Irreducible Complexity

eForth for Discovery

Chen-Hanson Ting

1. eForth for ARM chips

1.1 Moore’s Law Marches On

Moore’s Law marches on, and more and more cir@ungscrowded into microcontrollers. In the last 15
years, | had programmed many ARM chips, and hadhveat with amazement the progress of the ARM
chips. My approach had always been to port anteystem onto the chips and tried to make the best
use of the chips. Here are some of the ARM chims keForth on.

2001: Nintendo’s GameBoyAdvance had an ARM7TDMpah it. It had 32 KB of RAM. No flash.
It had lots of external flash and RAM for games.

2004: ADuC7024 from Analog Devices had 62 KB aifi and 8 KB of RAM, and lots of 10 devices,
including ADC and DAC. | built a ForthStamp basedit, a really nice single chip stamp size compute

2008: AT91SAM7x256 from Atmel. It had 64 KB offlh and 16 KB of RAM, and lots of 10 devices.

A couple of years ago, | told my friends in the&@ih Valley FIG and Taiwan FIG that | had to really
retire from Forth programming. | did, and workeshpefully on translating Bach’s cantatas from
German to Chinese, and putting Tang poems intol&otis songs, and many other things | had
neglected all the years. Then, last month, adrianTaiwan FIG sent me this ForthDuino Board, viahic
was used to control a laser cutting machine to nka&kdoards. It had footprints of IO sockets of
Arduino board and MSP430 LaunchPad. Itis intertdeslick in all applications from Arduino and
LaunchPad. | was told that the ARM chip on Forthidus the same one used in the STM32F4-
Discovery Kit. Looking up the STM32F407 chip, I svshocked to see so much memory, and so many
IO devices. 1 MB of flash and 192 KB of RAM. $ta Wow chip, and in desperate need of a good
eForth system.

So. | re-open my workbench, unpacked my tools,rdoad all necessary IDE and programming
toolchains. But, the world has changed sincepgd watching. Keil is still there, but its tocdch
became uVision5. STM32F4 is no longer an ARM cHips a Cortex M4 chip. There is no ARM in
STM32F4. All that’s left is a THUMB, and a reallyg THUMB.

The first shock was that | could not use the ARKkediive in the assembler. The assembler generated
lots of error messages if you do ARM. It is mueppier if you use the THUMB directive. Then, the
RSC instruction disappeared. Reading the ARM aBkermanual carefully, | found that ARM
Holdings is phasing out the ARM instruction setd aeplacing it with the THUMB?2 instruction set. It

gave up the beautiful RISC architecture, and redetd the ugly CISC architecture we all despised.

I missed the simple serial COM port in PC. The USBo much harder to deal with. You don’t know
what’s going on. You must have faith on the USBeahs given to you.

There is no simple examples to guide me, to stgréxploration. The Demo project provided with
STAM32F4-Discovery Kit is a huge package with At and 31 files. There is no clear entry point.
spent 3 weeks wandering around in the hardwaresaftetare maze, looking for an entry point. The
great breakthrough came when | realized that | baly to set up the reset vector correctly, evengthi
would work smoothly from that point on. Throw awall/the header files, init files, device drivees.

I only need one assembly file to do what | havddo

Since STM32F4 is no longer an ARM7 chip. It is netessary to keep the name in my eForth
implementations. | planned and completed 3 vessajreForth for this chip:

STM32eforth v7.01 The eForth dictionary residefiash memory, and executes from flash memory. It
is upgraded to align with the eForth2 model, withreutine tread model and fully optimized for
performance.

STM32eforth v7.10 The eForth dictionary residefiash memory. Flash memory is remapped to the
virtual memory in Page 0. eForth executes fromeFamemory.

STM32eforth v7.20 The eForth dictionary residefiash memory. The dictionary is copied from flash
to RAM. RAM memory is remapped to the virtual meynm Page 0. eForth executes from Page 0
memory. Applications can be easily embedded inkiey system.

1.2 THUMB2—Death of a RISC

The ARM architecture was hailed as the prince @®Rlas the name says it all: Acorn RISC Machine.
The major disadvantage of RISC is its poor codiegsity. A 32-bit instruction does not do much work
Lots of bits in the instruction, like the 4-bit atition field, are wasted. ARM Holdings tried vergrd
implementing the THUMB instruction set to complerngre ARM instruction set. In the end, the
THUMB is waggling the ARM, and the THUMB?2 instruati set basically eased out the ARM
instruction set. THUMB?2 is clearly a CISC architee. Cortex M4 core inside STM32F407 is an
extremely complicated instruction set computetellhad proved that the RISC architecture is of no
special value, and ARM Holdings concurred.

1.3 Dire Consequence of Moore’s Law

A while ago, | was amazed at the 566 page refersrarial of ATmega328 from Atmel, which is a
lowly 8-bit microcontroller used on Arduino Uno Kifhe reference manual of STM32F407 is 1713
pages thick. How can anybody wading through tbisudhent to get a handle on this chip and all its
peripheral devices?

| opened the Demo project for the STM32F407-DiscpBoard on Keil's uVision5. In the Project
panel | counted 7 folders with 31 files in thenustfor a Demo! It is true that the Demo doestato

interesting things, like reading the 3-axis acaetszter and the USB connection to PC. | have great
sympathy for people who gets this kit and is comted by this huge software mess.

The dire consequence of the Moore’s Law is complex@éyond comprehension.
The only way to deal with this complexity is therfroway. Or, put it more bluntly:
KISS Keep It Simple, Stupid!

The first thing to do is to put eForth on boarcheTL6 MHz high speed internal clock HSI in the dkip
good enough for an USART. Forget about the farldytRat can push the clock to 168 MHz. We can
deal with it when we really need the speed. Jestlge USART going, and we can walk into the gdits o
the microcontroller and actually control it fronside through eForth.

What about interrupts, threads, heaps, multitaskang preemptive task switching? All the greatgsi
this ARM/THUMB chip can do? Forget them! You waarn them in the senior year of computer
engineering, if you have time to go to school. tAkse things can be added to eForth when yowyreall
need them.

eForth exposes all the memory and the IO registeysu. You can inspect them, and you can tinker
with them. This is the way to study the periphel@lices, learn how to control them, and make fise o
them. Focus on one device you will use. Readdhapter in the reference manual. Inspect thestat
and control registers. Flip bits in the contraister and see what happens. Write short commntands
perform the functions you want. These functionk e called from you eventual applications.

1.4 Oddity of Thumb Transfer Instructions

In the transfer instructions, THUMBZ2 requires thkithe target addresses must be odd. Bit O of the
address is deposit into the T bit in the EPSR staggister, indicating that it is in the Thumb staThe
actual address is on the 2 byte half word bounditych grief was encountered when | was debugging
eForth, which aligned addresses to the 4 byte wotchdary. If bit O is not set in these addresbes,
CPU may work correctly, and it may also crasheariht the lesson when building turnkey systems Th
correct procedure is:

: load Lessonl16.txt
: load Lessonl7.txt

0 ERASE_SECTOR
‘ GUESS 1+ ‘BOOT !
TURNKEY

In most cases, eForth takes care of this oddityt, Bhen you are use addresses explicitly, make lsitir
0 in the target address is set before jumping to it

(Note: | think this must be considered a bug m32eforth720. 1 fixed it @EXECUTEBefore
@EXECUTHRmMps to the target address, it sets b0 in theezddo please the M4 CPU).

1.5 eForthl and eForth2

The original eForth Model was designed by Bill Maknn 1990. It was based on the Direct Thread
Forth Model, in which the body of a high level Fodommand contained a list of execution addresses,
preceded by &ALL NEST machine code. Bill was very ambitious in thatdd down hooks for
multitasking and th€ ATCH-THROWechanisms for error handling. List of executmidresses were
very easy for porting to other processors. Indeshy people did port this model to about 30 déifer
processors. At that time, assemblers for theseegswrs were not easily available and very differen
This simple model was very easy to be adaptedoertecular assembler. In a few cases, MASM from
Microsoft was used to assemble eForth for a diffepeocessor.

Getting into this century, | ported eForth to manigrocontrollers at work. With good native
assemblers available then, | was able to optinftzeth for performance necessary in actual produlcts.
used the Subroutine Thread Model throughout, aalizezl many other advantages besides speed.
Machine code can be mixed with subroutine calligerfupt service routines can be written in higrele
Forth. In all these applications, multitasking was$ necessary and many user variables can be
eliminated. Th&€ ATCH-THROWechanism was not needed, and the error handisgreatly
simplified. The cumulative result was eForth2, aadier implementations were classified as eForthl

eForth2 implementations were all written using veaissemblers provided by microcontroller
manufacturers. Forth commands which can be exguléasative machine instructions are so coded.

eForthl is for portability.
eForth2 is for performance.
1.6 THUMB?2 Instruction Set

When | started porting eForth to STM32F407-Discguoard, | was not aware of the THUMB2
instruction set. | used sam7ef.s from the ATO1SARSG project and tried to assemble it under
uVision5. Lots and lots of error messages. Tytadinfusing. The first thing | noticed was thag th
startup_stm32f4_xxx.s file used the THUMB directimad | used ARM directive in sam7ef.s.
Changing the THUMB directive to ASM caused mor@esr Changing the ARM directive to THUMB,
the assembler was much happier, but still thresddterrors and warning at me.

Then | found that ARM Holdings changed the CPU dwekind my back when | was not watching.
Their chips are not ARM chips any more. They aoet€x-M4 chips with only Thumb2 instructions.
Their assembler was also changed to UAL, as statede of its manuals:

Uni fi ed Assenbl er Language (UAL) is a common syntax for ARM and Thumb

instructions. It supersedes earlier versions of bot h the ARM and
Thumb assembler languages.

These are errors which | had to correct:

B<addr> becomes a 2-byte Thumb instruction. Iseadollowing instructions to be misaligned. Isha
to be changed to B.W<addr>, to retain 4 byte wdigheent.

Target address in Forth transfer commands must hiaGeset.
RSC (Reverse subtract with carry) does not existias used only in DENEGATE.

I had made many mistakes on my own. | had to Wmged-orthl to eForth2, though most changes were
deleting things | did not need. During the pro¢éssally appreciated the debugger in the Keilgib5.

It allowed me to set up to 6 hardware break pdmeisly. Watching CPU registers and IO registers in
any device while single stepping the assembly eaalevery helpful. In the end, | was very pleased t
see stm32eForth signed on and processed my contoamdtly.

1.7 Branch and Link

In Cortex M4, subroutine call uses the Branch aimé BL<addr> instruction. All high level Forth
commands were assembled as tokens of BL instrigctiBih instruction, as invented in the RISC
architecture, assumed a return stack of 1 levelkiwis the link register LR. If the called subnmet had
to call other subroutines, the return address irhBRto be saved on a real return stack of adequate
depth

| watched the disassembled BL instructions whitgls stepping through the code, but could not gégur
out how the instructions were encoded. Only whenas testing the decompiler command SEE, | had to
figure it out without a shiver of doubt. It is cposed of two 16-bit THUMB instructions in the foh

Address Bits Address Bits
i Gk Wi 11110 o
| Byte 1 | Byte O | Erte 3 | Byte 2 |

Very strange, indeed! But, | was able to shiftliits around and eventually get the correct addrask.
1.8 First ARM Assembly Program

| was desperate to get STM32F4-Discovery to do somg | Googled ARM and Discovery tutorials,
and with lots of patience | found this simple exéerfpom the website of Regina University. It canga
the least amount of code to get STM32F407 to inerdra register. It assembled correctly on uVisjon5
and the debugger lets me single step through tigrgam. | could see that register RO was actually
incrementing. Now, | got the toolchain working.

; First ARM Assembly program

; Chen-Hanson Ting, 16junl4cht

; Adapted from a lab lesson at Regina University

; http://www.cs.uregina.ca/Links/class-info/301/ARM /lecture.html

; for ATM32F-Discovery Kkit.

; Assembled on uVision 5.10 from Keil

; Use the uVision debugger to watch the registers i n ATM32F407
; First step to get used to Discovery kit and uVisi on

;;; Directives

PRESERVES

THUMB

; Vector Table Mapped to Address O at Reset

; Linker requires __Vectors to be exported
AREA RESET, DATA, READONLY
EXPORT __ Vectors

__Vectors
DCD 0x20001000 ; stack pointer value when stac k is empty
DCD Reset_Handler ; reset vector
ALIGN

; The program
; Linker requires Reset_Handler
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
Reset_Handler
MOV RO, #12
STOP
ADD RO, RO, #4
B STOP
END ;End of the program

1.9 Blinky

The next step was to get the LEDs blinking. Digggvhas a Blinky demo, but it is huge. It was no f
to read the C code, all the header files and hbfilegs. How many programmers does it take to tmn

a LED? Once | got the above kernel going, it wasydo add and few lines of code to turn the LEDs o
and off.

The LEDs on Discovery are connected to pins PD127ltese 4 pins on GPIOD ports must be
initialized to be output pins. All 10 devices réiguclocking, which is done through the Reset Clock
Control register RCC. The program is simply:

; SimpleBlinky, Chen-Hanson Ting, 18junl4cht

; Simplest program to blink the LEDs on the STM32F4 -Discovery kit.

; Assembled by uVision 5.10 from Keil.

; Adapted from Daniel Widyanto

; http://lembeddedfreak.wordpress.com/2009/08/09/cor tex-m3-blinky-in-assembly/

;;; Directives
PRESERVES
THUMB
; Vector Table Mapped to Address 0 at Reset
; Linker requires __Vectors to be exported
AREA RESET, DATA, READONLY
EXPORT __ Vectors

__Vectors
DCD 0x20001000 ; stack pointer value when stac k is empty
DCD Reset_Handler ; reset vector
ALIGN

; The program

; Linker requires Reset_Handler
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler
Reset_Handler
; Blinky program for STM32F407 - ARM Cortex-M43
; The LEDs are at these pins:
; LD3, orange, PD13
; LD4, green, PD12
; LD3, red, PD14
; LD3, blue, PD15

; Declare __main() as global..Otherwise the linker won't find it
EXPORT __main

__main

; I* Set the pins direction as output */
LDR RO, =set_gpio_dir

BLX RO
loop
LDR RO, =clear_leds
BLX RO
LDR RO, =delay
BLX RO
LDR RO, =set_leds
BLX RO
LDR RO, =delay
BLX RO
B loop
set_gpio_dir

; Enable clock to GPIOD
I[dr r0, =0x40023800 ; RCC
Idr r1, [rO, #0x30] ; RCC_AHB1ENR
orr rl, #8 ; GPIODEN (1)
str rl, [rO, #0x30]

; Configure PD12-15 as output with push-pull
l[dr r0, =0x40020C00 ; GPIOD
Idr r1, [rO, #0x00] ; GPIOx_MODER
bic rl, #0xFF000000 ; Mask PD12-15
orr rl, #0x55000000 ; output
str rl, [rO, #0x00]
BX LR

set_leds

; Set PD12-15
l[dr r0, =0x40020C00 ; GPIOD
Idr r1, [rO, #0x14] ; GPIOD_ODR
orr rl, #0xF00O ; set PD12-15
str rl, [rO, #0x14]
BX LR

clear_leds

; Clear PD12-15
Idr r0, =0x40020C00 ; GPIOD
Idr r1, [rO, #0x14] ; GPIOD_ODR
bic rl, #0xF000 ; PDclear12-15
str rd, [r0, #0x14]
BX LR

delay

; Delay about 0.3 second, with internal HSI clock a t 16 MHz
MOVW R3, #0x0000
MOVT R3, #0x0004

__delay_loop
CBZ RS, __delay_exit
SUB R3,R3,#1
B __delay_loop

__delay_exit
BX LR
ALIGN
END

1.10 Hello World

eForth needs a USART to communicate with the usiErund a nice Hello World example using
USART1 to send out a message:

; Hello World!
; Adapted from an assembly example by clivel on STM 32 Forum on www.st.com
; Chen-Hanson Ting 16junl4cht

; This is a demo program for STM32F4-Discovery Kit from STMicroelectronics.

; The STM32F407 chip is overwhelming. The demo pro gram Blinky provided by ST
; is also overwhelming. There must be a better w ay to get it working.

;| 'am porting my Sam7eForth system on this platf orm. This is another

; step towards this goal.

; It uses USART1 port on PB6/7 to send out the "Hel lo World!" message.

; USART1 is configured at 115200 baud, 1 start bit, 8 data bits, 1 stop bit,

; ho parity, no flow control

; USARTL1 is an alternate function of the GPIOB port , pins PB6/7.

; We have to initialize the clock control register CCR, GPIOB port,

; and USARTL1 port.

; Code is assembled by uVision 5.10 from Keil. Obj ect code is downloaded to
; Discovery through on-board ST-Link, and debugge d through uVision.

; An Arduino Uno board is used as the USART COM por t. Remove Atmega328P chip
; from Uno board. Connect its RX at DO to PB7 on Discovery board, and the
; TX at D1 to PB6 on Discovery board. Ground tog ether Uno and Discovery.
; Discovery sends characters from its USART1 to U no, and to HyperTerminal

; onits PC host.

AREA RESET, CODE, READONLY

THUMB
EXPORT __Vectors ; linker needs it
EXPORT Reset_Handler ; linker needs it

; Vector Table has only Reset Vector

__Vectors
DCD 0x10000400 ; Top of hardware stack in CCM
DCD Reset Handler ; Reset Handler
ENTRY

Reset_Handler
BL InitUSART1
LDR RO, =Hello
BL _OutString
B .
Hello DCB "\n\015Hello World\n\015", O
ALIGN

rhkkkkkkhhkkkhhkkhhkkkhhkkhhhkkhhrkxhhhxkhhkkhhhikrrkx
l

; Assumes system running from 16 MHz, HSI (Normal a
; USART1 PA9 TX, PA10 RX; this does not work. Outp
; Try alternate USART1 PB6 TX and PB7 RX; this work

INtUSART1L PROC
; init Reset Clock Control RCC registers
Idr r0, =0x40023800 ; RCC
l[dr r1, [rO, #0x30] ; RCC_AHB1ENR
orr rl, #2 ; GPIOBEN (1<<1)
str rd, [r0, #0x30]
ldr r1, [rO, #0x44] ; RCC_APB2ENR
orr rl, #0x10 ; USART1EN (1 << 4)
str rl, [r0, #0x44]
; init GPIOB
l[dr r0, =0x40020400 ; GPIOB
Idr r1, [rO, #0x00] ; GPIOx_MODER
bic rl, #0xFOOO ; Mask PB6/7
orr rl, #0xA000 ; =AF Mode
str rl, [rO, #0x00]
Idr r1, [rO, #0x20] ; GPIOx_AFRL
bic rl, #0xFFO00000 ; Mask PB6/7
orr rl, #0x77000000 ; =AF7 USART1
str rl, [rO, #0x20]
; init UART1
l[dr r0O, =0x40011000 ; USART1
movw rl, #0x0200C ; enable USART
strh rl, [rO, #12] ; +12 USART_CR1 = 0x2000
movs rl, #139 ; 16MHz/8.6875 (139, 0x8B) == 11
strh rl,[r0, #8] ; +8 USART BR

*k% *k*k *%

t Reset)
ut spaces and a $.
s.

5200

Idr r2,=12 ; Output 12 pound/hash symbols
iul
[drh 1, [rO, #0] ; USART->SR
ands rl, #0x80 ; TXE
beq iul
mov rl, ##
strh rl, [rO, #4] ; USART->DR
subs.w r2,r2, #1 ;51
bne.n iul
bx Ir
ENDP ; InitUSART1
; Uses

; r0 Character to output, masked
; rl scratch, destroyed
; r2 scratch, destroyed

_OutChar PROC
l[dr r2,=0x40011000 ; USART1 F2/F4
and 0, #OxFF
_OutCharl0
[drh r1, [r2, #0] ; USART->SR
ands rl, #0x80 ; TXE
beq _OutCharl0
strh r0, [r2, #4] ; USART->DR
bx Ir
ENDP ; _OutChar

*k%k *kk *k% *k% *k%k *k%

; Uses
; r0 String to output, destroyed
; rl,r2,r3 assumed scratch

_OutString PROC
push {r4, Ir}
mov r4,r0
_OutString10
Idrb.w rO, [r4], #1 ; rO = *r4++ (BYTE)
orrs 10, 10
beq _OutString20
bl _OutChar
b _OutString10
_OutString20

pop {r4, pc}
ENDP ; _OutString
ALIGN

END

1.11 HyperTerminal Setup

Stm32eforth720 uses USART1 to communication witkreninal. On STM32F407VG, USART1 can be
configured to use either Pins PA9-10 or PB6-7 tanmunication. Since the USB on CN5 is using
PA9-10 ports, | use PB6-7 for eForth. | am usirsgparate PC to run HyperTerminal through a USB to
serial converter, which happens to be an Arduino Kit. Arduino Uno Kit has a integrated USB to
serial converter connecting the STmega328P chipediost PC. It uses this USB to download
programs and to communication with the 328 chip.u3e its USB to serial converter, | remove the
ATmega328P chip, and connect the PB6 (TX) on Disgpto D1 port on Arduino, and the PB7 (RX)

on Discovery to DO port on Arduino. A ground waennects the ground pins on both boards.

HyperTerminal on PC is configured at 115200 baustatt bit, 8 data bits, 1 stop bit, no parity,floov
control. The USART1 on STM32F407 is configureditany. STM32F407 is clocked by its high
speed internal clock HSI at 16 MHz on reset. StheeHSI is factory trimmed to 1% accuracy, it is
adequate to provide reliable communication on USART

With the HelloWorld demo displaying “Hello, World8n HyperTerminal, | regained my self-confidence,
and proceeded to port eForth over. | used to hbast could port eForth to a new microcontroite
weeks. This time it took 5 weeks to get it workorgDiscovery. Am | getting too old? Or, is thend
passing me by too fast?

10

1.12 Irreducible Complexity

STM32F407 is a very complicated chip. If you aoéng to program in C, the software package you are
given is extremely complicated. What | am tryiogdb here is to reduce the complexity to the
minimum, and help you to control this chip with teast amount of code.

As Lao Tze said in Tao Te Ching, Chapter 48:
For knowledge, add a bit a day.
For wisdom, delete a bit a day.
Delete until there is nothing.
Then, everything can be done.

| use only one USART device.

| use only a reset vector to get the chip startixgcuting code.

A Virtual Forth Machine simplifies the complicat€dPU.

The complier is wrapped inside the text interpreter

The parameter stack simplifies language syntaxdiahgrocessing.
Forth is the simplest LISP processor.

| think Albert Einstein said better: “Everythingahlld be made as simple as possible, but not sifapler

stm32eforth720 is assembled to a 8492 byte imégeeeks and. | believe, has achieved irreducible
complexity. Things cannot be made any simpler.

eForth leaves the least footprint in your mind.tiW¥his understanding, you can make the STM32F407
microcontroller do what you want it to do.

11

2. Assemble and Test STM32eForth720.s
2.1 STM32F4-Discovery Kit

To promotehe commercial adoption of STM32F4 chips, STMicroelentcs provides a low-cost
STM32F4-Discovery Kit. | got my first kit for $190 from DigiKey. The second time | placed an oyder
the price jumped to $20. But, it is still very alpefor its capabilities. STMicroelectronics is sgig

lots of money promoting these microcontrollersis Ibased on an STM32F407VGT6 and includes an
ST-LINK/V2 embedded debug tool interface, ST MEMG§itdl accelerometer, ST MEMS digital
microphone, audio DAC with integrated class D speakiver, LEDs, pushbuttons and a USB OTG
micro-AB connector.

n:gE]tJ - v

w:st. com;‘stmszf&l dlscovery

e & (PC2 i1 '_J
*‘C'Pm

p ,Ealnr[ﬁﬁi_t

|
i | “acis -

) |pei2
Ii"ﬂld

12

Here is a laundry list of features in STM32F4-Disexy Kit:

. STM32F407VGT6 microcontroller featuring 1 MB of Blamemory, 192 KB of RAM

. On-board ST-LINK/V2 with selection mode switch teeuthe kit as a standalone debugger
. Power through USB bus or from an external 5V suppliage
. External application power supply: 3V and 5V

. LIS302DL or LIS3DSH, ST MEMS 3-axis digital accelareter
. MP45DTO02, ST MEMS audio sensor, omni-directiongital microphone
. CS43L22, audio DAC with integrated class D speakimer

. Eight LEDs for power, accelerometer, and micro USB
. 8 LEDs for power, accelerometer, and micro USB

. Two pushbuttons (user and reset)

. USB OTG with micro-AB connector

. Extension headers for 80 10 pins

. Keil uVision5 Integrated Development Environment

. Binary code downloader through serial ports

STM32F407 microcontroller on Discovery is a vertenmesting and capable chip from
STMicroelectronics. It integrates an 32-bit Corké4 core with lots of digital and analog peripheral
devices. They greatly simplify control and moningrin applications such as factory automation,
network communication, and perhaps automotive obnffollowing is a laundry list of features inghi
chip:

. ARM 32-bit Cortex™-M4 CPU Core with FPU, frequengyto 168 MHz, 210 DMIPS/1.25
DMIPS/MHz (Dhrystone 2.1), and floating point an&®instructions

. 1 MB of Flash memory, 192 KB of SRAM including 6Bkof CCM (core coupled memory)
data RAM

. LCD parallel interface, 8080/6800 modes

. 3x12-bit, 2.4 MSPS A/D converters: up to 24 chasaeld 7.2 MSPS in triple interleaved mode
. 2x12-bit D/A converters

. 16-stream DMA controller with FIFOs and burst suppo

. Twelve 16-bit and two 32-bit timers up to 168 MH2/OC/PWM or pulse counter and
guadrature (incremental) encoder input

. Serial wire debug (SWD) & JTAG interfaces

. Up to 140 I/O ports with interrupt capability, fd&Ds up to 84 MHz, 5 V-tolerant

. 15 communication interfaces, 3 x 12C interfaced SARTs/2 UARTS, 3 SPIs, 2 x CAN
interfaces, USB 2.0 full-speed device/host/OTG wuidr, USB 2.0 high-speed/full-speed
device/host/OTG controller

. 10/100 Ethernet MAC with dedicated DMA:

. 8- to 14-bit parallel camera interface up to 54 kéisys
. True random number generator

. CRC calculation unit

. 96-bit unique ID

. RTC: subsecond accuracy, hardware calendar

13

2.2 IDE and Assembler

STMicroelectronics wisely focuses on the chip manturing, and delegates software tools companies
to provide assemblers and compilers to prograrchigss. In the STM32F4-Discovery User Manual, 4
software development toolchains are recommended:

. Embedded Workbench® for ARM (EWARM) by IAR

. Microcontroller Development Kit for ARM (MDK-ARM) B Keil
. TrueSTUDIO® by Atollic

. TASKING VX-toolset for ARM Cortex by Altium

I have been using Keil's MDK-ARM Development Kitrfgears, and used it again for this project of
eForth on Discovery. You can download a free eatéda version form its websit@ww.keil.com The
current release is pVision5.10. The evaluatiosioarhas a size limit of 32 KB target code. Thigs
poses no problem for eForth systems, which usaakbgmbles to about 8 KB.

uVison5 uses the standard armasm assembler from HRiIngs. It is now using UAL syntax.
2.3 Install pVision5

After successfully install pVision5, you will sequ&ision5 icon on the desk top. Double click itstart.
pVision5 organizes things in workspaces and prsjeltorkspace is a big folder which holds many
projects. A project is a smaller folder where ydace your source code files for pVision5 to work o
When pVision5 is first started, it asks you to sfyeg workspace. The default workspace is C:\mdk\,
but you can pick any folder you like.

SelectProject>Create New Project

In theFile Selection window, navigate to a folder you want or createw folder.
Name new project as eforth_7 or something you like.

14

Create New Project s S

= - - . —
@ ‘_l « LocalDisk () » ForthDuino » eforth 7 » test - |t-; ‘ Search test el |
Organize ~ New folder b 0
* | Name Date modified Type
- Libraries
. Documents No items match your search.
4. Music
2= Pictures
& vVideos
ad Homegroup
& Computer
& LocalDisk (C)
+ Recaovery (D) w | [l i 3
File pame: E!fmrth‘ .
Save as type: [Project Files (*.uvproj; *uvprojx) "
+ Hide Folders Save | l Cancel l
In theSelect Device for Target “Target 1” window, select STM32F407VG.

Select Device for Tget 'Iarget -l u

cPU

Vendor: STMicroelectronics

Device: STM32F407VG

Toolset ARM
Search Description
[=] @ STMicroelectronics o [Tre STM32F4 family incorporates high-speed embedded memories andan ~

=% STM32F4 Series

® % STM32F401

1 % STM32F405

|8 STM32F407
& sTM32F407IE
& STM32F4071G
& STM32F407VE
Ll STM32FA07VG
& sTM32F407ZE
& sTM32F407Z6

® % STM32F415 B e

- 64-Kbyte of CCM (core coupled memory) data RAM
- LCD parallel interface, 8080/6800 modes

- Timerwith quadrature (incremental) encoderinput
-5 V-olerant [/Os

- Parallel camera interface

- True random number generator

-RTC: sub d accuracy, hardv lend:

- 96-bitunique ID

G

i}

| m

In theManage Run Time Environment window, select nothing and click OK. eForth isywsimple,
and does not need all the supporting files an@tibs usually required by a C compiler.

15

Software Component
@ @ Board Support

- Variant Version
MCBSTM32F4(¥ | 1.0.0

Description
Kell Development Board MCBSTM32F400

K @ avss

Cortex Microcontroller Software Interface Components

= & Device

Startup, System Setup

@ ® Drivers

Unified Device Drivers

@@ File System MDK-Pro 505 File Access on various storage devices
@ @ Graphics MDK-Pro 5221 |User Interface on graphical LCD displays
9 Network MDK-Pro 504 |IP Networking using Ethernet or Serial protocols
% uss MDK-Pro 505 |USB Communication with various device classes
||
Validation Output Description
|
I
I
|
e o

Copy stm32eforth720.s file into the eforth_7 projetder your created.

In Project panel, click the + box to the righttafget 1

, to showsource Group 1

_I-Twie Edit View Project Flash Debug Peripherals Iools SVCS Window Help
AR - R R R == JE | ® unlock

o 7|

g Eﬂb‘ﬁﬁﬂ g&n‘ Target 1 E | dh
Project a8
=83 Target 1

{21 Source Group 1

E Project {3} Functions! "+ Templat...

Build Qutput 1@
L L4
Target stopped. ULINK:

Right click Source Group 1, and selechdd Existing File to Group “Source Group 1”.

In the Add Files to Group “Source Groupl”
Add box and therClose box.

file selection window, select stm32eforth720.8kcl

In Project panel, click the + box to the right 86urce Group 1, to show stm32eforth720.s.

Double click stm32eforth720.s, and the file is aggebim theEdit panel.

16

KB CAForthDuinoheforth_ T\eforth.7.avprojx - pvision I S o = s

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

NEda| 35 | \ |®® ™ n| == E B ® unock EET
(i e | 8 Target &&=z e@
Project G stm32eForth720.s v X
=43 Target 1 - STM32eForth version 7.20

©-£3 Source Group 1) Chen-Hanson Ting, July 2014 E|

i..[#] stm32eForth720.s

; Adapted to STM32F40
Assembled by Keil uvision 5.10

{e BT e BN s NI TN U S

H Version 4.03
; Direct Threaded Forth Model
1 % Derived from 80386 eForth versin .
[l Project | {3 Fur T o T T B
Build Output 2
4 (3 2
For Help, press F1 Target stopped. ULINK:Z
SelectProject>Rebuild all target files , stm32eforth720.s is assembled and linked, and a

stem32eforth720.axf file is created.

K2 CAForthDuinoheforth, T\eforth_7.avprop - pvision I S o = s

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Ngdda| 3 | | [mm R == E k| @) uNock EET
& BB e b 9 Targett & &z2e@

Project 2 B _ stm32eForth720.s v X
E--i Target 1 gl 72 5TM32eForth version 7.20

=
B3 Source Group 1 Chen-Hanson Ting, July 2014 B

* [# stm32eForth720.s

“hod ot e Wt

Adapted to STM32F407 scovery B
i Assembled by Keil uvi 5.10
= S\ PO 4_nn T
[ElProject | {1 Fur Ll Il | »
Build Output q
Rebuild target ‘'Target 1' -

assembling stm32eForth720.s...

stm32eForth720.5(226) : warning: Al479W: Requested alignment 64 is greater than area alignn
linking...

Program Size: Code=8528 RC-data=0 RW-data=0 ZI-data=0

".\eforth 7.axf" - 0 Error({s}, 1 Warning(s}.

€| i 3

Target stopped. ULINKZ

2.4 Setting up Target Environment

In order to assemble the eForth system correctiytest/debug it on Discovery, you have to be Soaé t
the target environment is set up correctly. PaWd theProject menu and seleciptions for
Target ‘Targetl’ , and you will see the following window:

17

SelectProject>Options for Target “Target 17, or Flash>Configure Flash Tools
The Options for Target “Target1” window appears.
SelectTarget menu, and changeal frequency to 16 MHz

ﬂ Options for Target

Device Target | Ouiput| Listing| User | C/c++| Asm | Linker | Debug | Uiities |

STMicroelectronics STM32F407VG

—Code
Xtal (MHz): |16
Operating system: |Nune ;J [~ Use Cross-Module Optimization
System-Viewer File (Sf): [Use MicroLIB [Bit I

iSTM32F4Q’x.sVd J Floating Point Hardware: Use FPU -

[~ Use Custom SVD File

~Read/Only Memary Areas —Read/Write Memory Areas
default offchip Start Size Startup default off-chip Start Size MNolnit
r rowm: | [s r Ram | [™
I~ Rom2] | e I~ RAM2 |] [
™ Rom3 | [- [RaM3 | [[
on-chip on-chip
¥ IROMI: qusmmm |(mmmu & " RAMT |ﬂ;c2cmcmn Immm i
Rom2 | [# ™ Ramz [D0D00D0 [0:10000 i
[ok || cancel || Defaurs | Help

SelectOutput menu, and checkreate Hex File

| V.| ODEIDHS for T‘i’.(g et Target 1 —

Device | Target Output | Listing | User | G/C++ | Asm | Linker | Debug | Uiities |

Select Folder for Objects.. | Name of Executable |9f0m’1_7

(@ Create Executable \eforth_7
[v Debug Information [~ Create Batch File ‘
ita §Creabe HEX Fne:

[v Browse Information

" Create Library: \eforth_7.lib

ok | Cancel | Defauis | Help

SelectListing menu, and unchecoss Reference

18

Select Folder for Listings

Davicel Talgatl Output Listing IUser | C!CH' Asm | Linker! Debugl U‘Eilrbesl

| Page Width: |79 3: Page Length: {66 3:

v AssemblerListing: *Ist

[T e

fler Listing, Vbt

[& Preprocessor Listing: 1"

[v LinkerListing: \eforth_7.map
[v Memory Map
[¥ Callgraph

[Symbols
[¥ Cross Reference

[Size Info

[Totals Info

[v Unused Sections Info
[Veneers Info

ok | cancel | Defauts | Help

SelectDebug menu, checkJse debugger. In the debugger box, se8actink Debugger

ﬂ Options for Tar

(" Use Simulator
[Limit Speedto Real-Time

Device' Talget' Uutpuil Lisﬁng' User | Cj‘C-H—' Asm | Linker Debug | U‘Ellrbes'

Settings

(ORI S T-Link Debugger v| Setiings

¥ Load Application at Startup
Initialization File

[¥ Runto main(}

 Restore Debug Session Seftings

[¥ Load Application at Startup ¥ Runto main(}
Initialization File:

| e |

Restore Debug Session Setings

[Breakpoints [Toolbox [v Breakpoints [v Toolbox

v Watch Windows & Performance Analyzer [Watch Windows

v Memory Display [System Viewer [v Memory Display [# System Viewer
CPUDLL: Parameter Driver DLL: Parameter:

iSARMCMS DLL I—REMAP -MPU

Dialog DLL. Parameter.

|SARMCM3 DLL |—MPU

Dialog DLL: Parameter.

IDCM.DLL |—pCM4

TCM.DLL -pCM4
| |

ok | cancel | Defauts | Help

Click Settings box to the right of the debugger box.

In theCortex M Target Driver Setup

Click OK

window, changdTAGin Port box toSW

19

Cortex-M Target [;rn;er Sét'up ' ﬁ u

Debug i Trace | Flash annloadi

—DebugAdapter———————————— ~5W Device

Unit |ST-LINKVZ - IDCODE | Device Name | fdmve
SWDIO | 0x2BA01477 ARM CoreSight SW-DP
Serial Number: [N/A

HW Version: [V2

B

i

Firmware Version: |V2J1650

Port ¥
Max Clock: | TMHz bl
i Debug
—Connect& Reset Options- —Cache Options —Download Options
Connect !Normal LI Reset !Amodetect Ll [v Cache Code [Verify Code Download

¥ Cache Memory [~ Download to Flash

[v Reset after Connect

’TI Cancel | Apply |

SelectUtilities menu, and uncheck the boxue Debug Driver.
In the device selection box undgéde Target Driver..., selectST-Link Debugger

Devicel Target' Outpu‘l! Listjng' User | Cj'C'H'l Asm | Linker! Debug Ultilities |

- Configure Flash Menu Command

(@ Use Target Driver for Flash Programming [Use Debug Driver
ST-Link Debugger hd Settings ¥ Update Targetbefore Debugging

It File: J Edit.. u
" Use External Tool for Flash Programming

Command | J

Arguments |

[~ Run Independent

—Configure Image File Processing (FCARM):
Qutput File: Add OQutput File to Group:
|Scurca Group 1 LI

Image Files Root Folder. I [Generate Listing

ok | cencel | Defauts | Help

Click theSettings box to the right of device selection box. T¢wetex M Target Driver Setup
window opens.

Click Add box and ad&TM32F4xx Flash to Programming Algorithm.

Click OKto dismiss th&ortex M Target Driver Setup window.

Click OKto dismiss th®ptions for Target “Targetl1” window.

20

Cortex-M Target Driver Setuip i ‘i ﬁ w

Debug | Trace Flash Download]

-Download Function RAM for Algorithm
LOAD (" EraseFullChip [¥ Program
F3d @ EmseSectors [Very Start [1x20000000 Size: [0x0800

Do notErase [~ Resetand Run

—Programming Algorithm —

Description] Device Size] Device Type J Address Range]
STM32F4xx Flash ™ On-chip Flash 08000000H - 080FFFFFH
Start [0x08000000 Size: [0x00100000

Remove I

OK Cancel

2.5 Build and Debug eForth System

To build and debug eForth System, pull ddwnject menu and sele&ebuild all target files
option and pVision5 assembles eForth file and produceamloadable object file eforth_7.axf. The
building sequence is shown in tBeitput panel at the bottom of window screen:

— = = = B |
L& ciForthDuino\eforth_7\eforth 7.uvprojx - pVision 'ﬁ\"

File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

Nedaé s ;| \ | m | == /= | ® unock [
2RI ‘|§5’|Targe11 Eg’:\|t¢@
Project LA [#] stm32eForth720.s v x
=i Target 1 L 7 STM32eForth version 7.20 o
£-£5 Source Group 1 ; Chen-Hanson Ting, July 2014 E |

- [#] stm32eForth720.s) . o
Subroutine Threa

— o . NTRT T S PR
Elproject | {3 Functions| Dy Templat.| || « [] S
Build Output T
Rebuild target 'Target 1' R

assembling stm32eForth720.s...

stm32eForth720.8(226) : warning: Al1479W: Requested alignment 64 is greater than area alignn
linking...

Program Size: Code=8528 RC-data=0 RW-data=0 ZI-data=0

".\eforchﬁ?.axf" — 0 Error{sz), 1 Warning(s).

4 i | 3

Target stopped. ULINKZ

stm32eforth720.s is assembled and linked, andathef7.hex file and an eforth_7.Ist are also cikate
for you to inspect.

Selectbebug>Start/Stop Debug Session

Dismiss the warning bowvision warning: Evaluation Mode, Running with code size limit
32K.

21

(pVision &J‘

A EVALUATION MODE
=% Running with Code Size Limit: 32K

d

Eforth_7.axf is downloaded into the flash memoryg®M32F407 chip, and the Debugger is ready to
single step through the eForth code, or to rubfialispeed.

Click Debug>Run, and stm32eforth720 signs up on HyperTerminal.

i cyrombunovton Aeor e wor e T Y B N WS X

Fle Edit View Project Flash Debug Peripherals Tools SVCS Window Help
== i @l | | ® | == /= 15| @ untock e e|@ & &7 %
el vro o+ EREeEzA-D3-8-2- @8- %

Registers 2 @ Disassembly 2 B UsArTL 2@
Register [Valve T=] BEset Bandlar: =]
e = FoooFEic BL.W 08000044 =
e 0%0800000C FOO1FB86 BL.W 0%0800171C = property
R 0000000 0x08000010 FOOOFS02 BL.W ox02000018 E
R1 000000000 0%08000014 4818 LDR 0, [pc,#108] ; @0x08000084 &SR
R2 £x00000000 0x08000026 4700 % o | DR
R3 00000000 0505000018 FOsFE000 MOV 0,40x2000000 T
R4 000000000 0x0800001C FO4FS100 MOV r1,#0x20000000 & BRR
RS 0x00000000 0%08000020 F5013280 ADD 2,71, 40210000 & CR1
Re. mooooo i s = B =
%05 - C|
i 30000000 0x08000028 FE503504 LDR r3, [z0], £0x04 & CR3
R8 000000000 |/} oxoecoo02c Fee13m04 STR ¥3, [r1],£0x04 -
R9 0x00000000 <l 5 GTeR
R10 000000000 o
R B %
R12
RI3(SP) 0x10000400 =
Ri4(LR) OFFFFFFFF =
RIS(PC) 0x08000008 v <
el Project | =X Registers [v
Comman d 2
Load "C:\\ForthDuino\\eforth_7\\eforch_7.axt" - -
- - Address: [0X0Fd80 ‘:‘
Loh S a7el 1 - E =
TSRl = i FE FF FF FF FF FF IF FF FY [T FF FF [T FF FF IF FF FF T FF FF FT FF
& 73 FE EE EF FF FE ¥F F¥ PF EY FY PP FE EF FF PY YF FF PP FY FF EF FY FE
i FE FF ¥ FF FF FY FF F¥ FY FF F¥ FF FF FF FF FF FF FF FT FF FF FF FF
. FF FF FF FF FF FY FF FF FY FF FF FF FF FF FF FF FF FF FF 7F 00 00 00
i 7F 00 00 00 7F 00 00 00 20 00 G0 00 OD 0O 00 G0 D3 15 00 00 DS 13 00
§ i 00 F4 FD 00 08 Fg FD G0 00 00 0 00 00 54 55 52 4E 43 52 59 6E 61 T4
ASSIGN BreakDisabl lc Break¥ill BreakList BreakSet Breakhocess COVERAGE L LR RNPEEn NNl B

2.6 Set up HyperTerminal

Stm32eforth720 uses USART1 to communication witkreninal. On STM32F407VG, USART1 can be
configured to use either Pins PA9-10 or PB6-7 fanmunication. Since the micro USB on CN5 is
using PA9-10 pins, | use PB6-7 for eForth. | anmgis separate Windows XP PC to run HyperTerminal
through a USB to serial converter, which happersetan Arduino Uno Kit. Arduino Uno Kit has a
integrated USB to serial converter connecting then&ga328P chip to the host PC. To use its USB to
serial converter, | remove the ATmega328P chip,amhect the PB6 (TX) on Discovery to D1 port on
Arduino, the PB7 (RX) on Discovery to DO port ordéimo. A ground wire connects the ground pins
on both boards.

22

HyperTerminal on PC is configured for 115200 bdudtart bit, 8 data bits, 1 stop bit, no parity,floov
control. The USART1 on STM32F407 is configuredikany. STM32F407 is clocked by its high
speed internal clock HSI at 16 MHz on reset. StheeHSI is factory trimmed to 1% accuracy, it is
adequate to provide reliable communication on USART

The default settings are COM1, 2400 baud, etc. héae to set the HyperTerminal to the terminal mode
at 115200 baud, 8 data bits, 1 stop bit, and nibypafirst put it offline by clicking thédlang-up icon,

and pull down thé&ile menu and seleroperties option. Then you will see a property selection
window. Go through the selection window and mdiegroper selections to get the console window
like what was shown above.

Press the RESET bottom on STM32F4Discovery andeHgyminal should display the following
message:

stm32eForth v7.20

“& 57600 - HyperTerminal E‘E‘E‘

Elle Edit View Cal TIransfer Help

0= & LB &

ok ~

stm3ZeForth v7.20

Connected 00:00:16 WT100 115200 8-N-1 CAPS

23

PressEnter key and eForth will echok messages. Type an eForth commaf@RD®llowed by a
Enter , and you will see the following console display:

‘& 57600 - HyperTerminal

Ele Edt Yew cCall Transfer Help
O&F & & 085

ok Lo

stm3ZeForth +7.20

ok

ok
WORD S

COLD HI WORDS DECOMEILE SEE .ID *NAME .8 DUMF VARIABLE CREATE CONSTANT IMMEDIAT
E :] ; OVERT $CCMPILE ?UNIQUE ." $" ABORT" WHILE ELSE AFT THEN REPEAT AHEAD IF
AGATN UNTIL NEXIT BEGIN FOR LITERAL COMPILE [COMPILE] , ALLOT " TURNKEY I. ERASE_
SECTOR QUIT PRESET EVAL ?8TACK .OK [SINTERPRET ABORT QUERY ACCEPT NAME? SAME? N
AME> TOKEM WORD CHAR % (.{ PARSE ? . U. U.R .R CR TYPE SPACES SPACE KEY NUMBER?
DIGIT? DECIMAL HEX #» SIGN #3 # HOLD <# EXTRACT DIGIT PACKF FILL MOVE CMOVE EEX
ECUTE TIE PAD HERE PICK DEPTH »>CHAR ALIGNED */ */MOD / MOD /MOD M/MOD UM/MOD WIT
HIN LAST CP CONTEXT HLD "EVAL #TIE >IN SPAN BASE 'BOOT DNEGATE COUNT 2@ Z! +! MT
N MaY > < U< = ABES NEGATE NOT D+ ZDUF ZDROP ROT ?DUP 2/ Z* CELL/ CELLE BL CELL-
CELL+ Z- 2+ 1- 1+ M* UM* * - + LEHIFT REHIFT UM+ XOR OR AND 0< OVER SWAP DUP DRO
P 8P@ >R R@ R> C@ Cl @ | EXIT EXECUTE NOP EMIT ?KEY ok

ok

€|

Connected 00:01:01 ¥T100 115200 8-N-1 CAPS

HyperTerminal is thus the host environment for ¢fand you can type in Forth commands and
execute them.

2.7 Return to Debugger

While eForth is running, you can stop it and retiarthe debugger in pVision5. Click the pVision5
window to bring it to focus. Pull down tli#ebug menu and sele&top and STM32F4 stops running
eForth system. Now the pVision5 window changesotoething like this:

I CyForthDuino\eforth_7eforth_7.uvprojx - pVision
Flle Edit View Project

Flash Debug Peripherals Tools SVCS Window Help

T W el el

Eda @ | | | IE Il | @ unLock R e
; Je @ e @ o
Registers o Disassembly o [USARTL 7@
T Reset_H .
e s & F
208 o %080017 =
RO £x00000000 FOO0OF802 Ox08000018 Propert, Yale
R1 £x00000000 4818 0, (b, #1081 ; @0x08000084 B SR)
R2 000000000 4700 0 = DR 0
R3 000000000 FO4F6000 £0,#0%8000000
e GOonn FosFsz00 =1, $0x20000000 = BRR [
s 0x00000000 F5013280 2,11, $0%10000 & CR1 0
e Gdonoa00 4291 1,2 = 5
BF3C cc L
B (30000000 F8503804 =3, [20], #0204 - CR3 0
R8 000000000 _| F8413B04 3, [x1],#0x04 -
R9 0x00000000 £ & GIPR 0
R10 000000000
R11 v x
R12
R13(SP) (10000400 1
R14(LR) DxFFFFFFFF i ’
RIS(PC) 0:08000008 ~| 3 =
= S Registers o I »

Command 2 Memory 1 a3
Load "C:\\ForthDuino\\efoxth_ 7\\efoxth 7.axf" - -
= = Address: [0X0Fd80 m
wrw r n with 32768 = —
e e e e ‘=| 0x0000FD20: FF EF FF FE EF FF ¥ FF F¥ FF FE FF FF FF FF FF FF FF FF FF FF FF FF
¥ HAsARrieE (260 — |0x0000FDS7: FE FF FF FF EF FE EF EF FF FF FF EF FF FF FF FF FF FF EF FF EF FF FF
Ox0000FDAE: FF FF FF FF EF FF FF FF FF FF FE FF FF FF FF FF FF FF FF FF FF FF FF
4 } 0x0000FDC5: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF 7F 00 00 00
= 0x0000FDDC: 7E 00 00 00 7F 00 00 00 20 00 00 00 0D 00 00 00 DS 15 00 00 D 15 00

0x0000FDES :
: 65 73 20 T4 68

ASSIGN BreakDisable BreakEnable SreakKill BreakList BreakSet SreakAccess COVERAGE

00 F4 FD 00 02 Fg FD 00 00 00 00 00 00 54 55 52 4E 4B 52 50 6E 61 74

69 73 20 64 65 66 63 6E 63 T4 63 6F 6E 20 61 6E 64 20

ST-Link Debugger

Now you can inspect the Cortex M4 registers, tisasembled program, and memory contents. You

t1: 0.00000000 sec L2C33 CAP NUM SCRL OVR R/W

24

can single-step through the machine instructionase clear break points.
2.8 Firmware Engineering

pVision5 is a very sophisticated program developgreerironment for STM32F4. Why do you need
Forth?

pVision5 is very good to develop applications. Heer, applications in embedded systems are only
parts in a system which must be able to initiaiize hardware on power up and drop into the apjdicat
code correctly. It has to respond to real timegli and act appropriately. What Forth bringssrai
complete operating system which can interact with. yTo be able to interact with a human being
requires a large number of commands or libraryinest which are just as useful in real time
applications. The system is extensible in that gao add new commands to the library by combining
existing commands using very simple syntax ruléss thus very easy to build applications whiclm ca
be committed to flash memory. Using a fully debedygmbedded operating system as a platform, it is
easy to develop application on top of it. Thithis central theme of Firmware Engineering.

There are two schools of embedded systems de$igm.old school is entrenched in the mentality of 8-
bit microcontrollers with very limited resourcespecially in ROM and RAM memories. It considers
an embedded operating system unnecessary and wasta of memory. The new school is recently
liberated from memory constrains by Moore’s Lawg andeavors to shoehorn entire modern operating
systems like Windows CE and Linux into embeddedesys. | think the truth lies somewhere in
between.

Microcontroller manufacturers have struggled might give us more memory and more 10 devices
into an SOC, System On a Chip. For embeddedagtns, flash memory seemed to be more
important than RAM memory. This is understandalfilash memory is cheaper and more abundant
than RAM memory. Embedded applications do not neeanuch RAM for data storage, but they can
use lots of flash to store programs. But in Fdrttan use as much RAM as possible. It is notl motv
that we see enough RAM memory on board so Fortltopamate smoothly. STM32F4 is the first
microcontroller | used that | did not feel beingistrained by not having enough RAM memory.

Here we are. STM32F4-Discovery Kit is fast, bigdaheap. There are lots of projects that | had
thought about but could not do because of harda@mstraints. It is time to dig up these projeetasl
and start implementing them. 1 MB of flash, 192 6 5RAM, 80 GPIO pins, 14 counter-timers, etc.,
etc. Oh, boy. Where shall | start?

25

3. Stm32eforth720 Source Code

This chapter is a code walkthrough session. leading aloud the source code in the assembly file
stm32eforth720.s. | will comment on the sourceecatiile reading it from the beginning to the erid.
some resting pointing, where there is a big churdode, | will take some time to explain the infent
and the implementation of the code. | hope yolldglpatient to walk along. In the end, | hope you
will get to know this eForth system well enoughhake good use of it.

3.1 A Brief History of ARM eForth

Moore’s Law marches on, and more and more cireugscrowded into microcontrollers. In the last 15
years, | had programmed many ARM chips, and hadadhthe progress of these chips. My approach
had always been to port an eForth system ontohips @nd tried to make good use of them. Hereis a
brief history of my eForth systems evolved with &M chips.

ARMY7 eForth v1.10

In 2001, a then very young engineer, Mr. Chien-jai#Taiwan FIG, ported the original eForth model
to an ARM platform BK100PHTB from Avnet. It haday LCD screen, and was a very impressive
demo for the portability of eForth. He wrote agtetrcompiler in Win32Forth to meta-compile eForth
system.

ARM7 eForth v1.20

In 2002, | ported eForth to Nintendo’s GameBoyAdwgrwhich was a very popular platform for game
developers in Taiwan. Nintendo released very ietanformation on GBA for people to build games,
using flash memory cartridges. The ARM7TDMI chipGBA had only 32KB of RAM, no flash. It had
lots of external flash and RAM to host very substdmpplications, besides games.

ARMY7 eForth v2.01.

In 2004, | moved the eForth target compile from RB@eForth, which later evolved into F#. At that
time, | had worked on eForth2 for a while. | s\wugd to subroutine thread model, and tried to ogemi
each implementation for performance. 16-bit 8086&Falso evolved into 32-bit 386eForth v4.03.
That's when v.4 came to being.

ARM7 eForth v5.06

In late 2004, | started working on ADuC7024, arerasting ARM7 chip from Analog Devices. It had
62 KB of flash and 8 KB of RAM, and could thus stalone without external memory, or any other
support chip. | built a ForthStamp based on itisiBess failed, because | could not handle thesarf
mount packages myself, and manufacturing costsckitl Nevertheless, it was a beautiful stamp-size
computer, a very small single chip computer witls lof analog capabilities, as Analog Devices was th
master of ADC and DAC. | also moved the sourceedooim Forth meta-compiler to regular assembler,
using Keil's uVision3 for assembly, flash programgiand debugging.

ARM7 eForth v6.03

In 2008, Dave Jaffe in Silicon Valley FIG gave nme@limex Development Board with an
AT91SAM7x256 ARMY chip on it. It had a color LCupel, and | used it to build a digital storage
oscilloscope. The chip had 64 KB of flash and B5d€ RAM, and lots of 10 devices. Porting eForth

26

from the ADuC project was very easy on the samsioWB IDE platform. It was released as Sam7ef
eForth system.

STM32F4-Discovery Kit is a very nice evaluation tibfom STMicroelectronics. The

STM32F407VG chip on it has 1 MB flash, 192 KB RAMd a ton of peripheral devices. | ported
Sam7ef.s over. Since STM32F4 is no longer an ARM,Gt is not necessary to keep the name ARM in
the new eForth implementations. | planned and deteg 4 versions of eForth for this chip:

STM32eforth v7.01

optimized for performance.

The eForth dictionary resideash memory, and executes from flash memg
It was aligned to the eForth2 model, with subrcaitiad model and fully

=

Y.

STM32eforth v7.10

The eForth dictionary resideash memory. Flash memory is remapped to
virtual memory in Page 0. eForth executes fromeFamemory.

STM32eforth v7.20

turnkey system.

The eForth dictionary is stithr&td in flash memory. The dictionary is copied
from flash to RAM. RAM memory is remapped to vatumemory in Page 0.
eForth executes from Page 0 memory. Applicati@msbe easily embedded in

STM32eforth v7.30

v7.20 ported to the ForthDuin@Bb A thank-you gift to Taiwan FIG.

*k% * *kkkkkkkkkkkk *k% * *k% *k*k

STM32eForth version 7.20
Chen-Hanson Ting, July 2014

Subroutine Threaded Forth Model
Adapted to STM32F407-Discovery Board
Assembled by Keil uVision 5.10

Version 4.03

Direct Threaded Forth Model

Derived from 80386 eForth versin 4.02

and Chien-ja Wu's ARM7 eForth version 1.01

Subroutine thread (Branch-Link) model
Register assignments

IP RO ;scratch

SP R1

RP R2

UP R3

WP R4 ;scratch

TOS R5

XP R6 ;scratch

YP R7 ;scratch
All Forth words are called by

BL.W addr

All low level code words are terminaled by
BX LR (UNEXT)
All high level Forth words start with
STRFD RP!{LR} (UNEST)
All high level Forth words end with
LDRFD RP!{PC} (_UNNEST)
Top of data stack is cached in R5
USART1 at 115200 baud, 8 data bits, 1 stop bit, no parity
TX on PB6 and RX on PB7.

27

*%

Version 5.02, 09oct04cht
fOR ADuC702x from Analog Devices

Version 6.01, 10apr08cht a

Align to at91sam7x256

Tested on Olimax SAM7-EX256 Board with LCD displa
Running under uVision3 RealView from Keil

Version 7.01, 29junl4cht

Ported to STM32F407-Discovery Board, under uVisio
Aligned to eForth 2 Model

Assembled to flash memory and executed therefrom.
Version 7.10, 30junl4cht

Flash memory mapped to Page 0 where codes are exe
Version 7.20, 02jull4cht

Irreducible Complexity

Code copied from flash to RAM, RAM mapped to Page

n5.10

cuted

TURNKEY saves current application from RAM to fla sh.

3.2 Virtual Forth Machine

3.2.1 Virtual Forth Machine on STM32F4

Forth is a computer model which can be implementedny real CPU with reasonable resources. This
model is generally called a Virtual Forth Machinghe components of a Virtual Forth Machine are:
* Aset of Forth commands stored in memory as aafiatiy.
» Atext interpreter to interpret lists of Forth comnds in text form.
* Acompiler to compile lists of Forth commands itigts of tokens
* ACPU to traverse nested token lists and executih [Eommands.
* Areturn stack to traverse nested command lists.
* A parameter stack to pass parameters among commands

The following registers are used by a Virtual Fdvthchine on a Cortex M4 CPU:

Forth Register

Cortex M4 Register

Function

SP

R1

Parameter stack point

RP R2 Return stack pointer
UP R3 User area pointer
TOS R5 Top of parameter stach
LR R14 Link register

PC R15 Program counter

The Virtual Forth Machine is shown schematicallyrathe following figure:

28

Branch-Link
-

LR,
R14 "
_NEXT

_NMEST| | MERT

P .
R15 User Variahles

. =R _PUGH .
22 TOS £
Eeturn Stack Parameter Stack
ol BI [
F=, R@” | POP
A T
EP aP
R Rl

The text interpreter processes lists of Forth condrmeames in text form, delimited by white spaces.
The simple syntax is:
<namel> <name2> <name3> ... <nameN>

The Forth compiler converts lists of Forth commaadhes to lists of tokens as new commands added to
the dictionary. The syntax is:
. <new-name> <pamel> <name2> <name3> ... <name N> ;

The text interpreter processes lists of namesgxhternal representations of Forth commands. The
Virtual Forth Machine processes lists of tokens,ititernal representations of Forth commands. hFort
is LISP turned inside out.

3.2.2 Reset Vector and Reset Handler
In stm32eforth720, we do not allow interrupts, do use the interrupt stack, and do not use the.heap

So, the startup code is reduced to a single res#bor and a reset handler which initializes threuwil
Forth Machine and starts executing eForth code.

Reset_Handler | This routine is in th&Reset Vector . When STM32F407 resets or boots up, it
jumps to this routine and starts running. Thighisolutely the simplest reset handlg
to bring up an interactive operating system. lisaap the following routines:
InitDevices

UNLOCK

REMAP

COLD

%
=

*k%k *kk *k% *% *k%k *k%

; Minimal boot-up code

AREA RESET, CODE, READONLY

29

THUMB

EXPORT __Vectors ; linker needs it
EXPORT Reset_Handler ; linker needs it
; Vector Table has only Reset Vector
__Vectors DCD 0x10000400 ; Top of hardware stack i n CCM
DCD Reset_Handler ; Reset Handler
ENTRY
Reset _Handler
BL InitDevices ; RCC, GPIOs, USART1
BL UNLOCK ; unlock flash memory
BL REMAP ; remap RAM to page O
LDR RO0,=COLD-MAPOFFSET ; start Forth
BX RO
ALIGN
UNLOCK Unlock flash memory so we can write to fladt writes two specific consecutive

words into the Flash Key Registers FLASH_KEYR. UMLK will be discussed in
the Section 3.4.10 on flash memaory.

COLD eForth cold start routine now in Page O efvirtual RAM memory. It is the last
command at the very end of this assembly source io8ection 3.6.5.

COLDis the last command defined in stm32eforth720es fHowever, it is the Forth system itself, and
this whole document is trying to explain it fulfgllowing the source code. Here is a schematiwiahg
of the contents o€OLD It is enclosed in a big box, which contains alen boxQUIT, which contains
yet some smaller boxes. These boxes are Forth eodfsri will discuss later in details. There asoal
many diamond boxes representing branch structurethe middle of the diagram are two boxes
SINTERGRETand$COMPILE They are the text interpreter and command camnpirhis is the best
graphical representation of the eForth system Igba@ you. You have a bird’s eye view of eForth to
guide you through the following discussions in niendetails on how this system is constructed. You
saw the forest. Later, we will see trees, flowarg] weeds. They are all essential parts of agystem.

30

| PR e e 2 e A g R e e 1
|

$INTERPR5E

;.
[comPILE | |EXECUTE|=

Since | am on the topic @OLD | might just well show you the actual codeG®LD It first initializes

the registers R1 as SP, R2 as RP, R3 as UP and RB& Then it copies the user variables from 0xCO
to OXFF00. Then it executé to send out eForth sign-on message. Finallylg fato the text
interpreter loo@QUIT. Now, Forth is running and you can communicati withrough a terminal.

CcoLD
; Initiate Forth registers
MOVW R3,#0xFF00 ; user area
; MOVT R3,#0x2000 ;
MOV R2,R3 ; return stack
SUB R1,R2,#0x100 ; data stack
MOV R5,#0 ; tos
NOP
_NEST
CoLD1
_DOLIT
DCD UZERO-MAPOFFSET
_DOLIT
DCD UPP
_DOLIT
DCD ULAST-UZERO
BL MOVE ;initialize user area
BL PRESE :initialize stack and TIB

31

BL TBOOT

BL ATEXE ;application boot
BL OVERT
BW QUIT ;start interpretation

3.2.3 Remap RAM memory

The primary objective in stm32eForth720 is to nuiRiAM, so that new command can be added to the
dictionary freely. Once an application is completiebugged, the entire dictionary can then bedgave
into the flash memory to become a turnkey systewsuy to run at power-up. TIRREMARoutine first
copies the eForth dictionary image from flash mgntorRAM memory. Then, it remaps RAM
memory to Page 0, and starts eForth executingge Pa To remap, we simply write a 3 into the Syste
Configuration Registeé8YSCFG

Currently, stm32eforth720 uses only 64 KB of RAMmuey, and only 64KB are copied from flash to
RAM. It can be easily modified to use all 192 KBawailable RAM.

REMAP Copy eForth dictionary from flash memoryRAM. Then RAM memory is
remapped to Page O.

*k%k *kk *k% *k% *k%k *k%k

; Remap eForth to execute from RAM

; Copy eForth from flash to RAM
REMAP

mov r0,#0x8000000

mov r1,#0x20000000

add r2,r1,#0x10000
REMAP1

cmp rl, r2

Idrcc r3, [r0], #4

strcc r3, [rl], #4

bcc REMAP1

; Remap RAM to page 0
movw RO0,#0x3800 ; SYSCFG register
movt RO,#0x4001
mov R1,#3
str R1,[RO,#0] ; map RAM to page O
bx Ir
align

3.2.4 Initialize 10 Devices

Stm32eforth720 uses only USART1 for communicatand GPIOD to lit up the LEDs. However,
USART1 borrows pins PB6-7 for TX and RX; therefd®&?10B has to be initialized. All three devices
need to be clocked, and the Reset Clock ContrB&C must be initialized.

The USART1 on STM32F407 is configured to 115200dhdustart bit, 8 data bits, 1 stop bit, no parity,
no flow control. STM32F407 is clocked by a higlesg internal clock HSI at 16 MHz on reset. Since

32

this HSI is factory trimmed to 1% accuracy, it teeguate to provide reliable communication on
USARTL.

Just to make your head spin, STM32F4 has 9 16®i0Glevices, from GPIOA to GPIOI. Most of the
pins in these 10 devices have multiply functioifiey can be configures as input pins, output pins,
analog pins, or alternate function pins. UASRT&suBB6 pin in GPIOB port for TX and PB7 for RX.
These pins are initialized for alternate functidf7Afor USART1.

Wonder how 139 in USART1_BRR register sets up 10928ud for USART1? We have a 16 MHz HSI
clock. USART1 has a default divide by 16 pre-scaidich divides HSI to 1 MHz.
1000000/115200=8.680. We have an integer part ah@ a fractional part of 0.680. The fractionaitp
is stored in a 4 bit field, which has 16 divisior&680*16=10.88. The closest integer is 11 (OxBut

8 in bit 4-7, and B in bit 0-3 of the USART1_BRRji®er, and you have 0x8B. That's 139 in decimal.
Cool?

On STM32F4-Discovery Kit, there are 4 color LEDghe middle for an accelerometer demo. They are
driven by GPIOD port, on pins PD12-15. It is niodit up these LEDs when eForth is running. Hence
PD12-15 are configured as output pins, and theespanding bits in the GPIOD_ODR are set to lit up
the LEDs. This is already half of a Blinky demo.

InitDevices Initialize USART1, GPIOB and GPIODhése are the devices we use. All devices
in STM32F4 must be properly clocked. Therefore haree to initialize the Reset and
Clock Control RCC to clock USART1, GPIOB and GPIOBPIOB lends pins to
USART1, and GPIOD drives the LEDs.

*k%k *kk *k% *k% *k%k *k%

; Here are devices used by eForth

RCC EQU 0x40023800

GPIOB EQU 0x40020400

GPIOD EQU 0x40020C00

USART1 EQU 0x40011000

; Assumes system running from 16 MHz, HSI (Normal a t Reset)
; USART1 PB6 TX and PB7 RX; this works.

InitDevices
; init Reset Clock Control RCC registers
ldr r0,=RCC ; RCC
Idr rl,[r0, #0x30] ; RCC_AHB1ENR
orr rl, #OxA ; GPIOBEN+GPIODEN

str rl, [rO, #0x30]
Idr r1, [rO, #0x44] ; RCC_APB2ENR

orr rl, #0x10 ; USART1EN (1 << 4)
str rl, [rO, #0x44]
; init GPIOB

[dr r0, =GPIOB ; GPIOB

[dr r1, [rO, #0x00] ; GPIOx_MODER
orr rl, #0xA000 ; =AF Mode

str rl, [rO, #0x00]

Idr rl, [rO, #0x20] ; GPIOX_AFRL

orr rl, #0x77000000 ; =AF7 USART1
str rl, [rO, #0x20]

33

; init USART1

ldr r0, =USART1 : USART1

movw rl, #0x0200C ; enable USART

strh 1, [r0, #12] ; +12 USART_CR1 = 0x2000

movs rl, #139 ; 16MH2z/8.6875 (139, 0x8B) == 11520 0
strh rl, [rO, #8] ; +8 USART_BR

; Configure PD12-15 as output with push-pull
ldr r0, =GPIOD ; GPIOD
mov rl, #0x55000000 ; output
str rl, [rO, #0x00]
mov rl, #0xF000 ; set PD12-15, turn on LEDs
str rl, [rO, #0x14]
bx Ir
ALIGN
LTORG

3.2.5 Virtual Memory of STM32F407

STM32F407 has this memory map:

Virtual Memory 0x00000000-000FFFFF
Flash Memory 0x08000000-0807FFFF
Core Coupled Memory 0x10000000-1000FFFF
System Memory Ox1FFFO000-1FFF77FF
RAM Memory 0x20000000-2001FFFF
System and 10 Devices 0x40000000-0xFFFFFFFF

1 MB of memory space from 0 to OxFFFFF is the artmemory, which can be mapped or aliased to
Flash memory, RAM memory, or boot ROM in the Systdemory. Identical code in these physical
memories can assume logical addresses in the inesaory or Page 0 memory, and can be executed as
though it is in a Page 0 physical memory.

Mapping RAM memory to Page 0 is especially convetiier stm32eforth720, because new commands
can be easily added in the RAM memory to extendctimmand dictionary. It is possible to have

eForth in the flash memory and add new commanhkeadlash memory directly. However, it requires a
different set of memory store commands for the Rismory and for the flash memory, and the system
becomes more complicated than it should be.

eForth dictionary is initially stored in the flaslemory. Upon bootindreset Handler copies the
entire dictionary from flash memory to RAM memang;maps RAM memory to Page 0, and executes
from Page 0. The dictionary can grow at will, asvsrcommands are added to RAM memory mapped to
Page 0. When an application is complete, theesdtationary including added commands can be saved
back to the flash memory. When re-booted, the @Earth system will be activated. This way, we can
develop new application interactively in RAM memaand then save the results in flash for a final
product to be released.

All the STM32F4 transfer instructions, branchingl @onditional branching, use PC relative addressing

and are assembled correctly for physical memoryfandrtual memory. The high level branching
commands in eForth use absolute addresses. Suwedrek field addresses which link the eForth

34

commands as a linear list. These absolute addrésse to be corrected by a constant in MAPOFFSET.
If the code is executed in the physical flash memdAPOFFSET is 0. If the code is executed in the
virtual memory, MAPOFFSET must be 0x8000000. Userables stored in RAM must be so corrected
with RAMOFFSET.

Memory allocation of eForth system inside Pagedxifollows:

Memory allocation Usage

0000-0007 Reset vector
0008-00BF Reset handler and device inits
00CO0-00FF Initial user variables
0100-2127 Forth dictionary

2128- Word buffer

2178- PAD buffer

-FEOO Parameter stack

FEQO- TIB, terminal input buffer
-FFOO Return stack
FFOO-FF3F User variables

A graphical representation of the eForth memory rmahow in the following figure:
0xXFFFF

User Variables

P
0XFF00 Return Stack

+—— RP
Terminal
" =
TIE Inpu BufferR
OXFE00 Parameter Stack
lg—— SP
Text Buffer j» PAD
Word Buffer

CP

F 3

Dictionary

Kernel

Reset-Handler

Origin, 0

35

3.2.6 Constants Used by Assembler

Constant Value Function

VER 7 Major release version

EXT 2 Minor extension

RAMOFFSET| 0x20000000 For remapping. O if RAM is not remapped.
ROMOFFSET| 0x08000000 For remapping. O if flash is not remapped.
COMPO 0x40 Lexicon compile-only bit

IMEDD 0x80 Lexicon immediate bit

BASEE 16 Default radix for number conversion
BKSPP 8 Back space ASCII character

LF 10 Line feed ASCII character

CRR 13 Carriage return ASCII character

RPP OxFFO00 Top of return stack (RPO)

TIBB OxFEOQOO Terminal input buffer (TIB)

UPP OxFFOO0 Start of user area (UPO)

SPP OxFEOO Top of parameter stack (SPO)

*k%k *kk *k%

: Version control

VER EQU 0x07
EXT EQU 0x20

; Constants

;RAMOFFSET EQU
;MAPOFFSET EQU
RAMOFFSET EQU
MAPOFFSET EQU

COMPO EQU

*k% *k%k *k%k

;major release version
;minor extension

0x00000000 ;absolute

0x00000000 ;absolute
0x20000000 ;remap
0x08000000 ;remap

0x040 ;lexicon compile only

IMEDD EQU
MASKK EQU

0x080 ;lexicon immediate bit
OXOFFFFFF1F ;lexicon bit mask, allowed fo

;size of a cell

r Chineze character

CELLLEQU 4
BASEE EQU 16
VOCSSEQU 8

;default radix
;depth of vocabulary stack

BKSPPEQU 8
LF EQU 10
CRR EQU 13 ;carriage return
ERR EQU 27 ;error escape
TIC EQU 39 ;tick

;backspace
;line feed

;; Memory allocation O//code>--//--<spl//tib>--rp//u

" 0000 ;RAM memory mapped to Page 0, Reset vector
" 0008 ;init devices

" 00CO ;initial system variables

" 0100 ;Forth dictionary

" 2150 ;top of dictionary, HERE

36

ser//

2154 ;WORD buffer

FEOO ;top of data stack

FEOO ;TIB terminal input buffer
FFOO ;top of return stack

FFOO ;system variables

" 8000000 ;flash, code image

" 1000400 ;top of hardware stack for interrupts

" 20000000 ;RAM

SPP EQU 0x2000FEO00-RAMOFFSET ;top of data stack (S PO)

TIBB EQU 0x2000FEOO-RAMOFFSET ;terminal input buff er (TIB)

RPP EQU 0x2000FF00-RAMOFFSET ;top of return stack (RPO)

UPP EQU 0x2000FF00-RAMOFFSET ;start of user area (UPOQ)

DTOP EQU 0x2000FC00-RAMOFFSET ;start of usable RAM area (HERE)

3.2.7 Assembly Macros

_NEXT, _NESTand_UNNESTare collectively called the ‘inner interpreteredforth. They are the
corner stones of a Virtual Forth Machine as theytia the execution flow of Forth commands in the

Cortex M4 system.

_NEXT

Terminate a primitive command. It is likeedurn from subroutine. It assemble
aBX LR instruction, which jumps to the next command psiitio by the Link
Register LR in a token list calling this primiticemmand._NEXTthus allows
the Virtual Forth Machine to exit a primitive comnthand resume processing
the token list in a compound command which calls phimitive command.

*k%k *kk *k% *k%

*k%k *

Assemble inline direct threaded code ending.

MACRO
_NEXT ;end low level word
BX LR
MEND
_NEST Initiate a compound command. It pushes Id&ster onto the return stack, and
then starts executing the following token listhbaanch-link instructions, using
LR to scan the token list. It assembles a singd&uictionSTMFD R2!,{LR} ,
showing that Cortex M4 is a very efficient host &o¥irtual Forth Machine.
MACRO
_NEST ;start high level word
STMFD R2! {LR}
MEND
_UNNEST Terminate a compound command. It undoes whdESTaccomplished.
_UNNEST pops the top item on the return stack intoPC register.
Consequently, execution returns to the token Iigtivcalls this compound
command, briefly interrupted by calling this compdwcommand. It assembles
single Cortex M4 instructionbMFD R2!,{PC}.
MACRO

37

_UNNEST ;end high level word
LDMFD R2! {PC}
MEND

A compound eForth commands contains a tokenTigkens are in the form of branch and link
BL<addr> instructions in Cortex M4 CPU. Tokens may takeeotforms depending upon the Forth
implementation. In the original eForthl directetd model, tokens were code field addresses ofi Fort
commands. In the later eForth2 subroutine threadem tokens were subroutine call instructions. In
this stm32eforth720 implementation, tokens are ritructions.

BL instructions may call other compound instructipand the return addresses in the LR register must
be nested on the return stack. At the end of eeddganch, there is always a leave of primitive
command containing machine instructions. Nestimgjunnesting are shown in the following figure.

As shown in their macro definitionsNEXT, NESTand_UNNESTall assemble single Cortex M4
instructions, and the Virtual Forth Machine hostedVi4 is very efficient and very fast, because the

calling, returning, nesting and unnesting requegy\little resources in either memory space oflack
cycles.

_NEST Iniste
BL addr Instr
BL addr Instr
NEST BL addr
BL addr
BL addr
BL addr L
BL addr
_UNNEST
BL addr HERT
BL addr
_UNMEST BL addr
_MNEST
BL addr BL addr BL addr
BL addr
BL addr
BL addr BL addr
_UNMEST _UNNEST
BL addr
_UNMEST
Insty Instr
Vel Instr Instr
BL addr I I
BL addr nstr nstr
BL addr
_MNEXT _NEXT
BL addr
_UNNEST

Mesting of eForth Commands

Token lists in the code field of compound commaawesgenerally lists of BL instructions. However,
other structures can be embedded in token lidh& most prevalent structure is integer literalcdtrce,
which pushes a integer value on parameter stackitime. Numbers cannot be embedded in a token

38

list by themselves. They have to be enclosedimeser literal structure which begins witlBa
doLIT instructions and ends with the integer value. aero _doLIT assembles thBL doLIT
instruction. The integer value must be assembi#daDCDdirective.

_DOLIT Start a integer literal structure in a compound @mnd. It assemblesBi

doLIT instruction to begin an integer literal structuteis followed by the
value of the integer. In run timeéoLIT retrieves this integer and pushes it on
the parameter stack.

MACRO

_DOLIT ;long literals
BL DOLIT
MEND

Virtual Forth Machine has a dual stack architecanéd a parameter stack is used to handle numeric
parameters passing among nested commands. Foermdtfy, the top item of the parameter stack is
cached in R5 register, and the body of the stankaisaged by stack pointer SP in R1. The most
common stack operations are pushing R5 on therettstack, and popping the top of external stack
back into R5 register. These two operations afilael® as macrosPUSHand_POP. Actually they are
the core of the primitive Forth stack commaid$PandDROP

_PUSH Push the top item on the parameter stack, whichdbed irR5 register, on the
external parameter stack. It is used to implerd$® command, and other
commands which push new data on the parameter. stack

MACRO

_PUSH ;push R5 on data stack

STR R5,[R1,#-4]!

MEND

_POP Pop external parameter stack and copy the popeediittoR5 register, TOS. It

is used to implememROP commands, and many other commands consuming
top items on the parameter stack.

MACRO

_POP ;pop data stack to R5

LDR R5,[R1]#4

MEND

3.2.8 User Variables

In a multitasking system, many user share one GRlbéher resources in a computing system. Each
user has a private memory area to store many Vesiaecessary to run his task. The system cae lea
a task temporarily to serve other tasks, and retuthis task continuing the unfinished work, itha

task has its own copies of user variables. eFavtdel designed with multitasking in mind, and thente
user variable persisted. In a single user envientiruser variables can be called system variables.

Memory location 0xCO-OxFF is allocated for a tastiering initial values of user variables, which are
used by eForth interpreter and compiler to perfoemessary functions. This table is copied from®xC

39

to OxFFOO when eForth enters its cold start routiodD

User Variable Initial Value | Function
Address

'BOOT 0xC4 Execution vector to start applicatieomenand.

BASE 0xC8 Radix base for numeric conversion.

tmp 0xCC Scratch pad.

SPAN 0xDO0 Number of characters received ACCEPT

>IN 0xD4 Input buffer character pointer used éxtt
interpreter.

#TIB 0xD8 Number of characters in input buffer.

'TIB 0xDC Address of Terminal Input Buffer.

'EVAL OxEO Execution vector switching between
$INTERPRETand$COMPILE

HLD OxE4 Pointer to a buffer holding next digit faumeric
conversion.

CONTEXT OxES8 Vocabulary array pointing to last nafiedd in
dictionary.

CP OxEC Pointer to top of dictionary, the firstdable
flash memory location to compile new comman

DP OxFO Pointer to the first available RAM memory
location. Not used in RAM based system,

LAST OxF4 Pointer to name field of last command in

dictionary.

rhkkkkkkkhkkkhhkkhhhkkhhkkhhhkkhhkkhhhkkhhhkhhhikrrkx

*hkkkkkkkkkhkkkhkkkkkkkkk

; COLD start moves the following to USER variables.
; MUST BE IN SAME ORDER AS USER VARIABLES.

ALIGN 64 ; align to page boundary
UZERO

DCD O ;Reserved

DCD HI-MAPOFFSET ;'BOOT

DCD BASEE ;BASE

DCD O ;tmp

DCD O ;SPAN

DCD O >IN

DCD O HTIB

DCD TIBB ;TIB

DCD INTER-MAPOFFSET ;EVAL

DCD O ;HLD

DCD LASTN-MAPOFFSET ;CONTEXT

DCD CTOP-MAPOFFSET ;FLASH

DCD CTOP-MAPOFFSET ;RAM

DCD LASTN-MAPOFFSET ;LAST

DCD 0,0 ;reserved
ULAST

ALIGN

40

3.2.9 USART1 Communication

Stm32eforth720 uses USART1 to communication witkreninal. On STM32F407VG, USART1 can be
configured to use either Pins PA9-10 or PB6-7 fanmunication. Since the micro USB port CN5 on
STM32F4-Discovery Kit is using PA9-10 pins, | hawvause PB6-7 for eForth. | am using a separate
Windows XP PC to run HyperTerminal through a USBéaal converter, which happens to be an
Arduino Uno Kit. Arduino Uno Kit has an integrate$B to serial converter connecting the
STmega328P chip to a host PC. To use its USBrial ®®nverter, | remove the ATmega328P chip, and
connect the PB6 (TX) on Discovery to D1 port on @iroh, the PB7 (RX) on Discovery to DO port on
Arduino. A ground wire connects the ground pinsoth boards. My Discovery-Arduino connection is
show in the following picture:

?KEY andEMIT are the two primitive commands atm32eforth720 coamicate with a terminal. In
the?KEY code, notice the code fragment

DCD 0
_QRX DCB 4

DCB "?KEY"

ALIGN

It builds an header for the commaPidEY. All commands which are available to the userehsimilar
headers. The names of commands are linked int@arlchain to be searched by the Forth text
interpreter. There are many commands which are tesbuild the eForth system, but rarely or never
used by users. | commented out the header of teaeands to save memory space, and also hide
these command from ordinary users so they willaséttoo many embarrassing questions. The header
has a 32-bit link field and a variable length ndnakel, wherein the first byte contains the lengthe
name. The name field is zero filled to 32-bit widboundary. The code field follows the name fialsl,
shown in the following figure:

41

Link Field

ABCII ABCII ASCII Length
Mame Field ABCII ARCIT ABCII ABCII
i] 0 0 ARCII

Code Field

Structure of eForth Commands

?KEY | Examine the status register USART1_SR tafsere is a valid
character in the receiver. If a character is neabi?KEY reads the ASCI
code of the character in data register USART1_D&Rprshes it on the
parameter stack. It then pushes a true flag ototneIf no character is
received, it only pushes a false flag on the patanstack.

rhkkkkkkhhkkkhkhkkhhkkkhhkkhhhkkhhrkkhhhxkhhkkhhhkrrkx
l

; Start of Forth dictionary
; usartl

;. ?RX (--cT|F)
Return input character and true, or a false if no input.
DCD O
_QRX DCB 4
DCB "?KEY"
ALIGN

QKEY
QRX

_PUSH

ldr r4, =0x40011000 ; USART1 F2/F4

Idrh 16, [r4, #0] ; USART->SR
ands r6, #0x20 : RXE
BEQ QRX1
LDR RS5, [R4, #4]
_PUSH
MVNNE R5,#0
QRX1
MOVEQ R5,#0
_NEXT

EMIT Send a character to the transmitter. It fivaits on the transmitter buffer
empty flag in USART1_SR register. When the traii@nis ready to

42

transmit, it pops the character off the parameterksand writes it into
the transmitter data register USART1_DR. USAREhs$mits the
character.

; TX! (c-)
Send character c to the output device.

DCD _QRX-MAPOFFSET

_TXSTO DCB 4
DCB "EMIT"
ALIGN
TXSTO
EMIT
TECHO
ldr r4, =0x40011000 ; USART1 F2/F4
TX1 Idrh 16, [r4, #0] : USART->SR
ands r6, #0x80 ; TXE
beq TX1
strh 15, [r4, #4] ; USART->DR
_POP
_NEXT
ALIGN
LTORG

3.3 eForth Kernel

eForth kernel is a group of simple Forth commanbgkvare necessary to build the Forth operating
system, and also useful to you when you developicgions programs. Forth has two classes of
commands: primitive command which contains machisguctions, and compound command which
contains a token list. Simple commands are groopgether in a kernel for the convenience of
discussion. After the kernel, specialized commamrdgouped together for the text interpreter, lirort
compiler, and debugging tools.

3.3.1 Original Primitive Commands

One of the very important features of the origielabrthl model was a very small machine dependent
kernel of primitive commands. A small set of ptive commands allows eForthl to be ported to many
CPUs very conveniently. The selection of commandsis kernel is based on the criteria that they ar
very difficult if not impossible to synthesize fromther primitive commands. From this set of privet
commands, all other Forth commands are derivee pFimitive commands in the original eForthl
model are the following:

System interface: ?RX, TX!, 10

Inner interpreters: DOLIT, DOLIST, NEXT, ?2BRANCH, BRANCH, EXECUTE, EXIT
Memory access: ', @, C,C@

Return stack: RP@, RP!, R>, R@, R>

Data stack: SP@, SP!, DROP, DUP, SWAP, OVER

Logic: 0<, AND, OR, XOR

Arithmetic: UM+

43

In the current STM32eForth720 implementation, toeled and converted as many compound
commands as | can to primitive commands to impexexution speed. Since many Cortex M4
instructions match very well with many eForth compd commands, expanding the primitive
commands allows us to fully utilize the Cortex M#te.

| NOP | No operation.

* *k%k *kk *k% *k% *k%k *

The kernel

; NOP (—-w)
; Push an inline literal.

DCD _TXSTO-MAPOFFSET
_NOP DCB 3

DCB "NOP"

ALIGN
NOP

_NEXT

ALIGN

3.3.2 Integer Literals
Integer literals are by far the most numerous datacture in compound commands other than regular

branch-link tokens. Address literals are useduitdizontrol structures. String literals are used
embed text strings in compound commands.

doLIT Push the next program word onto the paranstéek as an integer literal instead of an
instruction to be executed by Cortex M4 CPU. Ibwak integers to be compiled as in-line
literals, supplying data to the parameter stackiatime. doLIT is not used by itself, but
rather compiled bYITERAL which insert88L doLIT and its associated integer into the
token list under construction.

; doLlT (--w)
Push an inline literal.

; DCD _NOP-MAPOFFSET
;,_LIT DCB COMPO+5

; DCB "doLIT"
; ALIGN
DOLIT
_PUSH
BIC LR,LR#1 ; clear b0 in LR
LDR R5,[LR],#4 ; get literal at word boundary
ORR LR,LR#1 ;aetb0in LR
_NEXT
ALIGN

EXECUTE | Pop the code field address from the parameter staglexecutes that command. This
powerful command allows you to execute any comnvalnigh is not a part of a branch-
link instruction list. Bit bO of the address mbst set to conform to THUMB?2

44

| requirement.

; EXECUTE (ca--)
Execute the word at ca.

DCD _NOP-MAPOFFSET

_EXECU DCB 7
DCB "EXECUTE"
ALIGN
EXECU
ORR R4,R5#1 : b0=1
_POP
BX R4
ALIGN

3.3.3 Loop and Branch Commands

Forth uses three different types of address Igenaéxt , ?branch andbranch are followed not by
branch-link instructions but by addresses to lacetiin a list to be executed next. These additesals
are the building blocks upon which loop structuaed branch structures are constructed. An address
literal is a branch command followed by a branctiragls which causes execution to be transferred to
that address. The branch address most often goiatslifferent location in the token list of thense
compound command.

next is compiled byNEXT. ?branch is compiled byF, WHILE andUNTIL. branch is
compiled byAFT, ELSE, REPEAT andAGAIN, as show in the next figure.

45

IF-THEN
Branch
Structure

IF-ELSE-THEN
Branch
Structure

FOR-NEXT
Loop
Structure

BEGIN-UMTIL
Loop
Strucure

BEGIN-WHILE-REFEAT
Loop
Structure

M N Nl T s eesd T
Thranch Thranch
address address FOR
Repeat clause Repeat clause 1
True clause Repeat clavse
Phranch Thranch
True clause
address address
branch doNXT
address address
_f__\ Repeat clauee 2
False clause
\‘—f__\ branch
f‘\ address
\f \._./’—\
next Terminate an indexed loop structures in a token Adoop starts with»R

which pushes a loop index on the return stack. WWiext is executed,
it decrements this loop index on the return std€kesulting index is not
negative, jump back to the address in the nextarellrepeat the loop. I
the resulting index is negative, pop the returglsta discard the index,
and exit the loop.

next (--)
Run time code for the single index loop.
:next (--) \ hilevel model

r>r>dup if 1 - >r @ >r exit then drop cell+ >r

_EXECU-MAPOFFSET

LR,[LR,#-1] ; handle bO in LR

; DCD

;_ DONXT DCB COMPO+4

; DCB "next"

; ALIGN

DONXT
LDR R4,[R2]
MOVS R4,R4
BNE NEXT1
ADD R2,R2,#4
ADD LR,LR#4
_NEXT

NEXT1 SUB R4,R4#1
STR RA4,[R2]
LDR
ORR LR,LR#1

46

_NEXT

?branch| Start a conditional branch in compound commandsun time, if TOS ig
0, branch to the address following this commandewtise, continue the
next command after the address.

; ?branch (f--)
; Branch if flag is zero.

; DCD _DONXT-MAPOFFSET
;. QBRAN DCB COMPO+7
; DCB "?branch"
; ALIGN
QBRAN
MOVS R4,R5
_POP
BNE QBRAN1
LDR LR,[LR#-1]
ORR LR,LR,#1
_NEXT
QBRAN1 ADD LR,LR#4
_NEXT

branch | Start an unconditional branch in compourdroands. In run time,
branch to the address following this command.

; branch (--)
; Branch to an inline address.

; DCD _QBRAN-MAPOFFSET

;_ BRAN DCB COMPO+6
; DCB "branch"

: ALIGN

BRAN

LDR LR,[LR#1]
ORR LR,LR#1
_NEXT

ALIGN

EXIT Terminate a compound command before reachirgend. Since it is
executed as BL EXIT command, the return address must be popped
off the return stack and then AIEXTinstruction is executed.

; EXIT ()
; Exit the currently executing command.

DCD _EXECU-MAPOFFSET

_EXITDCB 4
DCB "EXIT"
ALIGN

EXIT
_UNNEST

47

3.3.4 Memory Commands

The 4 memory commands @, !, C@, and C! accessaddtaode stored in memory. They access the
entire memory space of STM32F4, all type of menu®yices and all IO devices. Since all IO devices
are mapped in memory space, their registers caedsktand written at will. You can control STM32F4
chip interactively using these commands. Thifiésgreatest advantage stm32eForth has over other
operating system which severely restrict your actesnemory and IO devices.

You can use @ and C@ to read flash memory. Teweash memory, we have an I command which
will be discussed in Section 3.6.5 on flash memory.

! Store the 32-bit data. the second item on parameter stack, into the
address on top of the parameter stack.

I (wa--)
; Pop the data stack to memory.

DCD _EXIT-MAPOFFSET

_STORE DCB 1
DCB "I
ALIGN
STORE
LDR R4,[R1]#4
STR R4,[R5]
_POP
_NEXT
@ Read a 32-bit data stored in the addresson top of the parameter

stack. The address is a byte address pointingdcasion in memory.

@ (a--w)

Push memory location to the data stack.

DCD _STORE-MAPOFFSET

_AT DCB 1
DCB "@"
ALIGN
AT
LDR RS5,[R5]
_NEXT
C! Store an 8-bit date, the second item on parameter stack, into the

address on top of the parameter stack.

; C! (cb-)
; Pop the data stack to byte memory.

DCD _AT-MAPOFFSET

_CSTOR DCB 2
DCB "C!"
ALIGN

CSTOR

48

LDR R4,[R1]#4

STRB R4,[R5]
_POP
_NEXT
Co@ Read an 8-bit data stored in the addresson top of the parameter
stack.
, C@ (b--c)

Push byte memory location to the data stack.

DCD _CSTOR-MAPOFFSET

_CAT DCB 2
DCB "C@"
ALIGN

CAT
LDRB R5,[R5]
_NEXT

3.3.5 Return Stack

eForth system uses the return stack for two speggifiposes: to save return addresses while nest and
unnest through token lists, and to store the lodex for aFOR-NEXTloop.

Return stack is used primarily by the Virtual Foxlachine to save return addresses to be processed
later. It is also a convenient place to store tetgporarily. The return stack can thus be comsitlas
an extension of the parameter stack. Howeverpuurst be very careful in using the return stack for
temporary storage. The data pushed on the retack must be popped off befor&NNESTis
executed. Otherwise UNNESTwill get the wrong address to return to, and tystesn generally will
crash. SinceR andR>are very dangerous to use, they are designedmpile-only commands
and you can only use them in the compiling mode.

In setting up a loog;ORcompiles>R, which pushes a loop index from the parametekdtathe return
stack. Inside theOR-NEXTloop, the running index can be recalled®@ NEXTcompilesBL

next with an address aftefOR Whennext is executed, it decrements the loop index ondpeot

the return stack. If the index becomes negathe]dop is terminated; otherwiggxt jumps back to
the command aftdfOR Therefore, if you have to exitttOR-NEXTloop prematurely, you have to pop
the loop index off the return stack first. Othes®yiyou will surely crash the system because lndex

is definitely not a good address to return to.

| R> | Pop a number off the return stack and pushastihe parameter stack. |

, R> (—-w)
Pop the return stack to the data stack.

DCD _CAT-MAPOFFSET

_RFROM DCB 2
DCB "R>"
ALIGN

RFROM

49

_PUSH
LDR R5,[R2].#4
_NEXT

ALIGN

R@ Copy the top item on the return stack and pusiwesthe parameter stack
without disturbing the return stack

R@ (—-w)

; Copy top of return stack to the data stack.

DCD _RFROM-MAPOFFSET

_RAT DCB 2
DCB "R@"
ALIGN
RAT
_PUSH
LDR R5,[R2]
_NEXT
| >R | Pop a number off the parameter stack and puisheghe return stack. \
, >R (w--)

Push the data stack to the return stack.

DCD _RAT-MAPOFFSET
_TOR DCB COMPO+2

DCB ">R"

ALIGN
TOR

STR R5,[R2,#-4]!

_POP

_NEXT

ALIGN

3.3.6 Parameter Stack

The parameter stack is the central place whereuaflerical data are processed, and where parameters
are passed among commands. The stack items haeeatoanged properly so that they can be retrieved
in the Last-In-First-Out (LIFO) manner. When stéekns are out of order, they can be rearranged by
the stack command3UR SWAPOVERandDROP There are many other stack commands useful in
manipulating stack items, but these four are cansmito be the minimum set, or the classic stack
operators.

SP@ Return the depth of parameter stack. It id tesdetermine the
depth of the parameter stack, and to detect stad&rélow error
condition.

, SP@ (-—-a)

Push the current data stack pointer.

DCD _TOR-MAPOFFSET
_SPATDCB 3

50

DCB "SP@"
ALIGN

SPAT
_PUSH
MOV R5,R1
_NEXT

| DROP | Pop the parameter stack, discards the topdteitn

; DROP (w--)
; Discard top stack item.

DCD _SPAT-MAPOFFSET
_DROPDCB 4

DCB "DROP"

ALIGN
DROP

_POP

_NEXT

ALIGN

| DUP | Duplicate the top item and pushes it on thapater stack. |

; DUP (w--ww)
; Duplicate the top stack item.

DCD _DROP-MAPOFFSET
_DUPPDCB 3

DCB "DUP"

ALIGN
DUPP

_PUSH

_NEXT

ALIGN

| SWAP | Exchange the two top item on the parameteksta

; SWAP (wlw2--w2wl)
; Exchange top two stack items.

DCD _DUPP-MAPOFFSET
_SWAP DCB 4

DCB "SWAP"

ALIGN
SWAP

LDR R4,[R1]

STR R5,[R1]

MOV R5,R4

_NEXT

| OVER | Duplicates the second item and pushes it ep#tameter stack.

; OVER (wlw2--wlw2wl)
; Copy second stack item to top.

51

DCD _SWAP-MAPOFFSET
_OVERDCB 4

DCB "OVER"

ALIGN
OVER

_PUSH

LDR R5,[R1,#4]

_NEXT

3.3.7 Logic and Arithmetic Commands

The only primitive command which cares about lagiebranch . It tests the top item on the stack. If
it is zero,?branch will branch to the following address. If it istwero,?branch will ignore the
address and execute the command after the bradcbesad Thus we distinguish two logic values, zero
for false and non-zero fairue . Numbers used this way are called logic flagsciiwan be either
true orfalse . Logic flags thus cause conditional branchingantrol structures.

0< Examine the top item on the parameter stack for its negativenesa. idf
negative, return a -1 for true. rfis O or positive, return a O for false.

, 0< (n--t)
; Return true if n is negative.

DCD _OVER-MAPOFFSET
_ZLESS DCB 2

DCB "0<"

ALIGN
ZLESS

MOV R4,#0

ADD R5,R4,R5,ASR #32

_NEXT

ALIGN

AND Pop top two items on the parameter stack arsth@si their bitwise logic
AND results on the parameter stack.

; AND (ww--w)
Bitwise AND.

DCD _ZLESS-MAPOFFSET
_ANDD DCB 3

DCB "AND"

ALIGN
ANDD

LDR R4,[R1]#4

AND R5,R5,R4

_NEXT

ALIGN

OR Pop top two items on the parameter stack and pubkeditwise l0gicOR
results on the parameter stack.

; OR (ww--w)

52

Bitwise inclusive OR.

DCD _ANDD-MAPOFFSET
_ORR DCB 2

DCB "OR"

ALIGN
ORR

LDR R4,[R1]#4

ORR R5,R5R4

_NEXT

ALIGN

XOR Pop top two items on the parameter stack aistigs their bitwise logic
exclusive OR results on the parameter stack.

; XOR (ww--w)
Bitwise exclusive OR.

DCD _ORR-MAPOFFSET
_XORRDCB 3
DCB "XOR"
ALIGN
XORR
LDR R4,[R1]#4
EOR R5,R5,R4
_NEXT
ALIGN

UM+ Add top two unsigned number on the parametaksand replaces them
with the unsigned sum of these two numbers andrg oa top of the sum.
eForth does not have access to the carry flag M&F4 CPU, andJM+
preserves the carry flag to be used in double értagthmetic operations.
In stm32eforth720, most arithmetic commands aredad assembly and
UM-+is not used often.

;. UM+ (ww--wcy)
; Add two numbers, return the sum and carry flag.

DCD _XORR-MAPOFFSET

_UPLUS DCB 3
DCB "UM+"
ALIGN

UPLUS
LDR R4,[R1]
ADDS R4,R4,R5
MOV R5#0
ADC R5,R5#0
STR R4,[R1]
_NEXT

3.3.8 Extended Primitive Commands

This group of Forth commands are commonly usedriting Forth applications. In the original eForthl
Model they were coded as compound commands foalpdty. Here in STM32eForth720

53

implementations, they are coded in assembly largt@gperformance.

RSHIFT | Pop TOS# off parameter stack, and use it as a count to st@fnext itenw right by that
many bits.

; RSHIFT (w#--w)
; Right shift # bits.

DCD _UPLUS-MAPOFFSET
_RSHIFT DCB 6

DCB "RSHIFT"

ALIGN
RSHIFT

LDR R4,[R1]#4

MOV R5,R4,ASR R5

_NEXT

ALIGN

LSHIFT | Pop TOS # off parameter stack, and use it as at ¢cowhift the next itenw left by that many
bits.

LSHIFT (w#--w)
; Right shift # bits.

DCD _RSHIFT-MAPOFFSET
_LSHIFT DCB 6

DCB "LSHIFT"

ALIGN
LSHIFT

LDR R4,[R1]#4

MOV R5,R4,LSLR5

_NEXT

ALIGN

+ Add the top item on the parameter to the sectamd,iand then pops the top item off the
parameter stack.

o+ (ww--w)

; Add.

DCD _LSHIFT-MAPOFFSET
_PLUSDCB 1

DCB "+

ALIGN
PLUS

LDR R4,[R1]#4
ADD R5,R5,R4
_NEXT

- Subtract the top item on the parameter staak tite second item, and then pops the top
item off the parameter stack.

;- (ww--w)
; Subtract.

54

DCD _PLUS-MAPOFFSET
_SUBBDCB 1

DCB "

ALIGN
SUBB

LDR R4,[R1]#4

RSB R5,R5,R4

_NEXT

ALIGN

* Multiply the top item on the parameter to the®ad item, and then pops the top item off the
parameter stack.

; F (ww--w)
; Multiply.

DCD _SUBB-MAPOFFSET
_STARDCB 1

DCB ™

ALIGN
STAR

LDR R4,[R1]#4

MUL R5,R4,R5

_NEXT

ALIGN

UmM* Unsigned multiplication. Multiply the top iteran the parameter to the second item. Refurn
unsigned double integer product.

;. UM* (ww--ud)
; Unsigned multiply.

DCD _STAR-MAPOFFSET
_UMSTA DCB 3

DCB "UM*'

ALIGN
UMSTA

LDR R4,[R1]

UMULL R6,R7,R5,R4

STR R6,[R1]

MOV R5,R7

_NEXT

M* Signed multiplication. Multiply the top item alie parameter to the second item. Returp
signed double integer product.

; M* (ww--d)
; Unsigned multiply.

DCD _UMSTA-MAPOFFSET

_MSTAR DCB 2
DCB "M*"
ALIGN

MSTAR

55

LDR R4,[R1]
SMULL R6,R7,R5,R4
STR R6,[R1]

MOV R5,R7
_NEXT

| 1+ | Increment TOS by 1.

;o 1+ (w--w+1)
: Add 1.

DCD _MSTAR-MAPOFFSET
_ONEPDCB 2

DCB "1+"

ALIGN
ONEP

ADD R5,R5#1

_NEXT

ALIGN

| 1- | Decrement TOS by 1.

;o 1- (w--w-1)
; Subtract 1.

DCD _ONEP-MAPOFFSET

_ONEM DCB 2
DCB "1-"
ALIGN
ONEM
SUB R5,R5,#1
_NEXT
ALIGN
| 2+ | Increment TOS by 2
; 2+ (w--w+2)
; Add 1.
DCD _ONEM-MAPOFFSET
_TWOP DCB 2
DCB "2+"
ALIGN
TWOP
ADD R5,R5,#2
_NEXT
ALIGN
| 2- | Decrement TOS by 2.
; 2- (w--w-2)
; Subtract 2.

DCD _TWOP-MAPOFFSET
_TWOMDCB 2

56

DCB "2-"
ALIGN

TWOM
SUB R5,R5,#2
_NEXT
ALIGN

| CELL+ | Increment TOS by 4.

; CELL+ (w--w+4)

; Add 4.

DCD _TWOM-MAPOFFSET
_CELLP DCB 5

DCB "CELL+"

ALIGN
CELLP

ADD R5,R5,#4

_NEXT

ALIGN

| CELL- | Decrement TOS by 4.

; CELL- (w--w-4)
; Subtract 4.

DCD _CELLP-MAPOFFSET
_CELLM DCB 5

DCB "CELL-"

ALIGN
CELLM

SUB R5,R5#4

_NEXT

ALIGN

out space delimited strings

BL Push a blank or space character (ASCIl 32) oarpater stack. BL is often used in parsi

; BL (--32)
; Blank (ASCII space).

DCD _CELLM-MAPOFFSET
_BLANK DCB 2

DCB "BL"

ALIGN
BLANK

_PUSH

MOV R5,#32

_NEXT

ALIGN

| CELLS | Multiply TOS by 4.

; CELLS (w--w*4)
; Multiply 4.

57

DCD _BLANK-MAPOFFSET
_CELLS DCB 5

DCB "CELLS"

ALIGN
CELLS

MOV R5,R5,LSL#2

_NEXT

ALIGN

| CELL/ | Divide TOS by 4.

; CELL/ (w--w*4)
; Divide by 4.

DCD _CELLS-MAPOFFSET
_CELLSL DCB 5

DCB "CELL/"

ALIGN
CELLSL

MOV R5,R5,ASR#2

_NEXT

ALIGN

| 2% | Multiply TOS by 2.

;o 2F (w--w*2)
; Multiply 2.

DCD _CELLSL-MAPOFFSET
_TWOST DCB 2

DCB "2*"

ALIGN
TWOST

MOV R5,R5,LSL#1

_NEXT

ALIGN

| 2/ | Divide TOS by 2.

;2 (w--w/2)
; Divide by 2.

DCD _TWOST-MAPOFFSET
_TWOSL DCB 2

DCB "2/

ALIGN
TWOSL

MOV R5,R5ASR#1

_NEXT

ALIGN

| ?2DUP | Duplicate the top item on the parameter sfdtks non-zero.

; ?DUP (w--ww|0)

58

; Conditional duplicate.
DCD _TWOSL-MAPOFFSET
_QDUP DCB 4
DCB "?DUP"
ALIGN
QDUP
MOVS R4,R5
STRNE R5,[R1,#-4]!
_NEXT
ALIGN

ROT Rotate the top three items on the parameter stéok.third itemw1 is pulled out to the top.
The second item w2 is pushed down to the third,itemd the top iterw3 is pushed down
to be the second item.

; ROT (wlw2w3--w2w3wl)
; Rotate top 3 items.

DCD _QDUP-MAPOFFSET
_ROT DCB 3
DCB "ROT"
ALIGN
ROT
LDR R4,[R1]
STR R5,[R1]
LDR R5,[R1,#4]
STR R4,[R1,#4]
_NEXT
ALIGN

| 2DROP | Discard the top two items on the paramesekst

; 2DROP (wlw2--)
; Drop top 2 items.

DCD _ROT-MAPOFFSET
_DDROP DCB 5

DCB "2DROP"

ALIGN
DDROP

_POP

“POP

_NEXT

ALIGN

| 2DUP | Duplicate the top two items on the parametarks

; 2DUP (wlw2--wlw2wlw2)
; Duplicate top 2 items.

DCD _DDROP-MAPOFFSET
_DDUP DCB 4

DCB "2DUP"

ALIGN

59

DDUP
LDR R4,[R1]
STR R5,[RL#4]!
STR R4,[R1#4]!

_NEXT
| D+ | Add two double integers and return a doublegetesum.
. D+ (d1d2--d3)

; Add top 2 double numbers.

DCD _DDUP-MAPOFFSET

_DPLUS DCB 2
DCB "D+"
ALIGN

DPLUS

LDR R4,[R1]#4
LDR R6,[R1]#4
LDR R7,[R1]
ADDS R4,R4,R7
STR R4,[R1]
ADC R5,R5,R6
_NEXT

NOT Invert each individual bit in the top item dretparameter stack. It is often called 1's
complement operation.

; NOT (w--1w)
; 1"s complement.

DCD _DPLUS-MAPOFFSET
_INVER DCB 3

DCB "NOT"

ALIGN
INVER

MVN R5,R5

_NEXT

ALIGN

| NEGATE | Negate the top item on the parameter stéidk. often called 2's complement operation. |

; NEGATE (w---w)
; 2's complement.

DCD _INVER-MAPOFFSET
_NEGAT DCB 6

DCB "NEGATE"

ALIGN
NEGAT

RSB R5,R5,#0

_NEXT

ALIGN

| ABS | Replace the top item on the parameter stadk itgitabsolute value.

60

. ABS (w--|w|)
; Absolute.

DCD _NEGAT-MAPOFFSET
_ABSSDCB 3

DCB "ABS"

ALIGN
ABSS

TST R5,#0x80000000

RSBNE R5,R5,#0

_NEXT

ALIGN

= Compare top two items on the parameter stackielf are equal, replace these two items
with a true flag; otherwise, replace them with laddlag.

;= (ww--1t)
; Equal?

DCD _ABSS-MAPOFFSET
_EQUAL DCB 1

DCB "="

ALIGN
EQUAL

LDR R4,[R1]#4

CMPS R5,R4

MVNEQ R5,#0

MOVNE R5,#0

_NEXT

U< Compare two unsigned numbers on the top of #nampeter stack. If the top item is less
than the second item in unsigned comparison, reglese two items with a true flag;
otherwise, replace them with a false flag. .

;U< (ww--1t)
; Unsigned equal?

DCD _EQUAL-MAPOFFSET
_ULESS DCB 2

DCB "U<"

ALIGN
ULESS

LDR R4,[R1]#4

CMPS R4,R5

MVNCC R5,#0

MOVCS R5,#0

_NEXT

< Compare two signed numbers on the top of thenpetier stack. If the top item is less than
the second item in signed comparison, replace tiwesé@ems with a true flag; otherwise,
replace them with a false flag.

; <(ww--t)
; Less?

61

DCD _ULESS-MAPOFFSET
_LESSDCB 1

DCB <"

ALIGN
LESS

LDR R4,[R1]#4

CMPS R4,R5

MVNLT R5,#0

MOVGE R5,#0

_NEXT

> Compare two signed numbers on the top of thenpetex stack. If the top item is greater
than the second item in signed comparison, repleese two items with a true flag;
otherwise, replace them with a false flag.

;o > (ww--t)
; greater?

DCD _LESS-MAPOFFSET
_GREAT DCB 1

DCB ">"

ALIGN
GREAT

LDR R4,[R1]#4

CMPS R4,R5

MVNGT R5,#0

MOVLE R5,#0

_NEXT

MAX Retain the larger of the top two items on tle@gmeter stack. Both numbers are assumed to
be signed integers.

i MAX (ww --max)
; Leave maximum.

DCD _GREAT-MAPOFFSET
_MAX DCB 3

DCB "MAX"

ALIGN
MAX

LDR R4,[R1]#4

CMPS R4,R5

MOVGT R5,R4

_NEXT

MIN Retain the smaller of the top two items on ffa@ameter stack. Both numbers are assumed
to be signed integers.

; MIN (ww--min)
; Leave minimum.

DCD _MAX-MAPOFFSET
_MIN DCB 3

DCB "MIN"

ALIGN

62

MIN

LDR R4,[R1]#4
CMPS R4,R5
MOVLT R5,R4
_NEXT

+!

stack.

+!

(wa--)
Add to memory.

DCD _MIN-MAPOFFSET

_PSTOR DCB 2

DCB "+I"
ALIGN

PSTOR

LDR R4,[R1]#4
LDR R6,[R5]
ADD RG6,R6,R4
STR R6,[R5]
_POP

_NEXT

2!

| Store a double integerinto memory aaddr .

o 2!

(daddr--)
Store double number.

DCD _PSTOR-MAPOFFSET

_DSTOR DCB 2

DCcB "2t
ALIGN

DSTOR

LDR R4,[R1]#4
LDR R6,[R1]#4
STR R4,[R5]#4
STR R6,[R5]
_POP

_NEXT

2@

| Fetch a double integerfrom memory aaddr .

;20

_DAT

DAT

(addr--d)
Fetch double number.

DCD _DSTOR-MAPOFFSET
DCB 2

DCB "2@"

ALIGN

LDR R4,[R5,#4]
STR R4,[RL#-4]!
LDR R5,[R5]
_NEXT

63

Add the second item on the parameter statkthe cell addressed by the top item on the

ALIGN

COUNT

Fetch one byte from memory pointed to by the addrésen the top of the parameter stac
This address is incremented by 1, and the byte@ast is pushed on the stacdBROUNTs

designed to get the count byte at the beginnirgadunted string, and returns the addressg
the first byte in the string and the length of tisng. However, it is often used in a loop t(

)

of

read consecutive bytes in a byte array.

; COUNT

(b--b+lc)

Fetch length of string.

DCD _DAT-MAPOFFSET

_COUNT

DCB 5

DCB "COUNT"
ALIGN

COUNT

LDRB R4,[R5]#1

_PU

SH

MOV R5,R4
_NEXT

| DNEGATE | Negate the top two items on the parameter stack Gdsbit double intege}.

DNEGATE (d -- -d)
Negate double number.

DCD _COUNT-MAPOFFSET

_DNEGA DCB 7
DCB "DNEGATE"
ALIGN

DNEGA
LDR R4,[R1]

SUB R8,R8,R8
SUBS R4,R6,R4
SBC R5,R6,R5
STR R4,[R1]
_NEXT

doVAR

Fetch the address in LR register afterBihedoVAR instruction and pushes it on the
parameter stackBL doVAR instruction and the value after it form the coigddf of

all variable commands. The address in LR hasaWedt bit bO set as a THUMB2
instruction. This bit must be cleared to be aedraddress.

*k%k *kk *k% *k% *k%k *

; System and user variables

;. doVAR

(-a)

Run time routine for VARIABLE and CREATE.

; DCD _DNEGA-MAPOFFSET
;_DOVAR DCB COMPO+5

; DCB "doVAR"

; ALIGN

64

DOVAR
_PUSH
SUB R5,LR#1 . CLEAR BO
_UNNEST
ALIGN

doCON | Fetch a value stored after tBe doCON instruction, as pointed to by LR register,
and pushes it on the parameter sta8k.doCON instruction and the value after it
form the code field of all constant commands.

; doCON (--a)
Run time r outine for CONSTANT.

; DCD _DOVAR-MAPOFFSET
;_DOCON DCB COMPO+5
DCB "doCON"
; ALIGN
DOCON
_PUSH
LDR R5,[LR,#-1]; clear b0
_UNNEST

3.3.9 User Variables Commands

In stm32eForth720, all user variables used by ystem are merged together and are sometimes called
system variables. They are stored in a memory ateating from location OXFF00. They are initzaid

by copying a table of initial values starting allx They are variables and memory area pointers
eForth needs to manage the interpreter and compiler

The CPU register R3 is used to point to this useiable array, allowing easy and fast access tgethe
user variables.

Variable Address Function

'BOOT FFO4 Execution vector to start applicatiomenand.

BASE FFO8 Radix base for numeric conversion.

tmp FFOC Scratch pad.

SPAN FF10 Number of characters received BXPECT

>IN FF14 Input buffer character pointer useddot interpreter.

#TIB FF18 Number of characters in input buffer.

'TIB FF1C Address of Terminal Input Buffer.

'EVAL FF20 Execution vector switching betwe8iINTERPRETand
$COMPILE

HLD FF24 Pointer to a buffer holding next digit humeric
conversion.

CONTEXT | FF28 Vocabulary array pointing to last name fiedfls
dictionary.

CP FF2C Pointer to top of dictionary, the firga#able flash
memory location to compile new command

DP FF30 Pointer to the first available RAM memtorgation.

65

| LAST | FF34 | Pointer to name field of last commandiictionary.

; 'BOOT (--a)
; Applicarion.

DCD _DNEGA-MAPOFFSET
_TBOOT DCB 5

DCB "BOOT"

ALIGN
TBOOT

_PUSH

ADD R5,R3#4

_NEXT

ALIGN

; BASE (--a)
; Storage of the radix base for numeric I/0.

DCD _TBOOT-MAPOFFSET
_BASEDCB 4

DCB "BASE"

ALIGN
BASE

_PUSH

ADD R5,R3,#8

_NEXT

ALIGN

; tmp (-a)
; A temporary storage location used in parse and fi nd.

; DCD _BASE-MAPOFFSET
. TEMP DCB COMPO+3
; DCB "tmp"
; ALIGN
TEMP
_PUSH
ADD R5,R3#12
_NEXT
ALIGN

; SPAN (--a)
; Hold character count received by EXPECT.

DCD _BASE-MAPOFFSET
_SPANDCB 4

DCB "SPAN"

ALIGN
SPAN

_PUSH

ADD R5,R3,#16

_NEXT

ALIGN

: >IN (-a)
; Hold the character pointer while parsing input st ream.

66

DCD _SPAN-MAPOFFSET
_INN DCB 3

DCB ">IN"

ALIGN
INN

_PUSH

ADD R5,R3,#20

_NEXT

ALIGN

. #TIB (-a)
; Hold the current count and address of the termina

DCD _INN-MAPOFFSET
_NTIBDCB 4

DCB "#TIB"

ALIGN
NTIB

_PUSH

ADD R5,R3,#24

_NEXT

ALIGN

; 'EVAL (--a)
; Execution vector of EVAL.

DCD _NTIB-MAPOFFSET
_TEVAL DCB 5

DCB "EVAL"

ALIGN
TEVAL

_PUSH

ADD R5,R3#32

_NEXT

ALIGN

; HLD (—-a)
; Hold a pointer in building a numeric output strin

DCD _TEVAL-MAPOFFSET
_HLD DCB 3

DCB "HLD"

ALIGN
HLD

_PUSH

ADD R5,R3,#36

_NEXT

ALIGN

; CONTEXT (--a)
; A area to specify vocabulary search order.

DCD _HLD-MAPOFFSET

_CNTXT DCB 7
DCB "CONTEXT"
ALIGN

67

| input buffer.

CNTXT
CRRNT
_PUSH
ADD R5,R3,#40
_NEXT
ALIGN

, CP (-a)
; Point to top name in vocabulary.

DCD _CNTXT-MAPOFFSET
_CP DCB 2

DCB "CP"

ALIGN
CPP

_PUSH

ADD R5,R3,#44

_NEXT

ALIGN

; LAST (—-a)
; Point to the last name in the name dictionary.

DCD _CP-MAPOFFSET
_LASTDCB 4

DCB "LAST"

ALIGN
LAST

_PUSH

ADD R5,R3#52

_NEXT

ALIGN

3.3.10 Common Functions

These commands are coded as compound command.c@iieyn logic structures which are difficult

to express in assembly code.

WITHIN Check whether the third itemon the parameter stack is within the range asfguetby

the top two numbers on the parameter stack. Tingers inclusive as to the lower limit
ul and exclusive to the upper linuh. If the third item is within range, a true flag i
returned on the parameter stack, replacing alethieans. Otherwise, a false flag is
returned. All numbers are assumed to be sighegdens.

rhkkkkkkhhkkkhkhkkhhkkkhhkkhhhkkhhhkhhhxkhhhkhhhikrrkx
l

; Common functions

; WITHIN (uuluh--t)
; Return true if u is within the range of ul and uh

DCD _LAST-MAPOFFSET
_WITHI DCB 6

DCB "WITHIN"

ALIGN

68

*hkkkkkkkkkhkkkhkkkhkkkkkx

WITHI

_NEST

BL OVER
BL SUBB
BL TOR
BL SUBB
BL RFROM
BL ULESS
_UNNEST

UM/MOD Divide an unsigned double integaitl-udh by an unsigned single integer It returns
an unsigned remaindar and an unsigned quotiem on the parameter stack.
Division is carried out similar to long hand divisi

: Divide

; UM/MOD (udludhu--uruq)
; Unsigned divide of a double by a single. Return m od and quotient.

DCD _WITHI-MAPOFFSET

_UMMOD DCB 6
DCB "UM/MOD"
ALIGN
UMMOD
MOV R7#1
LDR R4,[R1]#4
LDR R6,[R1]
UMMODO ADDS R6,R6,R6

ADCS R4,R4,R4
BCC UMMOD1
SUB R4,R4,R5
ADD R6,R6,#1
B UMMOD2
UMMOD1 SUBS R4,R4,R5

ADDCS R6,R6,#1
BCS UMMOD2
ADD R4,R4,R5

UMMOD?2 ADDS R7,R7,R7
BCC UMMODO
MOV R5,R6
STR R4,[R1]
_NEXT
ALIGN
M/MOD Divide a signed double integdrby a signed single integar It returns signed

remainder and signed quotiermt on the parameter stack. The signed division is
floored towards negative infinity.

; MIMOD (dn--rq)
; Signed floored divide of double by single. Return mod and quotient.

DCD _UMMOD-MAPOFFSET

_MSMOD DCB 5
DCB "M/MOD"
ALIGN

69

MSMOD

_NEST
BL DUPP
BL ZLESS
BL DUPP
BL TOR
BL QBRAN
DCD MMOD1-MAPOFFSET
BL NEGAT
BL TOR
BL DNEGA
BL RFROM
MMOD1 BL TOR
BL DUPP
BL ZLESS
BL QBRAN
DCD MMOD2-MAPOFFSET
BL RAT
BL PLUS

MMOD2 BL RFROM
BL UMMOD

BL RFROM
BL QBRAN
DCD MMOD3-MAPOFFSET
BL SWAP
BL NEGAT
BL SWAP
MMOD3
_UNNEST
/MOD Divide a signed single integer by a signeeger. It replaces these two items with

signed remainder and quotient.

; IMOD (nn--rq)
; Signed divide. Return mod and quotient.

DCD _MSMOD-MAPOFFSET

_SLMOD DCB 4
DCB "/MOD"
ALIGN

SLMOD
_NEST
BL OVER
BL ZLESS
BL SWAP
BL MSMOD
_UNNEST

MOD Divide a signed single integer by a signeegatr. It replaces these two items with a

signed remainder.

; MOD (nn--r)
; Signed divide. Return mod only.

DCD _SLMOD-MAPOFFSET
_MODD DCB 3

70

DCB "MOD"
ALIGN

MODD
_NEST
BL SLMOD
BL DROP
_UNNEST

/ Divide a signed single integer by a signed iatedt replaces these two items with a
signed quotient.

;I (nn--q)
; Signed divide. Return quotient only.

DCD _MODD-MAPOFFSET

_SLASH DCB 1
DCB "I
ALIGN

SLASH
_NEST
BL SLMOD
BL SWAP
BL DROP
_UNNEST

3.3.11 Scaling, Multiply-Divide

*IMOD Multiply the signed integensl andn2, and then divides the double integer product by
n3. Itin factis scalingnl byn2/n3 . It returns both the remainder and the quotient.
The intermediate product is kept as double inteaysd, scaling has minimal round off
error. This scaling operation allows high preasiateger arithmetic operations
equivalent to floating point operations.

; *MOD (n1ln2n3--rq)

; Multiply n1 and n2, then divide by n3. Return mod and quotient.
DCD _SLASH-MAPOFFSET
_SSMOD DCB 5
DCB "*/MOD"
ALIGN
SSMOD
_NEST
BL TOR
BL MSTAR
BL RFROM
BL MSMOD
_UNNEST
*/ Multiply the signed integensl andn2, and then divides the double integer product by
n3. It returns only the quotient. Scaling byn2/n3 .
;¥ (nln2n3--q)
Multiply n1 by n2, then divide by n3. Return quot ient only.

71

DCD _SSMOD-MAPOFFSET

_STASL DCB 2
DCB ™"
ALIGN

STASL
_NEST
BL SSMOD
BL SWAP
BL DROP
_UNNEST

3.3.12 Miscellaneous Commands

ALIGNED | Modify the byte address on top of the parameterkssa that it points to the next 32-bit
word boundary.

rhkkkkkkkkhkkkhhkkhhkhkkhhkkhhhkkhhkkhhhkxkhhhkhhhikrrkx *k% *k*k
l

: Miscellaneous

; ALIGNED (b --a)
; Align address to the cell boundary.

DCD _STASL-MAPOFFSET

_ALGND DCB 7
DCB "ALIGNED"
ALIGN

ALGND
ADD R5,R5#3
MVN R4#3
AND R5,R5,R4
_NEXT
ALIGN

>CHAR | Convert a non-printable character to a hassiunderscore character(ASCII 95). As
stm32eForth is designed to communicate with a teahthrough a serial 1/0 device, it is
important that stm32eForth will not emit controbcaicters to the host and thereby cause
unexpected behavior on the terminal. >CHAR thliisré the characters before they are
sent out by EMIT.

; >CHAR (c--c)
; Filter non-printing characters.

DCD _ALGND-MAPOFFSET
_TCHAR DCB 5

DCB ">CHAR"

ALIGN
TCHAR

_NEST

_DOLIT

DCD Ox7F

BL ANDD

BL DUPP ;mask msb

BL BLANK

_DOLIT

DCD 127

72

BL WITHI ;check for printable

BL INVER

BL QBRAN

DCD TCHA1-MAPOFFSET

BL DROP

_DOLIT

DCD ' ' ;replace non-printables
TCHA1

_UNNEST

| DEPTH | Push the number of items currently on thampater stack to the top of the stack.

; DEPTH (--n)
; Return the depth of the data stack.

DCD _TCHAR-MAPOFFSET
_DEPTH DCB 5
DCB "DEPTH"
ALIGN
DEPTH
_PUSH
MOVW R5,#0XFEQO
MOVT R5,#0X2000
SUB R5,R5,R1
ASR R5,R5#2
SUB R5,R5#1
_NEXT
ALIGN

PICK Pop the numbet¥n off the parameter stack and replaces it with ttreitem on the
parameter stack. The number is 0-based; i.e., the top item is number 0, the item is
number 1, etc. Therefor@,PICK is equivalent tddUR andl PICK is equivalent to
OVER

; PICK (.. tn--.. W)
; Copy the nth stack item to tos.

DCD _DEPTH-MAPOFFSET

_PICK DCB 4
DCB "PICK"
ALIGN

PICK
_NEST
BL ONEP
BL CELLS
BL SPAT
BL PLUS
BL AT
_UNNEST

3.3.13 Memory Array Commands

A memory array is generally specified by its stagtaddress and its length in bytes. In a couimtgstr
the first byte is a count byte, specifying the nemaf bytes in the following string. String litésan

73

compound commands and the name strings in the feeafleommand records are all represented by
count strings. Following commands are useful iceasing memory arrays used by eForth.

=

HERE Push the address of the first free memoryeabize eForth dictionary. The text interprete
stores aHEREa string parsed out of the Terminal Input Buffied éhen searches the
dictionary for a command with this name. The cderdiuilds a header &EREfor a new
command. It is generally referred to as the warfidn in Forth terminology.

rhkkkkkkkhkkkhhkkhhkkkhhkkhhhkkhhkkhhhkxkhhhkhhhikrrkx *hkkkkkkkkkhkkkkhkkkhkhkkkk

; Memory access

HERE (—-a)
Return the top of the code dictionary.

DCD _PICK-MAPOFFSET
_HERE DCB 4

DCB "HERE"

ALIGN
HERE

_NEST

BL CPP

BL AT

_UNNEST

PAD Push on the parameter stack the address téxhbuffer where numbers to be output are
constructed and text strings are stored temporaltlg 80 bytes abovidERE and floats
above the dictionary. It is always available wratthings temporarily. It moves when yqu
defined a new command.

The area belowADis used to build numeric strings in ASCII charast®r output to the
terminal. A numeric string is built backwards fré&tAD the least significant digit is laid
down first, and the area beldADis often referred to as number buffer.

PAD (—-a)
Return the address of a temporary buffer.

DCD _HERE-MAPOFFSET

_PAD DCB 3
DCB "PAD"
ALIGN
PAD
_NEST
BL HERE
ADD R5,R5,#80
_UNNEST
TIB Push the address of the Terminal Input Budiethe parameter stack. Terminal Input
Buffer stores a line of text from the serial I/Qirt device. Forth text interpreter ther
processes or interprets this line of text. In Raf8rth720,TIB starts at OXFEOO, at the
top of the 64 KB RAM space. It grows up from OxPEAnd the return stack grows
down from OxFF00. They generaaly do not bothehexdlher.
; TIB (—-a)

74

; Return the address of the terminal input buffer.

DCD _PAD-MAPOFFSET
_TIB DCB 3
DCB "TIB"
ALIGN
TIB
_PUSH
MOVW R5,#0xFE00
_NEXT
ALIGN

@EXECUTE | Fetch a code field address of a command whicloredtin the addresson the top of
the parameter stack, and jumps to it to execusectinmand. It is used extensively t
execute vectored commands stored in memory. Thavioer of a vectored command
can be changed dynamically at the run time.

;. @EXECUTE (a-)
; Execute vector stored in address a.

DCD _TIB-MAPOFFSET
_ATEXE DCB 8
DCB "@EXECUTE"
ALIGN
ATEXE
MOVS R4,R5
_POP
LDR R4,[R4]
BXNE R4
_NEXT
ALIGN

CMOVE | Copy a byte array from one location to arotn memory. The top three item on the
parameter stack are the source addoésshe destination addrebg, and the number of
bytes to be copied.

; CMOVE (blb2u--)
; Copy u bytes from b1l to b2.

DCD _ATEXE-MAPOFFSET

_CMOVE DCB 5
DCB "CMOVE"
ALIGN

CMOVE

LDR R6,[R1]#4
LDR R7,[R1]#4
B CMOV1
CMOVO LDRB R4,[R7],#1
STRB R4,[R6]#1
CMOV1 MOVS R5,R5
BEQ CMOV2
SUB R5,R5#1
B CMOVO
CMOV2
_POP

75

_NEXT
ALIGN

MOVE Copy a word array from one location to anotinenemory. The top three item on the
parameter stack are the source addnésshe destination addreag, and the number of
bytes to be copied. Addresses are on word boundary, and numbertesbyioved must b
divisible by 4.

112

. MOVE (ala2u-)

; Copy u words from al to a2.

DCD _CMOVE-MAPOFFSET

_MOVE DCB 4
DCB "MOVE"
ALIGN

MOVE AND R5,R5#-4
LDR R6,[R1]#4
LDR R7,[R1]#4
B MOVE1

MOVEO LDR R4,[R7].#4
STR R4,[R6]#4

MOVE1 MOVS R5,R5

BEQ MOVE2
SUB RS5,R5,#4
B MOVEO
MOVE2
_PoOP
_NEXT
ALIGN
FILL Fill a memory array with the same byte. Thp three items on the parameter stack are

the address of the arréy the length of the array in bytasand the byte value to be
filled into this arrayc.

; FILL (buc--)

; Fill u bytes of character ¢ to area beginning at

DCD _MOVE-MAPOFFSET

_FILLDCB 4
DCB "FILL"
ALIGN

FILL
LDR R6,[R1]#4
LDR R7,[R1]#4

FILLO B FILL1
MOV R5,R5

FILLL STRB R5,[R7],#1
MOVS R6,R6
BEQ FILL2
SUB R6,R6,#1
B FILLO

FILL2
_POP
_NEXT

76

PACK$ Pack a byte string at addrdssf lengthu to form a counted string at cell address
Null filled to cell boundary. This is how a nameld is constructed.

PACK$ (bua--a)
Build a counted string with u characters from b. Null fill.

DCD _FILL-MAPOFFSET

_PACKS DCB 5
DCB "PACK$$"
ALIGN

PACKS
_NEST
BL ALGND
BL DUPP
BL TOR ;strings only on cell boundary
BL OVER
BL PLUS
BL ONEP
_DOLIT
DCD OxFFFFFFFC
BL ANDD ;count mod cell
_DOLIT
DCD O
BL SWAP
BL STORE ;null fill cell
BL RAT
BL DDUP
BL CSTOR
BL ONEP ;save count
BL SWAP
BL CMOVE
BL RFROM
_UNNEST ;move string

3.4 Text Interpreter
The text interpreter is actually the Forth opeasygstem itself. It performs these tasks:

Step 1. Accept one line of text from the terminal.

Step 2. Parse out a space delimited name string.

Step 3. Search the dictionary for a command afhlaime.

Step 4. If itis a command, execute it. Go tpRe

Step 5. Ifitis not a command, convert it to antver.

Step 6. If it is a number, push it on parametacist Go to Step 8.
Step 7. If itis not a number, abort. Go backtep 1.

Step 8. If the text line is not exhausted, go Hacktep 2.

Step 9. If the text line is exhausted, go bacRtep 1.

It looks very complicated. Yes, it is complicasstd we will discuss all the supporting commands
leading to the text interpreter. But, it is an i@mg system! Have you ever read the source obda
operating system? Very few people did. Very feege wrote operating systems. Here | will show
you how to write this Forth operating system. Wk do parsing, command searching, number

77

conversion, terminal input, terminal output, comihaxecution, and everything else that’s necessary.

Need to see a flow chart? You had seen it alreftdyas in the figure o€ OLDI showed you in Section
3.2.2 on the reset handler. It was not a flow tchaw used to see, but it is a flow chart nonetgeldt
not only shows the text interpreter. It also shtivesForth compiler as well.

3.4.1 Numeric Output

Forth is interesting in its special capabilitiehendling numbers across a man-machine interfdce.
recognizes that machines and humans prefer vegrelit representations of numbers. Machines prefer
binary representation, but humans prefer decimabirrepresentation. However, depending on
circumstances, you may want numbers to be represgémbther radices, like hexadecimal, octal, and
sometimes binary.

Forth solves this problem of internal (machine)susrexternal (human) number representations by
insisting that all numbers are represented in pifaim in CPU and memory. Only when numbers are
imported or exported for human consumption are tteewerted to external ASCII representation. The
radix of the external representation is storedsier wariabl BASE You can select any reasonable radix
in BASE up to perhaps 72, limited by available printatitaracters in the ASCII character set.

The output number string is built below tRADbuffer in memory. The least significant digit is
extracted from the integer on the top of the patanstack by dividing it by the current radixBASE
The digit thus extracted is added to the outpingtoackwards fronPADto the low memory. The
conversion is terminated when the integer is didittezero. The address and length of the number
string are made available By for output.

An output number conversion is initiated ¥4 and terminated b§>. Between then¥# converts one
digit at a time#S converts all the digits, whilHOLDandSIGN inserts special characters into the string

under construction. This set of commands is vergatile and can handle many different output
formats. The following figure shows how a numbeiparameter stack is converted to an output string.

<f###45 hold #s #-

% Dictionary ‘ Waord Buffer 6|1]2 3‘. ‘4‘ 5 %

Murnber Buffer

Integer

Drata Stack

O

PaD

Output Mumber Conversion Type out to terminal

78

| DIGIT

\ Convert an integer dig to the corresponding ASCII character

*k%k *kk *%% *k% *k%k *

; Numeric output, single precision

; DIGIT (u--c)

Convert digit u to a character.

DCD _PACKS-MAPOFFSET
_DIGIT DCB 5
DCB "DIGIT"
ALIGN
DIGIT
_NEST
_DboLIT
DCD 9
BL OVER
BL LESS
AND R5,R5#7
BL PLUS
ADD R5,R5#0'
_UNNEST
EXTRACT | Extract the least significant digit from a numineon the top of the parameter stackis
divided by the radibbase and the extracted digit is converted to its ASchiaracterc
which is pushed on the top of new
; EXTRACT (nbase--nc)

DCD
_EXTRC
DCB

Extract the least significant digit from n.

_DIGIT-MAPOFFSET
DCB 7
"EXTRACT"

ALIGN

EXTRC

_NEST
_DOLIT

DCD
BL
BL
BL
BL

0
SWAP
UMMOD
SWAP
DIGIT

_UNNEST

<#

Initiate the output number conversion process birsg PADbuffer address into user
variableHLD, which points to a location the next numeric digit be stored.

DO<#

DCD
_BDIGS
DCB

()

Initiate the numeric output process.

_EXTRC-MAPOFFSET
DCB 2
n g

79

ALIGN

BDIGS
_NEST
BL PAD
BL HLD
BL STORE
_UNNEST

HOLD Append an ASCII characterwhose code is on the top of the parameter stadkgt
numeric out put string &diLD. HLDis decremented to receive the next digit.

; HOLD (c-)
; Insert a character into the numeric output string

DCD _BDIGS-MAPOFFSET

_HOLD DCB 4
DCB "HOLD"
ALIGN

HOLD
_NEST
BL HLD
BL AT
BL ONEM
BL DUPP
BL HLD
BL STORE
BL CSTOR
_UNNEST

Extract one digit from integer on the top of the parameter stack, accordingdoxia user

variableBASE and append it to output numeric string.

; # (u--u)
; Extract one digit from u and append the digit to output string.

DCD _HOLD-MAPOFFSET
_DIG DCB 1
DCB "#"
ALIGN
DIG
_NEST
BL BASE
BL AT
BL EXTRC
BL HOLD
_UNNEST

#S Extract all digits inu to output string until the integeron the top of the
parameter stack is divided to O.

; #S (u--0)
; Convert u until all digits are added to the outpu t string.

DCD _DIG-MAPOFFSET
_DIGSDCB 2

80

DCB "#S"
ALIGN
DIGS
_NEST
DIGS1 BL DIG
BL DUPP
BL QBRAN
DCD DIGS2-MAPOFFSET
B DIGS1
DIGS2
_UNNEST
ALIGN

SIGN Insert a - sign into the numeric output gtiiinthe integer on the top of the
parameter stack is negative.

; SIGN (n--)
; Add a minus sign to the numeric output string.

DCD _DIGS-MAPOFFSET
_SIGNDCB 4
DCB "SIGN"
ALIGN
SIGN
_NEST
BL ZLESS
BL QBRAN
DCD SIGN1-MAPOFFSET
_DOLIT
DCD -
BL HOLD
SIGN1
_UNNEST

#> Terminate the numeric conversion and pushes theesstdland length of
output numeric string on the parameter stack.

; #> (w--bu)
; Prepare the output string to be TYPE'd.

DCD _SIGN-MAPOFFSET

_EDIGS DCB 2
DCB "#>"
ALIGN
EDIGS
_NEST
BL DROP
BL HLD
BL AT
BL PAD
BL OVER
BL SUBB
_UNNEST
str \ Convert a signed integaron the top of the parameter stack to a numeric

81

\ output string at addresswith u digits.

; Str (n--bu)
; Convert a signed integer to a numeric string.

; DCD _EDIGS-MAPOFFSET

._STRR DCB 3
; DCB "str"
. ALIGN
STRR
_NEST
BL DUPP
BL TOR
BL ABSS
BL BDIGS
BL DIGS
BL RFROM
BL SIGN
BL EDIGS
_UNNEST
| HEX | Set numeric conversion radix to 16 for hexauet conversions.
; HEX (--)

; Use radix 16 as base for numeric conversions.

DCD _EDIGS-MAPOFFSET
_HEX DCB 3

DCB "HEX"

ALIGN
HEX

_NEST

_DOLIT

DCD 16

BL BASE

BL STORE

_UNNEST

| DECIMAL | Set numeric conversion radix to 10 for decimal eosions.

; DECIMAL (--)
; Use radix 10 as base for numeric conversions.

DCD _HEX-MAPOFFSET
_DECIM DCB 7
DCB "DECIMAL"
ALIGN
DECIM
_NEST
_DOLIT
DCD 10
BL BASE
BL STORE
_UNNEST

82

3.4.2 Numeric Input

The stm32eForth text interpreter must handle nusiogaut to the system. It parses commands out of
the input stream and executes them in sequencenWie text interpreter encounters a string whsch i
not the name of a command in the dictionary, itasss that the string must be a number and attempts
to convert the ASCII string to a number accordimghte current radix. When the text interpreter
succeeds in converting the string to a numbemtimeber is pushed on the parameter stack for future
use, if the text interpreter is in the interpretmgde. If it is in the compiling mode, the texterpreter

will compile the number to the dictionary as areg#r literal so that when the command under
construction is later executed, the integer valiebs pushed on the parameter stack.

The following figure show how a number string is1eerted to a number and pushed on the parameter
stack.

Input Stream

Tertninal Input Buffer

=
PARSE ,

% ‘ Dictionary ‘6‘1 2‘3‘. 4‘5‘ ‘ [
L
Word Buffer
Input Mumber Conversion Integer
Data Stack

If the text interpreter fails to convert the stritoga number, this is an error condition which wadluse
the text interpreter tdBORT post an error message to you, and then waitdor gext line of
commands.

DIGIT? Convert an ASCII numeric digit on the top of the parameter stack to its numeaiaes
u according to current radbxase . If conversion is successful, push a true flagvaiu.
If not successful, retura and a false flag.

*k%k *kk *k% *k% *k%k *

; Numeric input, single precision

; DIGIT? (cbase--ut)
; Convert a character to its numeric value. A flag indicates success.

DCD _DECIM-MAPOFFSET

_DIGTQ DCB 6
DCB "DIGIT?"
ALIGN

DIGTQ

83

_NEST

BL

TOR

DOLIT

DCD
BL

0
SUBB

DOLIT

DCD
BL
BL
BL
DCD

9

OVER

LESS

QBRAN
DGTQ1-MAPOFFSET

DOLIT

DCD
BL
BL

7
SUBB
DUPP

DOLIT

DCD
BL
BL
DGTQ1 BL
BL
BL

10
LESS
ORR
DUPP
RFROM
ULESS

_UNNEST

NUMBER?

digit. .

Convert a count string of ASCII numeric digits attiona to an integer. If first
character is a $, convert in hexadecimal; othervasevert using radix iBASE If first
character is a -, negate converted integer. ifiegal character is encountered, the
address of string and a false flag are pushed on the parameter stack. Successful
conversion pushes integer value aricle
very complicated because it has to handle mangréifit characters in the input numer
string. It also has to detect the error conditidren it encounters an illegal numeric

flag on the parameter stackUMBER?s

; NUMBER? (a--nT|aF)
; Convert a numberDCB to integer. Push a flag on to

DCD _DIGTQ-MAPOFFSET
_NUMBQ DCB 7
DCB "NUMBER?"
ALIGN
NUMBQ
_NEST
BL BASE
BL AT
BL TOR
_DOLIT
DCD 0
BL OVER
BL COUNT
BL OVER
BL CAT
_DOLIT
pcp
BL EQUAL
BL QBRAN

84

c

DCD

NUMQ1-MAPOFFSET

BL HEX
BL SWAP
BL ONEP
BL SWAP
BL ONEM
NUMQ1 BL OVER
BL CAT
_DOLIT
bcp -
BL EQUAL
BL TOR
BL SWAP
BL RAT
BL SUBB
BL SWAP
BL RAT
BL PLUS
BL QDUP
BL QBRAN
DCD NUMQ6-MAPOFFSET
BL ONEM
BL TOR
NUMQ2 BL DUPP
BL TOR
BL CAT
BL BASE
BL AT
BL DIGTQ
BL QBRAN
DCD NUMQ4-MAPOFFSET
BL SWAP
BL BASE
BL AT
BL STAR
BL PLUS
BL RFROM
BL ONEP
BL DONXT
DCD NUMQ2-MAPOFFSET
BL RAT
BL SWAP
BL DROP
BL QBRAN
DCD NUMQ3-MAPOFFSET
BL NEGAT
NUMQ3 BL SWAP
BW NUMQ5
NUMQ4 BL RFROM
BL RFROM
BL DDROP
BL DDROP
_DOLIT
DCD O
NUMQ5 BL DUPP
NUMQ6 BL RFROM
BL DDROP

85

BL RFROM

BL BASE
BL STORE
_UNNEST

3.4.3 Terminal Output

| KEY [Execute?KEY continually until a valid character is receivedidhe charactes is returned|
Basic I/0
;. KEY (--¢)

; Wait for and return an input character.

DCD _NUMBQ-MAPOFFSET
_KEY DCB 3

DCB "KEY"

ALIGN
KEY

_NEST
KEY1 ~ BL QRX

BL QBRAN

DCD KEY1-MAPOFFSET

_UNNEST

| SPACE | Output a blank (space) character, ASCII 32.

; SPACE (--)
; Send the blank character to the output device.

DCD _KEY-MAPOFFSET
_SPACE DCB 5

DCB "SPACE"

ALIGN
SPACE

_NEST

BL BLANK

BL EMIT

_UNNEST

\ SPACES \ Output+n blank (space) characters.

; SPACES (+n--)
; Send n spaces to the output device.

DCD _SPACE-MAPOFFSET
_SPACS DCB 6

DCB "SPACES"

ALIGN
SPACS

_NEST

“DOLIT

DCD 0

BL MAX

86

BL TOR
BW CHAR2

CHAR1 BL SPACE

CHAR2 BL DONXT
DCD CHAR1-MAPOFFSET
_UNNEST

TYPE | Outputu characters from a string at memory locationThe second item on the parameter
stackb is the address of the string array, and the lemgliytesu is on the top of the
parameter stackT YPEis safe, because all non-printable characters@reerted to a
harmless underscore character.

;. TYPE (bu--)
; Output u characters from b.

DCD _SPACS-MAPOFFSET
_TYPEE DCB 4
DCB "TYPE"
ALIGN
TYPEE
_NEST
BL TOR
BW TYPE2
TYPEL BL COUNT
BL TCHAR
BL EMIT
TYPE2 BL DONXT
DCD TYPE1-MAPOFFSET

BL DROP
_UNNEST
| CR | Output a carriage-return and a line-feed, AGIand 10.
; CR (-)

; Output a carriage return and a line feed.

DCD _TYPEE-MAPOFFSET

_CR DCB 2
DCB "CR"
ALIGN

CR
_NEST
_DOLIT
DCD CRR
BL EMIT
_DOLIT
DCD LF
BL EMIT
_UNNEST

3.4.4 String Literals

String literals are data structures compiled in poonmd command, in-line with other tokens, literal
structures, and control structures. A string &itenust start with a string token which knows how t

87

handle the following string at run time. Here awe examples of string literals:

DXXX ... $" Acompiled string” ... ;
tyyy"Anoutput string” ... ;

In compound commanxkx, $" is an immediate command which compiles the follaystring as a
string literal preceded by a special tolh . When$"| is executed at run time, it returns the address

of this string on the parameter stack.yyy, ." compiles a string literal preceded by another
token."| , which prints the compiled string to the outputide at run time.
do$ Push the address of a string literal on tmarpater stack. It is called by a string

token like$"| or."| , which precede their respective strings in memory.

Therefore, the second item on the return stackipdinthis string. This address is
pushed on the parameter stack. This second itetimeoreturn stack must be
modified so that it will point to the next tokertefthe string literal. This way. the
token after the string literal will be executedipghing over the string literal. Both
$'| and."| use this commandio$, which retrieve the addresasof the counted
string.

; do $ (-a)
; Return the address of a compiled string.

; DCD _CR-MAPOFFSET
;_DOSTR DCB COMPO+3

DCB "do$$"
; ALIGN
DOSTR
_NEST
BL RFROM
BL RFROM ; b0 set
BL ONEM ; Clear b0
BL DUPP
BL COUNT ; get addr-1 count
BL PLUS
BL ALGND ; end of string
BL ONEP ; restore b0
BL TOR ; address after string
BL SWAP ; count tugged
BL TOR
_UNNEST
$| Push the addressof the following string on the parameter stacld #ren

executes the token immediately following the string

D ¥ (--a)
; Run time routine compiled by _". Return address o f a compiled string.
; DCD _DOSTR-MAPOFFSET

;_STRQP DCB COMPO+3

; DCB "$$"|"

; ALIGN

88

STRQP
_NEST

BL

DOSTR

_UNNEST ;force a call to dostr

EN

Print a string at address

$

(a--)

Run time routine of ." . Output a compiled string

DCD _STRQP-MAPOFFSET
;_DOTST

DCB COMPO+2

DCB ".$$"
ALIGN

DOTST
_NEST

BL
BL

COUNT
TYPEE

_UNNEST

Print the following string, and then executas token immediately
following the string.

()

Run time routine of ." . Output a compiled string

DCD _DOTST-MAPOFFSET

. DOTQP

DCB COMPO+3

DCB """
ALIGN

DOTQP
_NEST

BL
BL

DOSTR
DOTST

_UNNEST

Print a signed integer , the second item on the parameter stack, right-
justified in a field of © characters. ris on the top of the parameter sta

R

(n+n--)

Display an integer in a field of n columns, right justified.

DCD _CR-MAPOFFSET
_DOTR DCB 2

DCB ".R"

ALIGN

DOTR

_NEST

BL
BL
BL
BL
BL
BL
BL

TOR
STRR
RFROM
OVER
SUBB
SPACS
TYPEE

89

_UNNEST

U.R | Print an unsigned integerright-justified in a field of +n characters.
; UR (u+n--)
; Display an unsigned integer in n column, right ju stified.

DCD _DOTR-MAPOFFSET

_UDOTR DCB 3
DCB "U.R"
ALIGN
UDOTR
_NEST
BL TOR
BL BDIGS
BL DIGS
BL EDIGS
BL RFROM
BL OVER
BL SUBB
BL SPACS
BL TYPEE
_UNNEST
U. | Print an unsigned integerin free format, followed by a space.
;U (u--)

; Display an unsigned integer in free format.

DCD _UDOTR-MAPOFFSET

_UDOT DCB 2
DCB "U."
ALIGN

UDOT
_NEST
BL BDIGS
BL DIGS
BL EDIGS
BL SPACE
BL TYPEE
_UNNEST

| Print a signed integer in free format, followed by a space.

;oo (w-)

Display an integer in free format, preceeded by a space.

DCD _UDOT-MAPOFFSET
_DOT DCB 1

DCB "

ALIGN
DOT

_NEST

BL BASE

BL AT

_DOLIT

90

DCD 10

BL XORR ;?decimal

BL QBRAN

DCD DOT1-MAPOFFSET

BL ubDOT

_UNNEST ;no,display unsigned
DOT1 BLSTRR

BL SPACE

BL TYPEE

_UNNEST ;yes, display signed

? Print signed integer stored in memaryn the top of the parameter stack,
in free format followed by a space.

; ? (a-)
; Display the contents in a memory cell.

DCD _DOT-MAPOFFSET
_QUEST DCB 1

DCB "7

ALIGN
QUEST

_NEST

BL AT

BL DOT

_UNNEST

3.4.5 Parsing

Parsing is always considered a very advanced togiomputer science. However, because Forth uses
very simple syntax rules, parsing is easy. Forgui stream consists of a list of ASCII names sapdr

by spaces and other white space characters likg ¢alriage returns, and line feeds. The textpnéter
scans the input stream, parses out names, se&imistm the dictionary, and executes them in sezpien
After a name is parsed out of the input streamtakeinterpreter will ‘interpret’ it; i.e., exeeut if it is

a valid command, compile it if the text interpreiein the compiling mode, and convert it to a nemib
the name is not a Forth command.

The case where the delimiting character is a spRSEII 32) is special, because this is when thé tex
interpreter is parsing for valid names. It thusstrekip over leading space characters. Wase is
used to compile string literals, it will use a dtiuote character (ASCII 34) as the delimitingrelater.
It the delimiting character is not spapayse starts scanning immediately, looking for the deatgd
delimiting character.

parse The elementary command to parse text. From that istpeam, which starts bl and is of
ul characters long, it parses out the first texhgtdelimited by character. It returns the
addresd?2 and lengthu2 of the string just parsed out and the differemdeetweerbl and
b2. Leading spaces are skipped over if space idehmiting character.

rhkkkkkkkhkkkhkhkkhhhkkhhkkhhhkkkhkxhhhkkhhhkhhhikrrkx *hkkkkkkkkhkkkhkkkhkkkkk
l

; Parsing

91

; parse (buc--budelta; string>)
; ScanDCB delimited by c. Return found string and i

; DCD _QUEST-MAPOFFSET

. PARS DCB 5
; DCB "parse"
; ALIGN
PARS
_NEST
BL TEMP
BL STORE
BL OVER
BL TOR
BL DUPP
BL QBRAN
DCD PARS8-MAPOFFSET
BL ONEM
BL TEMP
BL AT
BL BLANK
BL EQUAL
BL QBRAN
DCD PARS3-MAPOFFSET
BL TOR
PARS1 BL BLANK
BL OVER
BL CAT
BL SUBB
BL ZLESS
BL INVER
BL QBRAN
DCD PARS2-MAPOFFSET
BL ONEP
BL DONXT
DCD PARS1-MAPOFFSET
BL RFROM
BL DROP
_DOLIT
DCD O
BL DUPP
_UNNEST

PARS2 BL RFROM
PARS3 BL OVER

BL SWAP
BL TOR
PARS4 BL TEMP
BL AT
BL OVER
BL CAT
BL SUBB
BL TEMP
BL AT
BL BLANK
BL EQUAL
BL QBRAN
DCD PARS5-MAPOFFSET
BL ZLESS

;skip leading blanks

;scan for delimiter

92

ts offset.

PARS5 BL

QBRAN

DCD PARS6-MAPOFFSET
BL ONEP
BL DONXT
DCD PARS4-MAPOFFSET
BL DUPP
BL TOR
B PARS7
PARS6 BL RFROM
BL DROP
BL DUPP
BL ONEP
BL TOR
PARS7 BL OVER
BL SUBB
BL RFROM
BL RFROM
BL SUBB
_UNNEST
PARS8 BL OVER
BL RFROM
BL SUBB
_UNNEST
ALIGN
PARSE | Scan the input stream in the Terminal Input Buffem where>IN

points to, until the end of the buffer, for a styitkelimited by character.
It returns the address and length of the stringgzhout. PARSEcalls
parse to do the dirty work.PARSEis used to implement many
specialized parsing commands to perform differ@ansipg operations.

; PARSE (c--bu;string>)
; Scan input stream and return counted string delim ited by c.
DCD _QUEST-MAPOFFSET
_PARSE DCB 5
DCB "PARSE"
ALIGN
PARSE
_NEST
BL TOR
BL TIB
BL INN
BL AT
BL PLUS ;current input buffer pointer
BL NTIB
BL AT
BL INN
BL AT
BL SUBB ;remaining count
BL RFROM
BL PARS
BL INN
BL PSTOR
_UNNEST

93

—

Print the following string till the next) cleater. Itis used to output tex
to the serial output device.

vo(

()

; Output following string up to next) .

DCD
_DOTPR

DCB

ALIG
DOTPR

_PARSE-MAPOFFSET
DCB IMEDD+2
ll'(ll
N

_NEST
_DOLIT

DCD
BL
BL

I)l
PARSE
TYPEE

_UNNEST

Discard the following string till the next) afaater. It is used to place comments in sour
code.

()

; Ignore following string up to next) . A comment.

DCD
_PAREN
DCB

_DOTPR-MAPOFFSET
DCB IMEDD+1

o

ALIGN
PAREN NEST
_DOLIT

DCD
BL
BL

I)l
PARSE
DDROP

_UNNEST

ce

N\ | Discard all characters till end of a line. dtiised to insert comment lines in source code|

V()

; Ignore following text till the end of line.

DCD
_BKSLA
DCB

_PAREN-MAPOFFSET
DCB IMEDD+1
ll\\ll

ALIGN

BKSLA

_NEST

BL
BL
BL
BL

NTIB
AT

INN
STORE

_UNNEST

CHAR

Parse the next string out but returns onlyfits¢ character in this string. It gets an ASCII
character from the input stream.

94

;. CHAR (--¢c)
Parse next word and return its first character.

DCD _BKSLA-MAPOFFSET

_CHARDCB 4
DCB "CHAR"
ALIGN

CHAR
_NEST
BL BLANK
BL PARSE
BL DROP
BL CAT
_UNNEST

WORD Parse out the next string delimited by the ASCHrelsterc. It then copies this string as i
counted string to the word buffer on top of thetidizary and returns its addressThe
length of the string is limited to 255 characteltsis used to parse text strings in generall,

oL

;. WORD (c--a;string>)
Parse a word from input stream and copy it to cod

DCD _CHAR-MAPOFFSET

_WORDD DCB 4
DCB "WORD"
ALIGN

WORDD
_NEST
BL PARSE
BL HERE
BL CELLP
BL PACKS
_UNNEST

e dictionary.

TOKEN | Parse out the next string delimited by spawaracters. It then copies this string as a
counted string to the word buffer on top of dichoypand returns its addreags The length
of the string is limited to 31 characters. It &d to parse out names of command token

interpretation and compilation.

s for

; TOKEN (--a; string>)
; Parse a word from input stream and copy it to nam
DCD _WORDD-MAPOFFSET
_TOKEN DCB 5

DCB "TOKEN"

ALIGN
TOKEN

_NEST

BL BLANK

BL WORDD

_UNNEST

3.4.6 Dictionary Search

95

e dictionary.

In eForth, command records are linearly linked mttictionary. A command record contains three
fields: a link field holding the name field addregshe previous command record, a name field ngldi
the name as a counted string, and a code fieldig&kecutable code and data. A dictionary search
follows the linked list of records to find a comndlanith a matching name. It returns the name field
address and the code field address, if a matahursdf

The link field of the first command record in daniary contains a 0, indicating it is the end oflthked
list. Auser variabl€ONTEXTholds an address pointing to the name field ofaekecommand record.
The dictionary search starts@ONTEXTand terminates at the first matched name, oreafirtst
command record. The linking of records in dictignia show in the following figure:

r""_'“‘_‘_____r/

Free Memory

CONTEXT Last Cornrand

¥ P N

Firet Copvand

FromCONTEXTwe can locate the name field of the last comnrandrd in the dictionary. If this name
does not match the search string to be searchedanvind the link field of this record, which id#tes
less than the name field address. From this Iglld,fwe can locate the name field of the prior
command record. Compare the name with the setinly.sAnd so forth. We will either find a
command or reach the end of the linked list.

NAME> | Convert a name field addresa in a command record to the code field addoessf this
command record. Code field address is the naneedadress plus length of name plus

96

one, and aligned to the next cell boundary.

*k%k *kk *kk *k% *k%k *

; Dictionary search

;. NAME>

(na--ca)

; Return a code address given a name address.

DCD
_NAMET
DCB

_TOKEN-MAPOFFSET
DCB 5
"NAME>"

ALIGN

NAMET

_NEST

BL

COUNT

DOLIT

DCD
BL
BL
BL

Ox1F
ANDD
PLUS
ALGND

_UNNEST

SAME?

Compare two strings at addresaesndb for u words. It returns a O if two strings are
equal. It returns a positive integenifstring is greater tham string. It returns a negative
integer ifa string is less thah string.

; SAME? (aau--aaf\-0+)
; Compare u cells in two strings. Return 0 if ident ical.
DCD _NAMET-MAPOFFSET
_SAMEQ DCB 5
DCB "SAME?"
ALIGN
SAMEQ
_NEST
BL TOR
B.W SAME2
SAME1 BL OVER
BL RAT
BL CELLS
BL PLUS
BL AT ;32/16 mix-up
BL OVER
BL RAT
BL CELLS
BL PLUS
BL AT ;32/16 mix-up
BL SUBB
BL QDUP
BL QBRAN
DCD SAME2-MAPOFFSET
BL RFROM
BL DROP
_UNNEST ;strings not equal
SAME2 BL DONXT

97

DCD

SAME1-MAPOFFSET

_DOLIT
DCD O
_UNNEST ;strings equal
find Assume that a count string is at memory addaeséd the name field address of the last
command record is in address. If the string matches the name of a command the
code field addressa and the name field addrasa of the command record are returned.
the string is not a valid command, the originahsfraddress and a false flag are returned.
find runs the dictionary search very quickly becaus$esit compares the length byte and
the first 3 characters in the name field as a 8ihteger. In most cases of mismatch, this
comparison would fail and the next record can beled through the link field. If the first
characters match, then SAME? is invoked to comftereest of the name field, one cell at
time. Since both the target text string and theeé&eld are null filled to the cell boundary:.
the comparison can be performed quickly acrosemitiee name field without worrying
about the word boundaries.
; find (ana--canalaF)
; Search a vocabulary for a string. Return ca and n a if succeeded.
: DCD _SAMEQ-MAPOFFSET
._FIND DCB 4
: DCB “find"
: ALIGN
FIND
_NEST
BL SWAP :haa
BL DUPP ‘haaa
BL CAT : nha a count
BL CELLSL : na a count/4
BL TEMP
BL STORE :haa
BL DUPP rhaaa
BL AT :na a wordl
BL TOR haa
BL CELLP :naat4
BL SWAP ;at4 na
FIND1
BL DUPP ;at+4 nana
BL QBRAN
DCD FIND6-MAPOFFSET ; end of vocabulary
BL DUPP ;at+4 nana
BL AT ;a+4 na namel
_DOLIT
DCD MASKK
BL ANDD
BL RAT : a+4 na namel wordl
BL XORR ca+d na ?
BL QBRAN
DCD FIND2-MAPOFFSET
BL CELLM ca+d la
BL AT ; at+4 next_na
B.w FIND1 ; try next word
FIND2

98

f

4

BL CELLP ; at+4 nat+4
BL TEMP
BL AT : a+4 na+4 count/4
BL SAMEQ ;at+d nat+4 ?
FIND3
B.w FIND4
FIND6
BL RFROM ; a+4 0 namel -- , no match
BL DROP a+4 0
BL SWAP ;0 at+4
BL CELLM ;0a
BL SWAP ;a0
_UNNEST ; return without a match
FIND4
BL QBRAN ; a+4 nat+4
DCD FIND5-MAPOFFSET ; found a match
BL CELLM ;at+4d na
BL CELLM ;atd la
BL AT ; a+4 next_na
B.w FIND1 ; compare next name
FIND5
BL RFROM ; a+4 na+4 count/4
BL DROP :a+4 na+4
BL SWAP ; na+4 a+4
BL DROP : nat+4
BL CELLM ; na
BL DUPP ; hana
BL NAMET ; haca
BL SWAP ;cana
_UNNEST ; return with a match
ALIGN
NAME? | Search the dictionary starting at CONTEXT for a eastring at address Return the code
field addresga and name field address if a matching command is found. Otherwise,
return the original string addreasand a false flag.
; NAME? (a--canalaF)

Search all context vocabularies for a string.

DCD _SAMEQ-MAPOFFSET
_NAMEQ DCB 5

DCB "NAME?"

ALIGN
NAMEQ

_NEST

BL CNTXT

BL AT

BL FIND

_UNNEST

3.4.7 Terminal Input

The text interpreter interprets a line of text reed from an terminal and stored it in the Termilmgdut
Buffer. To process characters received from thmiteal, we need special commands to deal with
backspace character and carriage return. On tefaok, three special parameters are referenced in

99

many commanddot is the Beginning Of the Input Buffexpt is the End Of the Input Buffer, and
cur points to the current character in the input buffe

"H Process back-space character (ASCII 8). Besrahe last character previously entered, &
decrement the character pointer . If cur =bot , do nothing because you cannot back

and

beyond beginning of input buffer.

*k%k *kk *k% *k% *k%k *

; Terminal input

; "H ('bot eot cur -- bot eot cur)
; Backup the cursor by one character.

; DCD _NAMEQ-MAPOFFSET

;_BKSP DCB 2
; DCB "H"
; ALIGN
BKSP
_NEST
BL TOR
BL OVER
BL RFROM
BL SWAP
BL OVER
BL XORR
BL QBRAN
DCD BACK1-MAPOFFSET
_boLIT
DCD BKSPP
BL TECHO
; BL ATEXE
BL ONEM
BL BLANK
BL TECHO
; BL ATEXE
_boLIT
DCD BKSPP
BL TECHO
; BL ATEXE
BACK1
_UNNEST
TAP Output character to terminal, store in cur , and increment the character poirder ,

which points to the current character in the inpuffer.bot andeot are pointers pointing

to the beginning and end of the input buffer.

; TAP ('bot eot cur c -- bot eot cur)
; Accept and echo the key stroke and bump the curso r.

; DCD _BKSP-MAPOFFSET
,_TAP DCB 3

; DCB "TAP"

; ALIGN

TAP

100

_NEST

BL DUPP
BL TECHO
; BL ATEXE
BL OVER
BL CSTOR
BL ONEP
_UNNEST
KTAP Process character bot is pointing at the beginning of the input buff@ndeot is
pointing at the endcur points to the current character in the input buff@he character
is normally stored atur , which is then incremented by 1.clfis a carriage-return (ASCII
13), echo a space and mada =cur ., thus terminating the input processc lis a back-
space (ASCII 8), erase the last character and ohecreur .
; KTAP ('bot eot cur ¢ -- bot eot cur)

; Process a key stroke, CR or backspace.

; DCD _TAP-MAPOFFSET
;_KTAP DCB 4
; DCB "KTAP"
; ALIGN
KTAP
TTAP
_NEST
BL DUPP
_DboLIT
DCD CRR
BL XORR
BL QBRAN
DCD KTAP2-MAPOFFSET
_boLIT
DCD BKSPP
BL XORR
BL QBRAN
DCD KTAP1-MAPOFFSET
BL BLANK
BL TAP
_UNNEST
DCD O ;patch
KTAP1 BL BKSP
_UNNEST
KTAP2 BL DROP
BL SWAP
BL DROP
BL DUPP
_UNNEST
ACCEPT | Acceptu characters into an input buffer starting at adgloe®r until a carriage return

(ASCII 13) is encountered. The valuewfeturned is the actual number of characters

received.

ACCEPT (bu--bu)
Accept characters to input buffer. Return with ac

101

tual count.

DCD

_NAMEQ-MAPOFFSET

_ACCEP DCB 6
DCB "ACCEPT"
ALIGN
ACCEP
_NEST
BL OVER
BL PLUS
BL OVER
ACCP1 BL DDUP
BL XORR
BL QBRAN
DCD ACCP4-MAPOFFSET
BL KEY
BL DUPP
BL BLANK
_boLIT
DCD 127
BL WITHI
BL QBRAN
DCD ACCP2-MAPOFFSET
BL TAP
B ACCP3
ACCP2 BL KTAP
; BL ATEXE
ACCP3
B ACCP1
ACCP4 BL DROP
BL OVER
BL SUBB
_UNNEST
QUERY | Accept up to 80 characters from the inpwicketo the Terminal Input Buffer. It also
prepares the Terminal Input Buffer for parsing biting#TIB to the length of the input
text stream, and clearimgN so it points to the beginning of the Terminal IhBuffer.
; QUERY (--)

; Accept input stream to terminal input buffer.

DCD
_QUERY
DCB

_ACCEP-MAPOFFSET
DCB 5
"QUERY"

ALIGN

QUERY

_NEST

BL

TIB

DOLIT

DCD
BL
BL
BL
BL

80
ACCEP
NTIB
STORE
DROP

DOLIT

DCD
BL

0
INN

102

BL STORE
_UNNEST

3.4.8 Error Handling

When the text interpreter encounters a string widalot a name and not a number, it prints out this
string followed by a ? mark as an error messadgenThe text interpreter starts over. Stacks lased
and then jump tQUIT.

ABORT Print the string in memory located at addres®llowed by a? mark and aborts. 'Abort’
means clearing the parameter stack and the retachk, @and returns to the text interprete

loop QUIT.

* *k%k

Error handling

; ABORT (a--)
; Reset data stack and jump to QUIT.

*kk *k% *k%

DCD _QUERY-MAPOFFSET
_ABORT DCB 5
DCB "ABORT"
ALIGN
ABORT
_NEST
BL SPACE
BL COUNT
BL TYPEE
_boLIT
DCD O0X3F
BL EMIT
BL CR
BL PRESE
BW QUIT
ALIGN
abort" It is compiled with an error message in a compozordmand. Wheabort" is executed
in run time, it examines the top item on the partamstack. It the flag is true, print out th
following error message arf@UIT; otherwise, skip over the error message and coatin
executing the next command.
; _abort" (f--)
; Run time routine of ABORT" . Abort with a message
; DCD _ABORT-MAPOFFSET
;_ABORQ DCB COMPO+6
; DCB "abort\""
; ALIGN
ABORQ
_NEST
BL QBRAN
DCD ABOR1-MAPOFFSET ;textflag
BL DOSTR

103

(42

BL COUNT

BL TYPEE
BL CR
BW QUIT
ABOR1 BL DOSTR
BL DROP
_UNNEST ;drop error

3.4.9 String Interpreter

Text interpreter in Forth is like a conventionakagiting system of a computer. It is the primary
interface you use to get the computer to do w&ince Forth uses very simple syntax rule--commands
are separated by spaces, the text interpretesasvalry simple. It accepts a line of text from the
terminal, parses out a name delimited by spaceatds the name in the dictionary and then exedutes
The process is repeated until the input text issagted. Then the text interpreter waits for ardihe

of text and interprets it again. This cycle repeattil you are exhausted and turns off the compute

In eForth, the text interpreter is coded in the s@ndQUIT. QUIT contains an infinite loop which
repeats th@ UERYEVAL command pairQUERYaccepts a line of text from the input terminBVAL
interprets the text one name at a time till the efithe text line.EVAL uses the command whose
address is in user variabi&VAL to process the name strinEVAL contains eitheSINTERPRET or
$COMPILE which executes or compiles the name, respectively

SINTERPRET | Execute a command whose name string is storedda¢ssh on the parameter stack.
If the string is not a valid command, convert istaumber. Failing the numeric
conversion, execut®BORTand return t@QUIT.

rhkkkkkkkhkkkhkhkkhhkkkhhkkhhhkkkhkkhhhkkhhhkhhhikrrkx *hkkkkkkkkkhkkkhkkkhhkkkkx
l

; The text interpreter

; SINTERPRET (a--)
; Interpret a word. If failed, try to convert it to an integer.

DCD _ABORT-MAPOFFSET
_INTER DCB 10

DCB "$$INTERPRET"

ALIGN
INTER

_NEST

BL NAMEQ

BL QDUP ;?defined

BL QBRAN

DCD INTE1-MAPOFFSET

BL AT

_DoLIT

DCD COMPO

BL ANDD ;?compile only lexicon bits

BL ABORQ

DCB 13

DCB " compile only"

ALIGN

BL EXECU

104

_UNNEST ;execute defined word
INTE1 BL NUMBQ

BL QBRAN
DCD INTE2-MAPOFFSET
_UNNEST
INTE2 B.W ABORT ;error
[Activate the text interpreter by storing the coddfaddress cBSINTERPRET into the
variable’'EVAL , which is executed iBEVAL while the text interpreter is in the interpretive
mode.

L)

; Start the text interpreter.

DCD _INTER-MAPOFFSET
_LBRAC DCB IMEDD+1
DCB [
ALIGN
LBRAC
_NEST
“DOLIT
DCD INTER-MAPOFFSET
BL TEVAL
BL STORE
_UNNEST

.OK Print the familiarok> prompting message after executing to the endioka The message
ok> is printed only when the text interpreter is ie thterpretive mode. While compiling,
the prompt is suppressed.

, .OK ()
; Display "ok" only while interpreting.

DCD _LBRAC-MAPOFFSET
_DOTOK DCB 3
DCB ".OK"
ALIGN
DOTOK
_NEST
“DOLIT
DCD INTER-MAPOFFSET
BL TEVAL
BL AT
BL EQUAL
BL QBRAN
DCD DOTO1-MAPOFFSET
BL DOTQP
DCB 3
DCB " ok"
ALIGN
DOTO1 BL CR
_UNNEST

| 2STACK | Check for stack underflow. Abort, resejtthe parameter stack pointer, if the stack depth

105

| is negative.

; ?STACK (--)
; Abort if the data stack underflows.

DCD _DOTOK-MAPOFFSET

_QSTAC DCB 6
DCB "?STACK"
ALIGN
QSTAC
_NEST
BL DEPTH
BL ZLESS ;check only for underflow
BL ABORQ
DCB 10
DCB " underflow"
ALIGN
_UNNEST
EVAL It is contained in the text interpreter loQUIT. It parses tokens from the input stream a

invokes whatever command VAL to process the token, either execute it with

$SINTERPRETor compile it withSCOMPILE

. EVAL (-)

Interpret the input stream.

DCD _QSTAC-MAPOFFSET

_EVALDCB 4
DCB “"EVAL"
ALIGN
EVAL
_NEST
EVAL1 BL TOKEN
BL DUPP
BL CAT ;?input stream empty
BL QBRAN
DCD EVAL2-MAPOFFSET
BL TEVAL
BL ATEXE
BL QSTAC ;evaluate input, check stack
B.W EVAL1
EVAL2 BL DROP
BL DOTOK
_UNNEST ;prompt
ALIGN

| PRESET | Reset the parameter stack pointer to itlegparameter stack.

. PRESET (-)

Reset data stack pointer and the terminal input b uffer.

DCD _EVAL-MAPOFFSET

_PRESE DCB 6

DCB "PRESET"
ALIGN

106

PRESE

_NEST
MOVW R1,#0XFE0O ; init SP
MOVT R1,#0X2000
MOVW RO,#0 ;init TOS
_UNNEST
QUIT It is the operating system, the text intetpreor a shell, of the stm32eForth system. It|s

an infinite loop eForth will never get out. It sSRUERMo0 accept a line of commands
from the input terminal and then I&¥AL to parse out tokens and execute them. After a
line is processed, it displays ak> message and wait for the next line of commands.
When an error occurred during execution, it prthesstring which caused the error as an
error message. After the error is reported, inrgalizes the system by clearing the stacks
and comes back to receive the next line of commaBégsause the behavior BYAL can
be changed by storing eitfBINTERPRETor $COMPILEinto 'EVAL , QUIT exhibits
the dual nature of a text interpreter and a compile

; QUIT (=)

Reset return stack pointer and start text interpr eter.

DCD _PRESE-MAPOFFSET
_QUIT DCB 4

DCB "QUIT"

ALIGN
QUIT

_NEST

MOVW R2,#0XFF00

MOVT R2,#0X2000

QUIT1 BL LBRAC ;start interpretation
QUIT2 BL QUERY ;get input

BL EVAL

BL BRAN

DCD QUIT2-MAPOFFSET ;continue till error

3.4.10 Flash Memory

STM32F407VG on Discovery Kit has only 1 MB of flashhat’s plenty as far as eForth is concerned.
eForth core occupies about 8-10 KB, but it canlotseof memory for applications. Flash memory is
generally difficult to use, and you have to be veayeful so that your system will not inadvertemtigss
up the flash memory and cause the system to crash.

When programming in eForth, you add new commarttdalictionary. New commands can generally
be added to the flash memory directly, if the asezrased properly. Once a command is added, you
cannot modify it. You cannot erase a command iddiadly, because flash memory must be erased in
whole sectors. One particular problem in eFortinad you cannot change a command so that it
becomes an immediate command, as the immediaitethié¢ header of a command is already cleared,
and cannot be set again. Another problem is thatery difficult to build turnkey system, becauke
table of initial values of user variables cannoupédated without erasing a whole sector wherein the
table is located.

107

Happily, STM32F4 has 192 KB of RAM memory which damused as program memory. In
stm32eforth720, eForth system is first copied fftash to RAM, and executed in RAM. In RAM
memory, eForth system can grow at will, withoutitations posed by flash memory. When an
application is completely debugged, the entire #Fgdictionary can be saved into flash memory. Your
application can start running after reset by sautsgxecution address in the user variable ‘BOOT.

In STM32F4, there is a flash memory controller, ethis just like another IO device. It is calleHldsh
Memory Interface’, and has a set of status, conamudl data registers. Following the chapter ashfla
memory in the reference manual, it is not veryidifit to program the flash memory to do what you
want it to do.

In STM32F407 chip, 1 MB of flash memory are orgadizn 12 sectors. Sectors 0-3 have 16 KB each.
Sector 4 has 64 KB. Sectors 5-11 have 128 KB e&tim32eforth720 only uses sectors 0-3.

Regular eForth memory read commands @ and C@ edrflesh memory. Memory write commands !
and C! have no effect on flash memory. | addegezial command I! to write a 32-bit word into flash
memory. While flash memory is unlocked, a 2 i®atored into the PSIZE field of FLASH_CR
register. It specifies that we will only write 3#-words into flash memory.

UNLOCK Unlock flash memory to be writable. Thisdene only once on reset. Two special
words 0x45670123 and OXCDEF89AB are written to FHABEYR register.

rhkkkkkkkhkkkhhkkhhkkkhhkkhhhkkhhkkhhhkxkhhhkhhhkrrkx *hkkkkkkkkkhkkkhkkkhhkkkk
l

; Flash memory interface

FLASH EQU 0x40023C00
FLASH_KEYR EQU 0X04
FLASH_SR EQU 0x0C
FLASH_CR EQU 0X10
FLASH_KEY1 EQU 0x45670123
FLASH_KEY2 EQU OxCDEF89AB

UNLOCK ; unlock flash memory
ldr rO, =FLASH
l[dr r4, =FLASH_KEY1
str r4, [r0, #0x4]
ldr r4, =FLASH_KEY2
str r4, [rO, #0x4]
mov r4, #0x200 ; PSIZE 32 bits
str r4, [r0, #0x10]

_NEXT
WAIT_BSY Wait until the busy flag BSY in the FLASI3R register is cleared, so that we can
start the next flash operation.
WAIT_BSY

[dr rO, =FLASH
WAIT1 Idr r4, [rO, #0x0C] ; FLASH_SR
ands r4, #0x1000 ; BSY
bne WAIT1
_NEXT

108

ALIGN

ERASE_SECTOR Erase one sector (0-11) of flash memory. stm3#8&f@0 only uses the first 4
sectors (16 KB each) of flash memory.

; ERASE_SECTOR (' sector --)
Erase one sector of flash memory. Sector=0 to 11

DCD _QUIT-MAPOFFSET

_ESECT DCB 12
DCB "ERASE_SECTOR"
ALIGN

ESECT ; sector --
_NEST
bl WAIT_BSY
Idr r4,[rO, #0x10] ; FLASH_CR
bic r4,r4,#0x78 ; clear SNB
Isl R5,R5,#3 ; align sector #
orr r4,r4,r5 ; put in sector #
orr R4,R4,#0x10000 ; set STRT bit
orr R4,R4#0x200 ; PSIZE=32
orr R4,R4.#2 ; set SER bit, enable erase
str - r4,[r0, #0x10] ; start erasing

; bl WAIT_BSY
_POP
_UNNEST

I! Write 32 bitdata into flash memory locatioaddress . Enable flash writing before
writing. Disable flash writing afterwards to protélash memory.

;o (data address --)
; Write one word into flash memory

DCD _ESECT-MAPOFFSET
_ISTOR DCB 2

pcB "I"

ALIGN

ISTOR ; data address --
_NEST
bl WAIT_BSY
Idr r4,[r0, #0x10] ; FLASH_CR

orr r4,R4#0x1 ; PG
str r4, [rO, #0x10] ; enable programming
bl STORE

bl WAIT_BSY
Idr r4,[r0, #0x10] ; FLASH_CR

bic r4,R4,#0x1 PG

str r4, [rO, #0x10] ; disable programming
_UNNEST

ALIGN

LTORG

| TURNKEY | Copy eForth dictionary from RAM to flasihe user variables are copied first from |

109

OxFFO00-0xFF3F to 0xCO0-0xFF so that the new eFagrstesn will be boot up properly
with current user variables. ‘BOOT must be inigad correctly to point to an
application command you wish to run after reset.

© TURNKEY (--)

Copy dictionary from RAM to flash.

DCD

_TURN DCB
DCB
ALIGN

TURN

_ISTOR-MAPOFFSET

7

"TURNKEY"

_NEST

DOLIT

DCD

OXFFO0

DOLIT

DCD

0xCO

DOLIT

DCD
BL

0x40
MOVE

DOLIT

DCD

0

, Save user area

; to boot array

_DOLIT
DCD 0x8000000
BL CPP
BL AT
BL CELLSL
BL TOR
TURN1BL OVER
BL AT
BL OVER
BL ISTOR
BL SWAP
BL CELLP
BL SWAP
BL CELLP
BL DONXT
DCD TURNI1-MAPOFFSET
BL DDROP
_UNNEST
ALIGN

3.5 Forth Compiler

3.5.1 Compiler Loop

The Forth compile is the twin brother of the texerpreter. They share lot of code and they reside
the same interpreter loop QUIT. Let us use theest@sk sequence in the text interpreter section to
show what the compiler does:

Step 1. Accept one line of text from the terminal.

Step 2. Parse out a space delimited name string.

Step 3. Search the dictionary for a command sflaime.

Step 4. If it is an immediate command, executé&ib to Step 9.

110

Step 5. Ifitis a command, compile it as a tok&u to Step 9.

Step 6. Ifitis not a command, convert it to anver.

Step 7. If itis a number, compile a integer Atestructure. Go to Step 9.
Step 8. Ifitis not a number, abort. Go backtep 1.

Step 9. If the text line is not exhausted, go kacstep 2.

Step 10. If the text line is exhausted, go bacRtap 1.

Compiler and interpreter are both processing alitist of names. However, interpreter is likekitadj,

a simple linear list is generally sufficient. Catepis like writing, and it can express deeply eoluted
thoughts and ideas. These ideas cannot be exgresaesingle line of names. You need a big sbéet
paper, or a file, to put them down properly. Inli&idn to compile linear lists of tokens, the Forth
compile can build complicated branch structuresplstructures, and control structures embedded in
token lists. These structures are built with thenediate commands, which are executed immediately
by the compiler. These are things we will disaasthis section.

3.5.2 Compiler Tools

Search the dictionary for the following strinlj.the string is a valid command, return its
code field addressa. If the string is not a valid command, print ithva ? mark.

ok *k% * *kkkkkkkkkkkk *k% * *k% *k*k

; The compiler

(--ca)
; Search context vocabularies for the next word in input stream.

DCD _TURN-MAPOFFSET

_TICKDCB 1
pce "™
ALIGN
TICK
_NEST
BL TOKEN
BL NAMEQ ;?defined
BL QBRAN
DCD TICK1-MAPOFFSET
_UNNEST ;yes, push code address

TICK1B.W ABORT ;no, error

ALLOT | Allocaten bytes of memory on top of the dictionary. Usenialsle CP points to the top of
dictionary. IncremenCP byn.

; ALLOT (n--)
; Allocate n bytes to the ram area.

DCD _TICK-MAPOFFSET
_ALLOT DCB 5

DCB "ALLOT"

ALIGN
ALLOT

_NEST

BL CPP

111

BL PSTOR
_UNNEST ;adjust code pointer
, (comma) | It is the most primitive compiler command. It cafap an integew to the top of

dictionary. It usually adds a new item to the graytoken list of the current command
under construction. This is the primitive compilgron which the Forth compiler rests.

sy (w=)

; Compile an integer into the code dictionary.

DCD
_COMMA
ALIGN
COMMA
_NEST
BL
BL
BL
BL
BL
BL

_ALLOT-MAPOFFSET
DCB 1,"’"

HERE

DUPP

CELLP ;cell boundary
CPP

STORE

STORE

_UNNEST ;adjust code pointer, compile

[COMPILE]

Compile the code field address of the next commiaride input stream. It is used to
compile immediate commands, which would otherwis@kecuted while compiling.

. [COMPILE]

(--; string>)

; Compile the next immediate word into code diction ary.

DCD
_BCOMP
DCB
ALIGN
BCOMP
_NEST
BL
BL

_COMMA-MAPOFFSET
DCB IMEDD+9
"[COMPILE]"

TICK
COMMA

_UNNEST

COMPILE

Compile the code field address of the remxhmand in the input stream. It forces
compilation of a command at run time.

; COMPILE (

~)

; Compile the next address in colon list to code di ctionary.

DCD
_COMPI
DCB
ALIGN
COMPI
_NEST
BL
BIC
BL
BL

_BCOMP-MAPOFFSET
DCB COMPO+7
"COMPILE"

RFROM
R5,R5,#1
DUPP
AT

112

BL CALLC ;compile BL instruction
BL CELLP

ORR R5,R5#1

BL TOR

_UNNEST ;adjust return address

LITERAL Compile an integer literal structure. It first cpiles aBL doLIT machine instruction,
followed by an integew. WhendoLIT is executed in run time, it extracts this inteiger
the next program word and pushes it on the pararatgtek.

; LITERAL (w --)
; Compile tos to code dictionary as an integer lite ral.

DCD _COMPI-MAPOFFSET
_LITER DCB IMEDD+7

DCB "LITERAL"

ALIGN
LITER

_NEST

BL COMPI

DCD DOLIT-MAPOFFSET

BL COMMA

_UNNEST

$" Compile a string literal structure. Stringttéxtaken from the input stream and terminated
by a double quote. A string token (such"as or$"|) must be compiled before the string
to initiate this sting literal structure.

R (-)
; Compile a literal string up to next " .

; DCD _LITER-MAPOFFSET
- STRCQ DCB 3

; DCB "$$,""
; ALIGN
STRCQ
_NEST
_DboLIT
DCD -4
BL CPP
BL PSTOR
_DOLIT
DCD \"
BL WORDD ;moveDCB to code dictionary
BL COUNT
BL PLUS
BL ALGND ;calculate aligned end ofDCB
BL CPP
BL STORE
_UNNEST ;adjust the code pointer

3.5.3 Structure Commands

Immediate commands are not compiled as tokensebgdmpiler. Instead, they are executed by the

113

compiler immediately. They are used to build colnstructures in the token lists of compound
commands. Immediate commands hatMISIEDIATE lexicon bit set, in the length byte of the name

field. The control structures used in eForth aeefollowing:

Conditional branch IF ... THEN

IF ... ELSE ... THEN
Finite loop FOR ... NEXT

FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN

Indefinite loop

BEGIN ... UNTIL

BEGIN ... WHILE ... REPEAT

A control structure contains one or more addressalis withBL ?branch, BL branch andBL
next tokens, which cause execution to branch out ohtivenal sequence. The control structure
commands are immediate commands which compiledtieeas literal and resolve the branch address.
These control structures are shown in the followiggre:

IF-THEM IF-ELSE-THEN FOR-MEXT BEGIN-UNTIL BEGIN-WHILE-REPEAT
Branch Branch Loop Loop Laoop
Structure Structure Structure Strucure Structure
Thranch Thranch
address address FOR.
Fepeat clause Fepeat clause 1
True clause Repeat clause
Thranch Phranch
True clause
address address
branch doNXT
address address
/\ Fepeat clause 2
False clause
f branch
f\ address

114

One should note th&EGIN andTHENdo not compile any token. They set up or resobsrol
structures in a token listF , ELSE, WHILE UNTIL, andAGAIN do compile address literals with
branching tokens.

| use two characteis andA to denote different addresses on the parametek. stapoints to a location
to where a branch commands will jump #®points to a location where a new address willtbeesl
when the address is resolved.

FOR Compile aBL TORtoken and pushes the address of the next tal@nthe parameter
stack. It starts BROR-NEXTloop.

* *k%k *kk *k% *k%

; Structures

FOR (-a)
Start a FOR-NEXT loop structure in a colon defini tion.

DCD _LITER-MAPOFFSET
_FOR DCB IMEDD+3

DCB "FOR"
ALIGN
FOR
_NEST
BL COMPI
DCD TOR-MAPOFFSET
BL HERE
_UNNEST

BEGIN Start a loop structure. It pushes an addaess the parameter stack. points to the top of
the dictionary where new tokens will be compiléfibegins an infinite loop or an
indefinite loop.

BEGIN (--a)
Start an infinite or indefinite loop structure.

DCD _FOR-MAPOFFSET
_BEGIN DCB IMEDD+5

DCB "BEGIN"

ALIGN
BEGIN

_NEST

BL HERE

_UNNEST

NEXT Compile aBL next token with a target addreason the top of the parameter stack. It
resolves &0OR NEXTloop.

i NEXT (a-)
Terminate a FOR-NEXT loop structure.

DCD _BEGIN-MAPOFFSET
_NEXT DCB IMEDD+4

115

DCB "NEXT"

AL
NEXT

_N

BL

IGN

EST
COMPI

DCD DONXT-MAPOFFSET

BL
_u

COMMA
NNEST

UNTIL

Compile aBL ?branch token with a target addreason the top of the parameter stack.
resolves BEGIN-UNTIL indefinite loop.

; UNTIL

(a--)

; Terminate a BEGIN-UNTIL indefinite loop structure

DCD _NEXT-MAPOFFSET

_UNTIL

DCB IMEDD+5

DCB "UNTIL"

AL
UNTIL

_N

BL

IGN

EST
COMPI

DCD QBRAN-MAPOFFSET

BL
v

COMMA
NNEST

AGAIN

Compile aBL branch token with a target addreason the top of the parameter stack.
resolves 8EGIN-AGAIN infinite loop.

; AGAIN

(a-)

; Terminate a BEGIN-AGAIN infinite loop structure.

DCD _UNTIL-MAPOFFSET

_AGAIN

DCB IMEDD+5

DCB "AGAIN"

AL
AGAIN

_N

BL

IGN

EST
COMPI

DCD BRAN-MAPOFFSET

BL
_u

COMMA
NNEST

Compile aBL ?branch address literal and pushes its addrasss left on the parameter
stack. It starts alF-ELSE-THEN or anlF-THEN branch structure.

;AR

(—-A)

; Begin a conditional branch structure.

DCD _AGAIN-MAPOFFSET
_IFF DCB IMEDD+2
DCB "IF"

AL
IFF
_N

IGN
EST

116

BL COMPI
DCD QBRAN-MAPOFFSET

BL HERE
_DOLIT

DCD 4

BL CPP
BL PSTOR
_UNNEST

AHEAD | Compile aBL branch address literal and pushes its next addéess the parameter
stack. It starts AHEAD-THENoranch structure.

; AHEAD (--A)
; Compile a forward branch instruction.

DCD _IFF-MAPOFFSET
_AHEAD DCB IMEDD+5

DCB "AHEAD"

ALIGN
AHEAD

_NEST

BL COMPI

DCD BRAN-MAPOFFSET

BL HERE

_DOLIT

DCD 4

BL CPP

BL PSTOR

_UNNEST

REPEAT | Compile aBL branch token with a target addreason the top of the parameter stack.
resolves the addressBE ?branch token atA left by WHILE It terminates 8EGIN-
WHILE-REPEATIndefinite loop structure.

; REPEAT (Aa--)
; Terminate a BEGIN-WHILE-REPEAT indefinite loop.

DCD _AHEAD-MAPOFFSET
_REPEA DCB IMEDD+6
DCB "REPEAT"
ALIGN

REPEA
_NEST
BL AGAIN
BL HERE
BL SWAP
BL STORE
_UNNEST

THEN Resolve the address irB& branch token whose addressAson the top of the paramete
stack. It resolves i-ELSE-TEHN orIF-THEN branch structure.

;. THEN (A--)
; Terminate a conditional branch structure.

117

-

DCD _REPEA-MAPOFFSET

_THENN DCB IMEDD+4
DCB "THEN"
ALIGN
THENN
_NEST
BL HERE
BL SWAP
BL STORE
_UNNEST
AFT Compile aBL branch literal and leaves its addressfasn stack, It also replaces the

addressa left by FORwith the addresal of the next tokenA will be used by THEN to
resolve theAFT-THEN branch structure, aradl will be used byNEXTto resolve the loop
structure.

; AFT (a—alA)
; Jump to THEN in a FOR-AFT-THEN-NEXT loop the firs t time through.

DCD _THENN-MAPOFFSET
_AFT DCB IMEDD+3
DCB "AFT"
ALIGN
AFT
_NEST
BL DROP
BL AHEAD
BL BEGIN
BL SWAP
_UNNEST

ELSE Compile aBL branch token, and use the address of the next tokerstdve the address
field of BL ?branch token ina, as left byiF . It also replacea with A, the address of it$
address field foTHENto resolve.ELSE starts the false clause in ttleELSE-THEN
branch structure.

ELSE (A--A)

; Start the false clause in an IF-ELSE-THEN structu re.
DCD _AFT-MAPOFFSET
_ELSEE DCB IMEDD+4
DCB "ELSE"
ALIGN
ELSEE
_NEST
BL AHEAD
BL SWAP
BL THENN
_UNNEST

WHILE Compile aBL ?branch token and leave its address,on the stack. Addressleft by
BEGIN is swapped to the top of the parameter stAGRILE is used to start the true clause

118

‘ in theBEGIN-WHILE-REPEAT loop.

; WHILE (a--Aa)
; Conditional branch out of a BEGIN-WHILE-REPEAT lo op.

DCD _ELSEE-MAPOFFSET
_WHILE DCB IMEDD+5

DCB "WHILE"

ALIGN
WHILE

_NEST

BL IFF

BL SWAP

_UNNEST

ABORT" | Compile an error message as a string literal stractThis error message is display at ru
time if the top item on the parameter stackug , and the rest of the tokens in this
compound command are skipped and eForth enterstérpreter loop iQUIT. This is the
programmed response to an error condition.

-

; ABORT" (--; string>)
; Conditional abort with an error message.

DCD _WHILE-MAPOFFSET
_ABRTQ DCB IMEDD+6

DCB "ABORT\"

ALIGN
ABRTQ

_NEST

BL COMPI

DCD ABORQ-MAPOFFSET

BL STRCQ

_UNNEST

174

$" Compile a string literal structure. When ieecuted in run time, only the address of the
string is pushed on the parameter stack. Latentamds can use this address to access|the
string and individual characters in the string a¢rimg array.

;3 (--; string>)
; Compile an inlineDCB literal.

DCD _ABRTQ-MAPOFFSET
_STRQ DCB IMEDD+2

DCB "$$""
ALIGN
STRQ
_NEST
BL COMPI
DCD STRQP-MAPOFFSET
BL STRCQ
_UNNEST

Compile a string literal structure which willipt a text string when it is executed in run
time. This is the best way to present messagasdnin an application.

119

Do (--; string>)

; Compile an inlineDCB literal to be typed out at r un time.
DCD _STRQ-MAPOFFSET
_DOTQ DCB IMEDD+2
pce .
ALIGN
DOTQ
_NEST
BL COMPI
DCD DOTQP-MAPOFFSET
BL STRCQ
_UNNEST

3.5.4 String Compiler

We had seen how tokens and structures are compttethe code field of a compound command in the

dictionary.

To build a new command, we have tddoiis header first. A header consists of a lirekcf

and a name field. Here are the commands to bloddhéader.

2UNIQUE

Display a warning message to show thahtdrae of a new command already exists in
dictionary. Forth does not prevent your reusirgggame name for different commands
However, giving the same name to many differentroamds often causes problems in
software projects. Itis to be avoided if possunel?UNIQUEreminds you of it.

*k%k *kk *k% *k% *k%k *

; Name compiler

; PUNIQUE (a--a)
; Display a warning message if the word already exi sts.

DCD

_UNIQU
DCB

_DOTQ-MAPOFFSET
DCB 7
"?UNIQUE"

ALIGN

UNIQU

_NEST

BL
BL
BL

DCD

BL
DCB
DCB

DUPP

NAMEQ ;?name exists
QBRAN

UNIQ1-MAPOFFSET ;redefinitions are OK
DOTQP

7

" reDef " ;but warn the user

ALIGN

BL
BL
BL
UNIQ1 BL

OVER

COUNT

TYPEE ;just in case its not planned
DROP

_UNNEST

$,n

Build a new header with a name string at memoryesttha. It first builds a link field
with an address pointing to the name field of therpcommand. At this point, the parser

120

the

had already packed the name into the name fieldveMhe dictionary pointeéCPto the end
of this name field, and the header is completee Bp of dictionary now is the code field
of the new command, and tokens can be compiled.

; $.n (na--)
; Build a new dictionary name using the data at na.

; DCD _UNIQU-MAPOFFSET
;,_SNAME DCB 3

: DCB "$$,n"
; ALIGN
SNAME
_NEST
BL DUPP ;hana
BL CAT ; ?null input
BL QBRAN
DCD SNAMI1-MAPOFFSET
BL UNIQU ;na
BL LAST ; na last
BL AT ;nala
BL COMMA ;na
BL DUPP ;hana
BL LAST : na na last
BL STORE ; ha , save na for vocabulary link
BL COUNT ; ha+1 count
BL PLUS : na+1+count
BL ALGND ; word boundary
BL CPP
BL STORE ; top of dictionary now
_UNNEST
SNAM1
BL STRQP
DCB 7,"name?"
B.W ABORT

$COMPILE | Build the token list of a new compound commandsrcode field, which is on the top o
the dictionary. It takes a string addrassn the top of the parameter stack, search
dictionary for a matching token, and appends tkertdo the token list. If the string is
not a valid command, it is converted to a numbed, @integer literal is appended to the
token list. If the string is not a number, abbi tompilation process and return to the
text interpreter loop iQUIT. If the string is the name of an immediate comanainis
command is not compiled, but executed immediatetynediate commands are tools
used by the compiler to build structures in a toks&n

14

L

; $COMPILE (a--)
; Compile next word to code dictionary as a token o r literal.

DCD _UNIQU-MAPOFFSET
_SCOMP DCB 8

DCB "$$COMPILE"

ALIGN
SCOMP

_NEST

BL NAMEQ

121

BL QDUP ;defined?

BL QBRAN

DCD SCOM2-MAPOFFSET

BL AT

_DoOLIT

DCD IMEDD

BL ANDD ;immediate?

BL QBRAN

DCD SCOM1-MAPOFFSET

BL EXECU

_UNNEST ;it's immediate, execute
SCOM1 BL CALLC ;it's not immediate, compile

_UNNEST
SCOM2 BL NUMBQ

BL QBRAN

DCD SCOM3-MAPOFFSET

BL LITER

_UNNEST ;compile number as integer
SCOM3 B.W ABORT ;error

OVERT | Link a new command to the dictionary andstmakes it available for dictionary searches.
When a new header is build, its name field addigestored in system variabléAST, and it
is not yet linked to the dictionary which startSC® NTEXT OVERT copies the name field
address iLAST to CONTEXTand links the new command to the dictionary. lissd to
protect the dictionary so that new commands notpileeh successfully will not be linked
incorrectly into the dictionary.

; OVERT (--)
; Link a new word into the current vocabulary.

DCD _SCOMP-MAPOFFSET

_OVERT DCB 5
DCB "OVERT"
ALIGN

OVERT
_NEST
BL LAST
BL AT
BL CNTXT
BL STORE
_UNNEST

; Terminate a new compound command. It compiles@RNEST machine instruction to
terminate the new token list, links this new comdhémthe dictionary, and then returns tg
interpreting mode by storing the code field addesiINTERPRET into user variable
'EVAL .

sy ()

; Terminate a colon definition.

DCD _OVERT-MAPOFFSET
_SEMIS DCB IMEDD+COMPO+1

DCB "

ALIGN

122

SEMIS
_NEST
_DOLIT
_UNNEST
BL COMMA
BL LBRAC
BL OVERT
_UNNEST

] Turn the text interpreter to a compiler by storihg code field address $COMPILEInto
user variabléEVAL ..

1 (=)

Start compiling the words in the input stream.

DCD _SEMIS-MAPOFFSET
_RBRAC DCB 1

DCB "

ALIGN
RBRAC

_NEST

_DOLIT

DCD SCOMP-MAPOFFSET

BL TEVAL

BL STORE

_UNNEST

3.5.5 Branch and Link Token

In STM32F4, subroutine call uses the Branch and Bbh<addr> instruction. All high level
compound commands are assembled as tokens of Budtisns. BL instruction, as invented in the
ARM RISC architecture, assumed a return stacklef/él. If the called subroutine had to call other
subroutines, the return address in LR had to bedsax a real return stack of adequate depth. Fadmtle,
the return stack and the parameter stack run tot#fblevels deep. 64 levels are reserved forghen
stack. About 16K levels are available for the paeter stack.)

In the uVision5 debugger, | watched the disassetBleinstructions while single stepping through the
code, but could not figure out how the instructisrese encoded. Only when | was testing the
decompiler command SEE, | had to figure it out witha shiver of doubt. It is composed of two 16-bi
THUMB?2 instructions in the form of:

Address Bits Address Bits
i 55 11 11110 Sy

| Bytel | Byteo | Byte3 | Byte2 |

Very strange, indeed! But, | was able to shiftliits around and eventually get the correct addrats

BL.W Compile or assembleBL instruction as a token. The destination addcass on the
parameter stack. Compound commands are compilistsasf BL tokens.

123

; BLW (ca--)
; Assemble a branch-link long instruction to ca.

; BLW i

: DCD
;. CALLC
; DCB

s splitinto 2 16 bit instructions with 11 bit address fields.

_RBRAC-MAPOFFSET
DCB 5
"Ca||,"

; ALIGN

CALLC
_NES
BIC
BL
BL
SUB

T
R5,R5,#1 ; clear b0 of address from R>
HERE
SUBB
R5,R5,#4 ; pc offset

MOVW RO,#0x7FF ; 11 bit mask

MOV
LSR
AND
LSL
ORR
ORR
ORR
BL
_UNN

R4,R5

R5,R5,#12 ; get bits 22-12

R5,R5,R0
R4,R4,#15 ; get bits 11-1

R5,R5,R4

R5,R5,#0xF8000000

R5,R5,#0xF000
COMMA ; assemble BL.W instruction

EST

ALIGN

. (colon)

Create a new header and start a new congbcommand. It takes the following string in
the input stream to be the name of the new commahd.dictionary is ready to accept a
token list.] turns the text interpreter into compiler, whichHlwompile the following text
strings to build a new compound command. The rawpound command will then be
terminated by .

; Start a

DCD
_COLON
DCB

(--; string>)
new colon definition using next word as i ts name.

_RBRAC-MAPOFFSET
DCB 1

ALIGN

COLON

_NEST

BL
BL
_DOL

TOKEN
SNAME
IT

NEST

BL
BL
_UNN

COMMA
RBRAC
EST

IMMEDIATE | Set the immediate lexicon bit in the name fieldn&f new command. When the

compiler encounters a command with this bit setjlitnot compile this command into
the token list under construction, but executeiniediately. This bit allows immediat
commands to build special structures in compoumdnecands, and to deal with specis

1

conditions while compiling.

124

D

; IMMEDIATE (--)
Make the last compiled word an immediate word.

DCD _COLON-MAPOFFSET

_IMMED DCB 9
DCB "IMMEDIATE"
ALIGN

IMMED
_NEST
_DOLIT
DCD IMEDD
BL LAST
BL AT
BL AT
BL ORR
BL LAST
BL AT
BL STORE
_UNNEST

3.5.6 Defining Commands

Defining commands are molds which can be useddaterclasses of commands which share the same
run time behavior. In stm32eForth720, we havddhewing defining commands: , CREATE
CONSTANBNdVARIABLE. The contents of the code fields in differenssks of commands are
shown in the following figure:

Primitrve Cormrmand

Machine Instructions BX LR

Cornpound Command

NEST Token List _UNNEST

Constant Cormand

BL doCOM Walue

Wariable Comimand

BL doWAR Walue

Create Array Command

BL doWAR Array

CONSTANT | Create a new constant command witBLadoCON token followed by the constant value
u. When a constant command is executed, it pusigesonstant value on the parameter
stack.

*k%k *kk *k% *% *k%k *

Defining words

; CONSTANT (u--;string>)

125

; Compile a new constant.

DCD _IMMED-MAPOFFSET
_CONST DCB 8
DCB "CONSTANT"
ALIGN
CONST
_NEST
BL TOKEN
BL SNAME
BL OVERT
_DoLIT
_NEST
BL COMMA
_boLIT
DCD DOCON-MAPOFFSET
BL CALLC
BL COMMA
_UNNEST
CREATE Create a new command witlB& doVAR token. It creates a data array in dictionary

without allocating memory. When a command create@REATHS executed, it will

push the address aftBt doVAR token on the parameter stack. Memory space of an

actual array is allocated usiadlLOT command.

; CREATE (--; string>)
; Compile a new array entry without allocating code space.

DCD

_CREAT
DCB
ALIGN

CREAT
_NEST

_CONST-MAPOFFSET
DCB 6
"CREATE"

BL TOKEN
BL SNAME
BL OVERT

_DOLIT
NEST

BL COMMA

_DOLIT
DCD

DOVAR-MAPOFFSET

BL CALLC
_UNNEST

VARIABLE

Create a new variable command witBladoVAR token followed by one 32-bit
memory cell. This memory cell is initialized tpits address is returned when the
variable command is executed. Its contents caedxdby @ command and written b
command.

; VARIABLE

(--; string>)

; Compile a new variable initialized to O.

DCD

_CREAT-MAPOFFSET

126

_VARIA DCB 8
DCB "VARIABLE"
ALIGN

VARIA
_NEST
BL CREAT
_DOLIT
DCD 0
BL COMMA
_UNNEST

127

3.6 Debugging Tools

Stm32eForth720 is a very small system and onlyra small set of tool commands is provided for
debugging. Nevertheless, this set of tool commangdswerful enough to help you debug new
commands you add to the system. They are alsoimamngsting programming examples on how to use
the commands in eForth to build substantial apptios.

Generally, the tool commands present informatiorest in different parts of the CPU in appropriate
formats to let you inspect the results as you ebeecommands in the eForth system and commands you
defined yourself. The tool commands include menaump, stack dump, dictionary dump, and a
compound command decompiler..

3.6.1 Memory Dump
This tool allows you inspect memory at any addrB#gy, flash, and IO registers. You can dump data

and inspect code. You can use it to monitor amdroblO devices. It makes you feel that you due t
master of your computer.

dm+ Printu bytes of data starting at addres® the terminal. It returns a new addrass on
the stack to facilitate dumping of the next linenxeémory.

rhkkkkkkkhkkkhkhkkhhkkkhhkkhhhkkkhrkkhhhkkhhkkhhhkxrkx *k% *k*k

: Tools

; dm+ (au--a)
; Dump u bytes from a, leaving a+u on the stack.

; DCD _VARIA-MAPOFFSET
;_DMP DCB 3

DCB "dm+"
; ALIGN
DMP
_NEST
BL OVER
_DboLIT
DCD 4
BL UDOTR ;display address
BL SPACE
BL TOR ;start count down loop
B.W PDUM2 ;skip first pass
PDUM1 BL DUPP
BL CAT
_DoOLIT
DCD 3
BL UDOTR ;display numeric data
BL ONEP ;increment address

PDUM2 BL DONXT
DCD PDUM1-MAPOFFSET ;loop till done
_UNNEST

DUMP Print an array bytes of data starting at addréssto the terminal. It dumps 16 bytes tg a
line. Aline begins with the address of the flygte, followed by 16 bytes shown in hex, 3

128

columns per bytes. At the end of a line are théytés shown in ASCII characters. Non
printable characters are replaced by underscor8€[(/05).

; DUMP (au--)
Dump u bytes from a, in a formatted manner.

DCD _VARIA-MAPOFFSET

_DUMP DCB 4
DCB "DUMP"
ALIGN
DUMP
_NEST
BL BASE
BL AT
BL TOR
BL HEX ;save radix,set hex
_DboLIT
DCD 16
BL SLASH ;change count to lines
BL TOR
B.W DUMP4 ;start count down loop
DUMP1 BL CR
_DboLIT
DCD 16
BL DDUP
BL DMP ;display numeric
BL ROT
BL ROT
BL SPACE
BL SPACE
BL TYPEE ;display printable characters

DUMP4 BL DONXT
DCD DUMP1-MAPOFFSET ;loop till done
DUMP3 BL DROP

BL RFROM

BL BASE

BL STORE ;restore radix
_UNNEST

3.6.2 Parameter Stack Dump

One important discipline in learning Forth is tare how to use the parameter stack correctly and
effectively. All commands must consume their inpatameters on the stack and leave only their
intended results on the stack. Sloppy usage gban@meter stack is often the cause of bugs whieh a
very difficult to detect later, as unexpected itdafson the stack could result in unpredictable
behavior..S should be used liberally during programming anoludging to ensure that the correct
parameters are consumed and left on the parantatd: s

The parameter stack is the center for arithmetitlagic operations. It is where commands receive
their parameters and also where they left theirltgs In debugging a new command which may use
stack items and leave items on the stack, thevieesto debug it is to inspect the parameter stasfiare
and after its execution. To inspect the paranmsttak non-destructively, use the commadd

129

S Print the contents of the parameter stackerfrée format. The bottom of
the stack is aligned to the left margin. The tepniis shown towards the
right and followed by the characterk. .S does not change the parame
stack so it can be used to inspect the parameiek sbn-destructively at
any time.

ter

S (

)

; Display the contents of the data stack.

DCD

_DUMP-MAPOFFSET

_DOTS DCB 2

DCB

ALIGN
DOTS

_NEST

BL

BL

BL

B.W

“.S"

SPACE
DEPTH
TOR

DOTS2

DOTS1 BL RAT

BL
BL

PICK
DOT

DOTS2 BL DONXT

DCD
BL

DOTS1-MAPOFFSET
SPACE

_UNNEST

;stack depth
;start count down loop
;skip first pass

;index stack, display contents

;loop till done

>NAMHinds the name field address of a word from theesponding code field address in a command

record. If the command does not exist in the diry, it returns a false flag. It is the mirrorage of
the commandNAMEZ> which returns the code field address of a comnfieord its name field address.
However, it is very difficult to scan backward frarade field to locate the beginning of the namklfie

because we do not know how long the name fiel®AMES therefore more complicated because the
entire dictionary must be searched to locate itsenfeld.

>NAME | Return a name field address, of a command from its code field address, If ca is not
a valid code field address, or if the code fieléslaot have an header, return 0. It follows
linked list of the dictionary, and from every nafredd address we can get a corresponding
code field address. If this address is not theesasna, we go to the name field of the nex
command. Ita is a valid code field address with an header, wvelg will find it. If the
entire dictionary is searched acd is not found, it is not a valid code field addresst does
not have an header, and a false flag is returned.

the
)

. >NAME (

ca--na|F)

; Convert code address to a name address.

DCD
_TNAME
DCB
ALIGN
TNAME
_NEST
BL

_DOTS-MAPOFFSET
DCB 5
">NAME"

TOR

130

BL CNTXT ;va

BL AT ;na
TNAM1
BL DUPP ;hana
BL QBRAN
DCD TNAM2-MAPOFFSET ;vocabulary end, no match
BL DUPP ; ha na
BL NAMET ; haca
BL RAT ; ha ca code
BL XORR ;naf--
BL QBRAN
DCD TNAM2-MAPOFFSET
BL CELLM ;la
BL AT ; next_na
B.W TNAM1
TNAM2
BL RFROM
BL DROP ; Olna --
_UNNEST ;0
.ID Display the name of a command, given the name &dlitessa of this command. It
replaces non-printable characters in a name byrisudees.
; .ID (na--)

; Display the name at address.

DCD _TNAME-MAPOFFSET
_DOTID DCB 3
DCB ".ID"
ALIGN
DOTID
_NEST
BL QDUP ;if zero no name
BL QBRAN
DCD DOTI1-MAPOFFSET
BL COUNT
_DOLIT
DCD Ox1F
BL ANDD ;mask lexicon bits
BL TYPEE
_UNNEST ;display name string
DOTI1 BL DOTQP
DCB 9
DCB " {noName}"
ALIGN
_UNNEST

3.6.3 Compound Command Decompiler

In the cold field of a compound command, theretiskan list of BL instructions. It is very easy to
extract the code field addresses from the BL tokéhthe token has a name field, we can display it
name. This is the decompiler. If the token dogtshave a name field, or it is a piece of data, the
decompiler simply displays its value, and let ymufe out what it really means.

131

The decompiler is very useful in recovering thersewcode of a command in the dictionary when the
source code listing is not immediately availablenon-existent. It is also useful to check on & ne
command you just compiled, to see if the compweinking what you are thinking. Computer is a
“Do what you say, not what you mean” device. Ways helps to check that what you say is actually
what you mean with the decompiler.

SEE Search dictionary for a command with the nantbe following string. If it is a valid
command, decompile the token list in its code field

; SEE (--; string>)
; A simple decompiler.

DCD _DOTID-MAPOFFSET

_SEE DCB 3
DCB "SEE"
ALIGN
SEE
_NEST
BL TICK ; ca--, starting address
BL CR
_DoLIT
DCD 20
BL TOR
SEE1 BL CELLP ;a
BL DUPP ;aa
BL DECOMP ;a
BL DONXT
DCD SEE1-MAPOFFSET
BL DROP
_UNNEST

DECOMILE | Search dictionary for a command whose code fietttess is in memory address If it
is a valid command, display its name; otherwisgpldiy its value.

; DECOMPILE (a--)
; Convert code in a. Display hame of command or as data.

DCD _SEE-MAPOFFSET

_DECOM DCB 9
DCB "DECOMPILE"
ALIGN
DECOMP
_NEST
BL DUPP ;aa
; BL TOR -
BL AT ; a code
BL DUPP ; a code code
_DOLIT
DCD 0xF800F800
BL ANDD
_DOLIT
DCD 0xF800F000
BL EQUAL ;acode ?

132

BL QBRAN
DCD DECOM2-MAPOFFSET ; notacommand

; a valid_code --, extract address and display nam e
MOVW RO,#0xFFE
MOV R4,R5
LSL R5,R5#21 ; get bits 22-12
ASR R5,R5#9 ; with sign extension
LSR R4,R4,#15 ; get bits 11-1
AND R4,R4,R0O ; retain only bits 11-1
ORR R5,R5,R4 ; get bits 22-1
NOP
BL OVER ; a offset a
BL PLUS ; atarget-4
BL CELLP ; a target
BL TNAME ;anall --, is it a name?
BL QDUP ; hame address or zero
BL QBRAN
DCD DECOMI1-MAPOFFSET
BL SPACE ;ana
BL DOTID ; a--, display name
; BL RFROM ;a
BL DROP
_UNNEST
DECOM1 ;BL RFROM ;a
BL AT ; data
BL ubDOT ; display data
_UNNEST
DECOM2 BL uboT
; BL RFROM
BL DROP
_UNNEST

3.6.4 Dictionary Dump

The dictionary contains all command records definetthe system, ready for execution and compilation
WORDSommand allows you to examine the dictionary anida& for the correct names of commands
in case you are not sure of their spellinggdORDSollows the dictionary link in the system variable
CONTEXTand displays the names of all commands in theagtiatly. The dictionary links can be

traced easily because the link field in the heafl@rcommand points to the name field of the prewio
command, and the link field is two bytes below theresponding name field.

WORDS | Display all the names in the dictionary.e Tnder of words is reversed from the compiled
order. The last defined command is shown first.

; WORDS (--)
Display the names in the context vocabulary.

DCD _DECOM-MAPOFFSET

_WORDS DCB 5
DCB "WORDS"
ALIGN

WORDS
_NEST

133

BL CR

BL CNTXT

BL AT ;only in context
WORS1

BL QDUP ;?at end of list

BL QBRAN

DCD WORS2-MAPOFFSET

BL DUPP

BL SPACE

BL DOTID ;display a name

BL CELLM

BL AT

B.W WORS1
WORS2

_UNNEST

ALIGN

3.6.5 Cold Start

After the STM32F407 is turned on, it starts exemyinitial machine code &eset_Handler to set
up the CPU hardware. Then it jumpdaOLD to initialize the Virtual Forth Machine. It fingljumps
to QUIT and starts the text interpret€2OLD andQUIT are the topmost layers of stm32eForth720

system.

Before falling intoQUIT to enter into the text interpreter lodpOLD command executes an

application routine whose code address is storeden variableBOOT. This code address can be
vectored to a command which defines the properehaf the system on power-up and on reset.
Initially 'BOOT contains the code field addresdH)f which simply displays a sign-on message.

VER Combine the major version number VER and miegsion number EXT and return a 32-
bit number to be displayed in the sign-on messaieR and EXT are assembler equate
constants.

cold start

; VER (—-n)

Return the version number of this implementation.

, DCD
: VERSN
- DCB

; ALIGN

VERSN

_WORDS-MAPOFFSET
DCB 3
"/ER"

_NEST
“DOLIT

DCD

VER*256+EXT

_UNNEST

HI

The default start-up routine in stm32eForth720displays a sign-on message with the
correct version number. This is the default siprtoutine whose code field address is
stored in the user variabfOOT. From‘BOOT you can initialize the system to start yq

134

ur

| own application.

; HI ()
; Display the sign-on message of eForth.

DCD _WORDS-MAPOFFSET

_HI DCB 2
DCB "HI"
ALIGN

HI
_NEST
BL CR
BL DOTQP
DCB 13
DCB "stm32eForth v' ;model
ALIGN
BL BASE
BL AT
BL HEX ;save radix
BL VERSN
BL BDIGS
BL DIG
BL DIG
_DOLIT
pcp
BL HOLD
BL DIGS
BL EDIGS
BL TYPEE ;format version number
BL BASE
BL STORE
BL CR
_UNNEST ;restore radix

COLD A high level compound command executed upon caid,stalled fromReset_Hanlder
routine. Its initializes the CPU registers inchuglithe parameter stack, the return stack, &
user variables, executes the boot-up routine vedtorBOOT, and then falls into the text
interpreter looQUIT.

and

; COLD (--)
; The high level cold start sequence.

DCD _HI-MAPOFFSET
LASTN DCB 4
DCB "COLD"
ALIGN
CoLD
; Initiate Forth registers
MOVW R3,#0xFF00 ; user area
; MOVT R3,#0x2000 ;
MOV R2,R3 ; return stack
SUB R1,R2,#0x100 ; data stack
MOV R5,#0 ; tos
NOP
_NEST

135

CoLD1

;initialize user area
:initialize stack and TIB

;application boot

;Start interpretation

; keep CTOP even

_DOLIT
DCD UZERO-MAPOFFSET
_DOLIT
DCD UPP
_DOLIT
DCD ULAST-UZERO
BL MOVE
BL PRESE
BL TBOOT
BL ATEXE
BL OVERT
BW QUIT
ALIGN
COLD2
CTOP
DCD OXFFFFFFFF
END

136

3.7 Final Remarks
Never mind my badmouthing, STM32F4 is my dreamiFodmputer. All these years, | am looking for
a microcontroller with lots of RAM, lots of progranable ROM, lots of GPIO pins, lots of
communication channels, lots of counter-timerss &@ftADC, lots of DAC, fast clocks, low power
consumption, small package, etc, etc. And it bdsetcheap, too. Remember this saying?

Fast, big, and cheap. Pick two.
Actually, STM32F4 has them all.
Remember the old microcontroller development sys®emhe Intel blue box? You have a 19” rack
with a big bus cage. A CPU board, a RAM boardCdvRboard, many different 10 boards, an EPROM
programmer, an UV eraser, two floppy drives, an@gvansive hard disk drive. All these things are
now squeezed into a single chip, assembled on kgeard, and selling for $20! What else do you
want?
Coming with it, the software is complexity beyorelibf. Black box approach? Third party libraries?
C++ compiler? | don’t think these tools work atpclevel for microcontrollers. You have to divean
the devices yourself and gain control over themly®orth gives you a fighting chance.

| tried to get Arduino Uno to play Bach’s organgaes. It has only 3 counter-timers, and | could/onl
play his 3-part music. Now, STM32F4 has 14 coutiteers. Old Bach will be very pleased with it.

There are 80 IO pins on STM32F4-Discovery Kit. aAlking robot, perhaps?
A digital storage oscilloscope? Well, | need adjo&D display.

A remotely controlled telescope?

A high resolution digital spectrometer?

Well. Where is my retirement plan?

137

	Irreducible Complexity
	1. eForth for ARM chips
	1.1 Moore’s Law Marches On
	1.2 THUMB2—Death of a RISC
	1.3 Dire Consequence of Moore’s Law
	1.4 Oddity of Thumb Transfer Instructions
	1.5 eForth1 and eForth2
	1.6 THUMB2 Instruction Set
	1.7 Branch and Link
	1.8 First ARM Assembly Program
	1.9 Blinky
	1.10 Hello World
	1.11 HyperTerminal Setup
	1.12 Irreducible Complexity

	2. Assemble and Test STM32eForth720.s
	2.1 STM32F4-Discovery Kit
	2.2 IDE and Assembler
	2.3 Install μVision5
	2.4 Setting up Target Environment
	2.5 Build and Debug eForth System
	2.6 Set up HyperTerminal
	2.7 Return to Debugger
	2.8 Firmware Engineering

	3. Stm32eforth720 Source Code
	3.1 A Brief History of ARM eForth
	3.2 Virtual Forth Machine
	3.2.1 Virtual Forth Machine on STM32F4
	3.2.2 Reset Vector and Reset Handler
	3.2.3 Remap RAM memory
	3.2.4 Initialize IO Devices
	3.2.5 Virtual Memory of STM32F407
	3.2.6 Constants Used by Assembler
	3.2.7 Assembly Macros
	3.2.8 User Variables
	3.2.9 USART1 Communication

	3.3 eForth Kernel
	3.3.1 Original Primitive Commands
	3.3.2 Integer Literals
	3.3.3 Loop and Branch Commands
	3.3.4 Memory Commands
	3.3.5 Return Stack
	3.3.6 Parameter Stack
	3.3.7 Logic and Arithmetic Commands
	3.3.8 Extended Primitive Commands
	3.3.9 User Variables Commands
	3.3.10 Common Functions
	3.3.11 Scaling, Multiply-Divide
	3.3.12 Miscellaneous Commands
	3.3.13 Memory Array Commands

	3.4 Text Interpreter
	3.4.1 Numeric Output
	3.4.2 Numeric Input
	3.4.3 Terminal Output
	3.4.4 String Literals
	3.4.5 Parsing
	3.4.6 Dictionary Search
	3.4.7 Terminal Input
	3.4.8 Error Handling
	3.4.9 String Interpreter
	3.4.10 Flash Memory

	3.5 Forth Compiler
	3.5.1 Compiler Loop
	3.5.2 Compiler Tools
	3.5.3 Structure Commands
	3.5.4 String Compiler
	3.5.5 Branch and Link Token
	3.5.6 Defining Commands

	3.6 Debugging Tools
	3.6.1 Memory Dump
	3.6.2 Parameter Stack Dump
	3.6.3 Compound Command Decompiler
	3.6.4 Dictionary Dump
	3.6.5 Cold Start

