr,    , ' xorr,   , ' uplus, ,  

' next,   , ' qdup,   , ' rot,    , ' ddrop, ,  

' ddup,   , ' plus,   , ' inver,  , ' negat, ,  

' dnega,  , ' subb,   , ' abss,   , ' equal, ,  

' uless,  , ' less,   , ' ummod,  , ' msmod, ,  

' slmod,  , ' mod,    , ' slash,  , ' umsta, ,  

' star,   , ' mstar,  , ' ssmod,  , ' stasl, ,  

' pick,   , ' pstor,  , ' dstor,  , ' dat,   ,  

' count,  , ' dovar,  , ' max,    , ' min,   , 

 

: executecode ( code -- ) 

   DUP 3F > ABORT" Illegal code " 

   CELLS CODE-TABLE + @ EXECUTE ; 

 

Finite State Machine 

 

Here are the commands that run the Finite State Machine, and show the contents of pertinent 

registers and stacks. Originally, I thought of implementing a set of break points to allow user 

the freedom to break execution at a number of different memory locations. Eventually, I 

realized that only one break point is necessary and a simple „GO‟ command is sufficient. This is 

the G command show below. 

 
: .stack ( add # ) FOR AFT DUP @ U. 4 - THEN NEXT DROP CR ; 

: .sstack ." S:" T @ U. 

        SSTACK SP C@ .stack ; 

: .rstack ." R:" RSTACK RP C@ .stack ; 

: .registers ."  P=" P @ . ."  I=" I @ U. 

        ."  I1=" I1 C@ . ."  I2=" I2 C@ . 

        ."  I3=" I3 C@ . ."  I4=" I4 C@ . 

        ."  IP=" IP @ . CR ; 

: S  CR ."  CLOCK=" CLOCK @ . .registers 

        .sstack .rstack ; 

 

Command Function 

.stack  Display the contents of a stack. 

.sstack  Display the contents of data stack. 

.rstack  Display the contents of return stack. 

.registers  Display the contents of all the relevant registers. 

S  Show all the registers and stacks at this cycle.  
 

: SYNC0  continue ; 



81 

 

: SYNC1  I1 C@ executecode ; 

: SYNC2  I2 C@ executecode ; 

: SYNC3  I3 C@ executecode ; 

: SYNC4  I4 C@ executecode ; 

 

CREATE SYNC-TABLE 

' continue , ' SYNC1 , ' SYNC2 , ' SYNC3 , 

' SYNC4 , ' JUMP , ' JUMP , ' JUMP , 

 

: sync  CLOCK @ 7 AND cells 

        SYNC-TABLE + @ EXECUTE ; 

: C     sync CYCLE S ; 

: RESET REGISTER $300 ERASE 0 CLOCK !  

 ; 

RESET 

 

Command Function 

SYNC0  Fetch and decode next program word. 

SYNC1  Execute byte code in I1. 

SYNC2  Execute byte code in I2. 

SYNC3  Execute byte code in I3. 

SYNC4  Execute byte code in I4. 

SYNC-TABLE  Table of execution routines for 6 phases. 

sync  Execute the current pseudo instruction using CLOCK to determine which 

phase is being executed. CLOCK points to one of the routines in SYNC-

TABLE, which contains the following entries:  

CONTINUE, fetch next program word  

SYNC1, execute instruction in I1  

SYNC2, execute instruction in I2  

SYNC2, execute instruction in I2  

SYNC3, execute instruction in I3  

SYNC4, execute instruction in I4  

JUMP , terminate current program word. 

C Run one clock cycle and display all registers and stacks. 

reset Clear the REGISTER array, simulating hardware reset. 
 

“C” is the single stepper in simulator. It runs the Finite State Machine for one cycle, and 

displays all registers and stacks. This is the most useful command to debug the ceForth in the 

early development stage. You can see all data in all registers and stacks. In the many eForth 

system, the first command executed is COLD, which executes a diagnostic word, DIAGNOSE. 

DIAGNOSE runs simple tests on most pseudo instructions. By single stepping through 

DIAGNOSE, you can validate most pseudo instructions. If all tests in DIAGNOSE run 

successfully, it is very likely the eForth will run correctly in the target. 

 

“reset” clears the REGISTER array, and initializes the simulator to run at memory location 0. 
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This simulator has a very simple text-based user interface. The most used commands are: 

 

Command Stack Effects Function 

G  a -- Run and stop at address given on Forth stack. This is a very 

efficient way to set breakpoints and then run till a breakpoint is 

triggered. It allows the user to execute a large portion of the 

program and stop only at a specified location. 

PUSH n -- Push a new integer into the T register and data stack. 

POP -- Discard contents in T and pop data stack back into T.  

D -- Display memory starting at address in P. 

M a -- Dump 128 words in memory using “show” command. 

RUN -- Continue stepping with any key, terminated by ESC. 

 
 

: G     ( addr -- ) 

        CR ." Press any key to stop." CR 

        BREAK ! 

        BEGIN sync P @ BREAK @ = 

              IF CYCLE C EXIT 

              ELSE CYCLE 

              THEN 

              ?KEY 

        UNTIL ; 

: PUSH  ( n ) T @ SPUSH T ! ; 

: POP   SPOPP ; 

: D     P @ CELL- FOUR FOUR ; 

: M     SHOW ; 

: RUN   CR ." Press ESC to stop." CR 

        BEGIN C KEY 1B = UNTIL ; 

 

: HELP  CR ." cEF Simulator, copyright Offete Enterprises, 2009" 

        CR ." C: execute next cycle" 

        CR ." S: show all registers" 

        CR ." D: display next 8 words" 

        CR ." addr M: display 128 words from addr" 

        CR ." addr G: run and stop at addr" 

        CR ." RUN: execute, one key per cycle" 

        CR ; 

 

This simulator is most effective in debugging short sequences of program words to verify that 

the sequences are executed correctly. After pseudo instructions are verified, use the G command 

to execute a long stretch of program and break only at a specified location. This allows large 

segments of programs to be tested. If the simulator runs forever and cannot reach the break 

point you specified, you can stop the G command by hitting a key on the keyboard to terminate 

it. 

 

When F# runs the metacompiler to compile ceForth, it displays names and code field addresses 

of all commands compiled into the target image. The display is a symbol table. You can look up 

a command and find its code field address. The code field addresses are the best place to set 
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your break point. To debug a command, find its code field address and enter it with the G 

command. The simulator will break at the beginning of this command, and you can use the C 

command to single step through it. 

 

Typing lots of “C” commands is tedious. The RUN command lessens your typing chore. After 

executing RUN, the simulator displays registers and stacks and pauses. Pressing any key will 

single step The Finite State Machine for one cycle. You can run many steps easily this way. 

When you want to stop RUN, press the ESC key. 

 

To examine memory, type an address followed by the “M” command. It will display 128 words 

of memory starting from that address. The “D” command displays 8 program words starting at 

this address. 
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Chapter 8. Implementation Notes 

 
Byte Code Sequencer vs Finite State Machine 

 

A Finite State Machine (FSM) was adopted from eP32 chip design to run VFM in ceForth. This 

FSM assumed that we had a 32 bit machine, running on 32 bit memory. It used 6 phases to 

execute code stored in memory. In phase 0, it read a 32 bit program word, and decoded 4 byte 

code in it. In phase 1 to 4 it executes these 4 byte code in sequence. In phase 5, it resets the 

phase counter to 0, so it will fetch the next program word from memory, and run through the 

phases again. This FSM is described completely in the main() routine: 

 
int main(int ac, char* av[]) 

{ int phase; 

 clock = 0; 

 P = 0; 

 IP = 0; 

 S = 0; 

 R = 0; 

 top = 0; 

 phase = 0; 

 cData = (unsigned char *)data; 

 printf("\nceForth v2.2, 08jul17cht\n"); 

 while (TRUE) { 

  phase = clock & 7; 

  switch (phase) { 

  case 0: fetch_decode(); break; 

  case 1: execute(I1); break; 

  case 2: execute(I2); break; 

  case 3: execute(I3); break; 

  case 4: execute(I4); break; 

  case 5: jump(); break; 

  case 6: jump(); break; 

  case 7: jump(); 

  } 

  clock += 1; 

 } } 

 

In ceForth, the dictionary is an array of 32 bit words. However, this array can be read either in 

32 bit words, or in 8 bit bytes. Therefore, byte code in the dictionary can be fetched directly and 

executed without a FSM. A much simpler byte code sequencer can be coded as follows: 

 
int main(int ac, char* av[]) 

{ P = 0; 

 WP = 4; 

 IP = 0; 

 S = 0; 

 R = 0; 

 top = 0; 

 cData = (unsigned char *)data; 
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 printf("\nceForth v2.3, 13jul17cht\n"); 

 while (TRUE) { 

  bytecode = (unsigned char)cData[P++]; 

  execute(bytecode);  

 } } 

 

The sequence has only two steps: fetching next byte from memory, and execute the byte code. 

It is just like a hardware computer, sequencing through its memory to execute machine 

instructions. 

 

In the design of ceForth VFM, byte code are packed into code fields of primitive commands, 

and can be accessed either by 32 bit words, or by byte sequence. The same dictionary 

accommodate both design equally well. No modification in ceForth dictionary is necessary.  

 

The byte code sequencer is made even simpler, because the clock and phase counter are also 

eliminated. 

 

Stacks as Circular Buffers 

 

Stacks are big headaches in operating systems, and in application programs. In C programming, 

stacks are hidden from you to prevent you from messing them up. However, in Forth 

programming, data stack and return stack are open to you, and most of the times, data stack 

becomes the focus of your attention. Both stacks have to work perfectly. There is no margin of 

error. 

 

With stacks of finite size implemented in memory, the most obvious problems are stack 

overflow and stack underflow. Generally, operating systems allocate large chucks of memory 

for stacks, and impose traps on overflow and underflow conditions. With these traps, you can 

write interrupt routines to handle these error conditions in your software. These traps are very 

difficult to handle, especially for those without advanced computer science degrees. 

 

The most prevalent problem in Forth programming is underflow of data stack, when you try to 

access data below the memory allocated to data stack. After Forth interpreter finished 

interpreting a list of Forth words, it always check the stack pointer. If the stack pointer is below 

mark, Forth interpreter executes the ABORT command, and reinitialized the stacks. 

 

In designing eP32 chip, I put both stacks in the CPU. I allowed 32 levels of stack space, and the 

system seemed to be happy. I checked often water marks on both stacks, and the water marks 

were mostly about 12 levels. 32 levels are adequate for most applications, and do not impose a 

big burden on CPU designs. The stacks used 5 bit stack pointers, and behaved like circular 

buffers. I also found that it was not really necessary to check the stack pointers. Using circular 

buffers, underflow and overflow are really not life-threatening error conditions. If useful data 

were actually overwritten, the system would not behave correctly, but in no danger of crashing. 

The stack pointers needed not be reset. The system would restart with the present pointers. 
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In ceForth_23, I allocated 1KB memory for each stack, and used one byte for each stack pointer. 

The stacks are 256 cell circular buffers, and will never underflow or overflow. However, the C 

compiler needed to be reminder constantly that the stack pointers were 8-bit values and should 

not be leaked to integer or longer number. R and S pointers must always be prefixed with 

(char) specification. I struggled with data stack underflow conditions for half a year, until I 

found that the stack pointers tended to overshoot the byte boundary in my back. 

 

ceForth interpreter always displays top 4 elements on data stack. Always seeing these 4 

elements, you do not need utility to dump or examine data stack. I believe this is the best way to 

use data stack. It relieves you from the anxiety of worrying your misusing it. 

 

Metacompiler 

 
Conceptually, metacompilation is not much different that the ordinary Forth compiler. Forth 

compiler compiles new commands on top of its dictionary. CP is the pointer to top of dictionary. 

If we changed CP to point to another memory location, like the target dictionary array we 

allocated for a target system, then we could compile a new dictionary for the target. 

 

Of course, the devil is in the details. The target memory is a virtual memory. Addresses used by 

the target machine are virtual addresses relative to the beginning of the dictionary array, not the 

absolute addresses used in the host Forth system. The target machine may have a different 

machine instruction set. Byte addressable machine vs word addressable machine. Different 

linking schemes. On and on. 

 

The art of metacompilation had been practices since Chuck Moore invented Forth. I 

documented it for polyForth, F83, and FPC, three of the most popular Forth implementations. 

They all used vocabularies to segregate names of same commands used at various stages of 

metacompilation. For example, + (plus) command had 3 different behaviors: a regular + (plus) 

version to add two integers in text interpreter, a version defined in target dictionary which will 

be used by a target system to add two integers, which is never executed during metacompilation, 

and one version used by metacompiler to compile a + (plus) token in the body (token list) of a 

compound command in target dictionary.  

 

A dictionary is a linked list of command records. A vocabulary is a branch of a dictionary, 

which can be searched independent of the main dictionary. Vocabularies allow a command to 

be redefined multiple times, and different behavior is selected by specifying search order of 

vocabularies. 

 

In the original eForth Model, Bill Muench reserved system variables to allow building up to 8 

vocabularies. However, over the years I had not used this feature in all my applications, and 

decided to rid of it. Without vocabularies, I could still do metacompilation by carefully 

arranging the sequence in defining commands to build target dictionary correctly. As 

commands are redefined, the Forth system morphs and shows unexpected behavior. All eForth 

commands are redefined to compile tokens. At the end of metacompilation, you can type in any 

valid eForth command, and the system responds with „ok‟, but does not seem to do anything. 
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The data stack does not change. All the commands do is to add a token to the top of target 

dictionary, which you cannot see without great efforts. 

 

After the metacompiler finishes building the target dictionary, it is useless for any other 

purposes.  

 

Byte Code 

 

I use byte code to bridge the Virtual Forth Machine and the eForth system. The dictionary is 

stored as an integer array data[]. This data array can be addressed either by 32 bit words or 

by bytes. When addressing by bytes, the array is referred as cData[]. 

 

Command records and the fields in them are all word aligned. The link field is a 32 bit word. 

The name field has a length byte followed by variable length name string, null-filled to the 

word boundary. In a primitive command, the code field contains byte code, and is null-filled to 

word boundary. In a compound command, the code field is a 32 bit word, containing the 

dolist, byte code. The parameter field contains a token list. All tokens are 32 bit words. 

 

This dictionary design was copied from eP32, which was a 32 bit microcontroller. There I used 

6 bit machine instructions, and a 32 bit word contained up to 5 machine instructions. In one of 

the earlier designs, I used 5 bit machine instruction, and I could pack 6 machine instructions to 

a word. The assembler was designed so that it could pack as many instructions as a program 

word would allow. In ceForth, I already had 67 machine instructions, and 6-bit fields were not 

enough for them. For convenience, I just allocate 8 bits for instructions, and give you the 

possibility of using 256 byte code for machine instructions. 

 

I was not particularly concerned about the numbering of byte code. They were assign 

consecutive numbers as I coded them. However, there is no reason why the numbering could 

not follow some preconceived order, like Java Byte Code. In fact, there is no reason that you 

could not build a Virtual Java Machine with this ceForth design. 
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Appendix  ceForth v2.3 Command Reference 
 

Stack Comments: 

Stack inputs and outputs are shown in the form: (input1 input2 ... -- output1 output2 ... )  

Stack Abbreviations of Data Types 

n 32 bit integer  

d 64 bit integer 

flag Boolean flag, either 0 or -1 

char ASCII character or a byte 

addr 32 bit address  

 

Stack  

?DUP n -- n n | 0  Duplicate top of stack if it is not 0. 

DUP n1 -- n2 Duplicate top of stack. 

DROP n --  Discard top of stack. 

SWAP n1 n2 -- n2 n1 Exchange top two stack items. 

OVER n1 n2 -- n1 n2 

n1 

Make copy of second item on stack. 

ROT n1 n2 n3 -- n2 

n3 n1 

Rotate third item to top.  

PICK n -- n1 Zero based, duplicate nth item to top. (e.g. 0 PICK is DUP). 

>R n --  Move top item to return stack for temporary storage.  

R>  -- n Retrieve top item from return stack.  

R@  -- n Copy top of return stack onto stack. 

2DUP d -- d d  Duplicate double number on top of stack. 

2DROP d1 d2 --  Discard two double numbers on top of stack 

 

Arithmetic  

+ n1 n2 -- n3 Add n1 and n2.  

- n1 n2 -- n3 Subtract n2 from n1 (n1-n2=n3).  

* n1 n2 -- n3 Multiply. n3=n1*n2 

/ n1 n2 -- n3 Division, signed (n3= n1/n2).  
1+ n -- n+1 Increment n.  

1- n -- n-1 Decrement n. 

CELL n -- n/2 Logic right shift.  
CELL+ n -- n+2 Increment n by 4. 

CELL- n -- n-2 Decrement n by 4.  

CELLS n -- n*2 Logic left shift 2 bits.  

CELL/ n -- n/2 Logic right shift.  

UM+ n1 n2 -- nd Unsigned addition, double precision result. 

UM* n1 n2 -- nd Unsigned multiply, double precision result. 

M*  n n -- d  Signed multiply. Return double product. 

UM/MOD nd n1 -- mod 

quot 

Unsigned division with double precision dividend. 

M/MOD  d n -- mod 

quot  

Signed floored divide of double by single. Return mod and quotient. 

MOD n1 n2 -- mod Modulus, signed (remainder of n1/n2). 

/MOD n1 n2 -- mod 

quot 

Division with both remainder and quotient. 
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*/MOD n1 n2 n3 -- n4 

n5 

Multiply and then divide (n1*n2/n3) 

*/ n1 n2 n3 -- n4 Like */MOD, but with quotient only. 

ABS n1 -- n2 If n1 is negative, n2 is its two's complement. 

NEGATE n1 -- n2 Two's complement. 

DNEGATE d1 -- d2 Negate double number. Two's complement. 

D+ d1 d2 -- d3 Add double numbers. 

 

Logic and Comparison  

AND n1 n2 -- n3 Logical bit-wise AND. 

OR n1 n2 -- n3 Logical bit-wise OR. 

XOR n1 n2 -- n3 Logical bit-wise exclusive OR. 

NOT n1 -- n2 Bit-wise one's complement. 

0< n -- flag True if n is negative. 

U< n1 n2 -- flag True if n1 less than n2. Unsigned compare. 

< n1 n2 -- flag True if n1 less than n2. 

= n1 n2 -- flag True if n1 equals n2. 

MAX n1 n2 -- n3 n3 is the larger of n1 and n2. 

MIN n1 n2 -- n3 n3 is the smaller of n1 and n2. 

WITHIN n1 n2 n3 -- flag Return true if n1 is within range of n2 and n3. ( n2 <= n1 < n3 ) 

 

Memory  

@ addr -- n Replace addr by integer at addr. 

C@ addr -- char Fetch least-significant byte only. 

! n addr --  Store n at addr. 

C! char addr --  Store least-significant byte only. 

2@ addr -- d Fetch double integer d at addr. 

2! d addr --  Store double integer d at addr. 

+! n addr --  Add n to integer at addr. 

COUNT addr -- addr+1 

char 

Move string count from memory onto stack. 

ALLOT n --  Add n bytes to the RAM pointer DP. 

HERE  -- addr Address of next available RAM memory location. 

PAD  -- addr Address of a scratch area of at least 64 bytes. 

TIB  -- addr Address of terminal input buffer. 

CMOVE addr1 addr2 n -

-  

Move n bytes starting at memory addr1 to addr2. 

FILL addr n char --  Fill n bytes of memory at addr with char. 

ERASE addr n --  Zero fill n bytes starting at addr 

PACK$ addr1 u addr2 -

-  

Build a string at addr2 from u characters at addr1 

 
 

 

System Variables 

BASE  -- addr Radix for number conversion 

tmp  -- addr Temporary scratch pad 

SPAN  -- addr Actual number of characters received by EXPECT 

>IN  -- addr Character offset into the input stream buffer. 

#TIB  -- addr Current length of terminal input buffer (TIB. 
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'TIB  -- addr Current address of terminal input buffer (TIB 

'EVAL  -- addr Interpreter or compiler to evaluate a command. 

HLD  -- addr Pointer to numeric string under construction. 

CONTEXT  -- addr Name field address of last command in dictionary 

CP  -- addr First free address in .data segment of memory 

LAST  -- addr Name field address of command under compilation 

 

Terminal Input-Output  

EMIT char --  Display char. 

KEY  -- char Get an ASCII character from the keyboard. 

?KEY  -- char -1 | 0 Return an ASCII character from the keyboard and a true flag. Return 

false flag if no character available. 

. n --  Display number n with a trailing blank. 

U. n --  Display an unsigned integer with a trailing blank. 

.R n1 n2 --  Display signed number n1 right justified in n2 character field. 

U.R n1 n2 --  Display unsigned number n1 right justified in n2 character field. 

? addr --  Display contents at memory addr. 

<#  --  Start numeric output string conversion. 

# n1 -- n2 Convert next digit of number and add to output string 

#S n --  Convert all significant digits in n to output string. 

HOLD char --  Add char to output string. 

SIGN n --  If n is negative, add a minus sign to the output string. 

#> d -- addr n Terminate numeric string, leaving addr and count for TYPE. 

CR  --  Display a new line. Send carriage return and line feed. 

SPACE  --  Display a space. 

SPACES n --  Display n spaces. 

ACCEPT addr n --  Accept n characters into buffer at addr. 

TYPE addr n --  Display a string of n characters starting at address addr. 

BL  -- 32  Return ASCII Blank character. 

DECIMAL  --  Set number base to decimal. 

HEX  --  Set number base to hexadecimal. 

 

Compiler and Interpreter  

:<name>  --  Begin a colon definition of <name>. 

;  --  Terminate execution of a colon definition. 

CREATE 

<name> 

 --  Dictionary entry with no parameter field space reserved. 

VARIABLE 

<name> 

 --  Defines a variable. At run-time, <name> leaves its address. 

CONSTANT 

<name> 

n --  Defines a constant. At run-time, n is left on the stack. 

, n --  Compile n to the dictionary in flash memory 
IMMEDIATE  --  Cause last-defined command to execute even within a colon definition. 

COMPILE 

<name> 

 --  <name> is compiled to dictionary. 

[COMPILE] 

<name> 

 --  Immediate command. <name> is compiled to dictionary. 

LITERAL n --  Compile literal number n. At run-time, n is pushed on the stack. 

[  --  Switch from compilation to interpretation. 

]  --  Switch from interpretation to compilation. 
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WORD<text> char -- addr Get the char delimited string <text> from the input stream and leave 

as a counted string at addr. 

( <comment>)  --  Ignore comment text. 

\ <comment>  --  Ignore comment till end of line. 

." <text>"  --  Compile <text> message. At run-time display text message. 

.( <text>)  --  Display <text> from the input stream. 

$" <text>"  -- addr Compile <text> message. At run-time return its address. 

ABORT --  Jump to QUIT on error. 

ABORT" 

<text>" 

flag --  Compile <test> message. At run-time display message and abort if 

flag is true. Otherwise, ignore message and continue. 

COLD  --  Start eForth system. 

QUIT  --  Return to interpret mode, clear data and return stacks. 

QUERY  --  Accept input stream to terminal input buffer. 

EXECUTE addr --  Execute command definition at addr. 

@EXECUTE addr --  Execute command definition whose execution address is in addr. 

 

Structures  

IF flag --  If flag is zero, branches forward to ELSE or THEN. 

ELSE  --  Branch forward to THEN. 

THEN  --  Terminate a IF-ELSE-THEN structure. 

FOR n --  Setup loop with n as index. Repeat loop n+1 times. 

NEXT  --  Decrement loop index by 1 and branch back to FOR. Terminate 

FOR-NEXT loop when index is negative. 

AFT  --  Branch forward to THEN in a loop to skip the first round 

BEGIN  --  Start an indefinite loop. 

AGAIN  --  Branch backward to BEGIN. 

UNTIL flag --  Branch backward to BEGIN if flag is false. If flag is true, terminate 

BEGIN-UNTIL loop. 

WHILE flag --  If flag is false, branch forward to terminate BEGIN-WHILE-

REPEAT loop. If flag is true, continue execution till REPEAT. 

REPEAT  --  Resolve WHILE clause. Branch backward to BEGIN. 

AHEAD  --  Resolve WHILE clause. Branch backward to BEGIN. 

 

Utility  

' <name>  -- addr Look up <name> in the dictionary. Return execution address. 

DUMP addr --  Dump 128 bytes of RAM memory starting from addr. 

WORDS  --  Display all eForth commands 

BYE  --  Terminate eForth and return to Windows. 
 

Inner Interpreters  

next()  --  Jump to next token at end of all primitive commands 

DOLIST --  Address interpreter to start executing following token list 

EXIT  --  Terminate execution of a token list 

DOVAR -- addr Variable interpreter to return parameter field address 

DOCON -- n Constant interpreter to return value in parameter field 

DOLIT -- n Integer literal interpreter to return following literal value 

BRANCH  --  Unconditionally branch to following literal address 

?BRANCH flag --  Branch to following literal address if flag is false 

DONXT  --  Decrement count on return stack. Branch to following literal address 

if count is not negative; else pop return stack and exit loop. 
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do$  -- addr Return address of a compiled string literal 

$”|  -- addr String literal interpreter returning address of following string 

.”|  --  String literal interpreter displaying following string 

ABORT”| flag --  If flag is true, display following string and ABORT. 

 
Supporting Words 

DIGIT u -- char Convert digit u to a character. 

EXTRACT n1 base – n2 

char 

Extract the least significant digit from n1. Leave quotient n2 and digit char. 

>CHAR char -- char Filter non-printing character to an underscore. 

str n – addr count Convert a signed integer to a numeric string. 

wupper n – n Convert 4 characters in a word to upper case. 

>upper char – char Convert a character to upper case. 

DIGIT? char base– n 

flag 

Convert a character to its numeric value. A flag indicates success. 

(parse) addr n char – 

addr n delta 

Scan string delimited by c. Return found string and its offset delta. 

PARSE char – addr n Scan input stream and return counted string delimited by char. 

TOKEN  -- addr Parse a word from input stream and copy it to name dictionary. 

NUMBER? addr -- n -1 | 

addr 0  

Convert a number string to integer. Push a flag on data stack. 

NAME> nfa -- cfa Return a code field address given a name field address. 

>NAME cfa -- nfa Convert code field address to a name field address. 

NAME? addr -- cfa nfa | 

addr flag 
Search dictionary for a string at addr. Return cfa and nfa if found. Else push 

a false flag above addr 
SAME? a1 a2  n – a1 a2 

flag 

Compare u-2 bytes in two strings. Return 0 if identical. 

FIND a va -- cfa nfa  

| a flag 
Search a dictionary for a string. Return cfa and nfa if succeeded. Else, 

return a and false flag. 
^H bot eot cur -- bot 

eot cur 
Backup the cursor by one character. 

TAP bot eot cur char -

- bot eot cur 
Accept and echo the key stroke and bump the cursor. 

kTAP bot eot cur char -

- bot eot cur 
Process a key stroke, CR or backspace. 

?STACK  --  Abort if the data stack underflows. 

.OK  --  Display the data stack only while interpreting. 

EVAL  --  Interpret the input stream. 

PRESET  --  Reset data stack pointer. 

$INTERPRET addr --  Interpret a word. If failed, try to convert it to an integer. Failing that, ABORT 

$COMPILE addr --  Compile a word to dictionary as a token or literal. Failing both, ABORT 

?UNIQUE addr -- addr Display a warning message if the word at addr already exists. 

$,”  --  Compile a literal string up to next " . nfa --  Build a new dictionary name using the string at nfa 

$,n addr --  Build a new dictionary name using the string at addr 

OVERT --  Link a new word into the current dictionary. 

.ID nfa --  Display the name at name field address. 
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