
1

Irreducible Complexity

eForth for Discovery

Chen-Hanson Ting

1. eForth for ARM chips

1.1 Moore’s Law Marches On

Moore’s Law marches on, and more and more circuits are crowded into microcontrollers. In the last 15
years, I had programmed many ARM chips, and had watched with amazement the progress of the ARM
chips. My approach had always been to port an eForth system onto the chips and tried to make the best
use of the chips. Here are some of the ARM chips I put eForth on.

2001: Nintendo’s GameBoyAdvance had an ARM7TDMI chip in it. It had 32 KB of RAM. No flash.
It had lots of external flash and RAM for games.

2004: ADuC7024 from Analog Devices had 62 KB of flash and 8 KB of RAM, and lots of IO devices,
including ADC and DAC. I built a ForthStamp based on it, a really nice single chip stamp size computer.

2008: AT91SAM7x256 from Atmel. It had 64 KB of flash and 16 KB of RAM, and lots of IO devices.

A couple of years ago, I told my friends in the Silicon Valley FIG and Taiwan FIG that I had to really
retire from Forth programming. I did, and worked peacefully on translating Bach’s cantatas from
German to Chinese, and putting Tang poems into Schubert’s songs, and many other things I had
neglected all the years. Then, last month, a friend in Taiwan FIG sent me this ForthDuino Board, which
was used to control a laser cutting machine to make PC boards. It had footprints of IO sockets of
Arduino board and MSP430 LaunchPad. It is intended to suck in all applications from Arduino and
LaunchPad. I was told that the ARM chip on ForthDuino is the same one used in the STM32F4-
Discovery Kit. Looking up the STM32F407 chip, I was shocked to see so much memory, and so many
IO devices. 1 MB of flash and 192 KB of RAM. It is a Wow chip, and in desperate need of a good
eForth system.

So. I re-open my workbench, unpacked my tools, download all necessary IDE and programming
toolchains. But, the world has changed since I stopped watching. Keil is still there, but its toolchain
became uVision5. STM32F4 is no longer an ARM chip. It is a Cortex M4 chip. There is no ARM in
STM32F4. All that’s left is a THUMB, and a really big THUMB.

The first shock was that I could not use the ARM directive in the assembler. The assembler generated
lots of error messages if you do ARM. It is much happier if you use the THUMB directive. Then, the
RSC instruction disappeared. Reading the ARM assembler manual carefully, I found that ARM
Holdings is phasing out the ARM instruction set, and replacing it with the THUMB2 instruction set. It

2

gave up the beautiful RISC architecture, and reverted to the ugly CISC architecture we all despised.

I missed the simple serial COM port in PC. The USB is so much harder to deal with. You don’t know
what’s going on. You must have faith on the USB drivers given to you.

There is no simple examples to guide me, to start my exploration. The Demo project provided with
STAM32F4-Discovery Kit is a huge package with 7 folders and 31 files. There is no clear entry point. I
spent 3 weeks wandering around in the hardware and software maze, looking for an entry point. The
great breakthrough came when I realized that I only had to set up the reset vector correctly, everything
would work smoothly from that point on. Throw away all the header files, init files, device driver files.
I only need one assembly file to do what I have to do.

Since STM32F4 is no longer an ARM7 chip. It is not necessary to keep the name in my eForth
implementations. I planned and completed 3 versions of eForth for this chip:

STM32eforth v7.01 The eForth dictionary resides in flash memory, and executes from flash memory. It
is upgraded to align with the eForth2 model, with subroutine tread model and fully optimized for
performance.

STM32eforth v7.10 The eForth dictionary resides in flash memory. Flash memory is remapped to the
virtual memory in Page 0. eForth executes from Page 0 memory.

STM32eforth v7.20 The eForth dictionary resides in flash memory. The dictionary is copied from flash
to RAM. RAM memory is remapped to the virtual memory in Page 0. eForth executes from Page 0
memory. Applications can be easily embedded in turnkey system.

1.2 THUMB2—Death of a RISC

The ARM architecture was hailed as the prince of RISC, as the name says it all: Acorn RISC Machine.
The major disadvantage of RISC is its poor coding density. A 32-bit instruction does not do much work.
Lots of bits in the instruction, like the 4-bit condition field, are wasted. ARM Holdings tried very hard
implementing the THUMB instruction set to complement the ARM instruction set. In the end, the
THUMB is waggling the ARM, and the THUMB2 instruction set basically eased out the ARM
instruction set. THUMB2 is clearly a CISC architecture. Cortex M4 core inside STM32F407 is an
extremely complicated instruction set computer. Intel had proved that the RISC architecture is of no
special value, and ARM Holdings concurred.

1.3 Dire Consequence of Moore’s Law

A while ago, I was amazed at the 566 page reference manual of ATmega328 from Atmel, which is a
lowly 8-bit microcontroller used on Arduino Uno Kit. The reference manual of STM32F407 is 1713
pages thick. How can anybody wading through this document to get a handle on this chip and all its
peripheral devices?

I opened the Demo project for the STM32F407-Discovery Board on Keil’s uVision5. In the Project
panel I counted 7 folders with 31 files in them. Just for a Demo! It is true that the Demo does a lot of

3

interesting things, like reading the 3-axis accelerometer and the USB connection to PC. I have great
sympathy for people who gets this kit and is confronted by this huge software mess.

The dire consequence of the Moore’s Law is complexity beyond comprehension.

The only way to deal with this complexity is the Forth way. Or, put it more bluntly:

 KISS Keep It Simple, Stupid!

The first thing to do is to put eForth on board. The 16 MHz high speed internal clock HSI in the chip is
good enough for an USART. Forget about the fancy PLL that can push the clock to 168 MHz. We can
deal with it when we really need the speed. Just get the USART going, and we can walk into the guts of
the microcontroller and actually control it from inside through eForth.

What about interrupts, threads, heaps, multitasking, and preemptive task switching? All the great things
this ARM/THUMB chip can do? Forget them! You will learn them in the senior year of computer
engineering, if you have time to go to school. All these things can be added to eForth when you really
need them.

eForth exposes all the memory and the IO registers to you. You can inspect them, and you can tinker
with them. This is the way to study the peripheral devices, learn how to control them, and make use of
them. Focus on one device you will use. Read that chapter in the reference manual. Inspect the status
and control registers. Flip bits in the control register and see what happens. Write short commands to
perform the functions you want. These functions will be called from you eventual applications.

1.4 Oddity of Thumb Transfer Instructions

In the transfer instructions, THUMB2 requires that all the target addresses must be odd. Bit 0 of the
address is deposit into the T bit in the EPSR status register, indicating that it is in the Thumb state. The
actual address is on the 2 byte half word boundary. Much grief was encountered when I was debugging
eForth, which aligned addresses to the 4 byte word boundary. If bit 0 is not set in these addresses, the
CPU may work correctly, and it may also crash. I learnt the lesson when building turnkey systems. The
correct procedure is:

 ; load Lesson16.txt
 ; load Lesson17.txt

 0 ERASE_SECTOR

‘ GUESS 1+ ‘BOOT !
 TURNKEY

In most cases, eForth takes care of this oddity. But, when you are use addresses explicitly, make sure bit
0 in the target address is set before jumping to it.

(Note: I think this must be considered a bug in stm32eforth720. I fixed it in @EXECUTE. Before
@EXECUTE jumps to the target address, it sets b0 in the address to please the M4 CPU).

4

1.5 eForth1 and eForth2

The original eForth Model was designed by Bill Muench in 1990. It was based on the Direct Thread
Forth Model, in which the body of a high level Forth command contained a list of execution addresses,
preceded by a CALL NEST machine code. Bill was very ambitious in that he laid down hooks for
multitasking and the CATCH-THROW mechanisms for error handling. List of execution addresses were
very easy for porting to other processors. Indeed, many people did port this model to about 30 different
processors. At that time, assemblers for these processors were not easily available and very different.
This simple model was very easy to be adapted to a particular assembler. In a few cases, MASM from
Microsoft was used to assemble eForth for a different processor.

Getting into this century, I ported eForth to many microcontrollers at work. With good native
assemblers available then, I was able to optimize eForth for performance necessary in actual products. I
used the Subroutine Thread Model throughout, and realized many other advantages besides speed.
Machine code can be mixed with subroutine calls. Interrupt service routines can be written in high level
Forth. In all these applications, multitasking was not necessary and many user variables can be
eliminated. The CATCH-THROW mechanism was not needed, and the error handling was greatly
simplified. The cumulative result was eForth2, and earlier implementations were classified as eForth1.

eForth2 implementations were all written using native assemblers provided by microcontroller
manufacturers. Forth commands which can be expressed in native machine instructions are so coded.

eForth1 is for portability.

eForth2 is for performance.

1.6 THUMB2 Instruction Set

When I started porting eForth to STM32F407-Discovery Board, I was not aware of the THUMB2
instruction set. I used sam7ef.s from the AT91SAM7x256 project and tried to assemble it under
uVision5. Lots and lots of error messages. Totally confusing. The first thing I noticed was that the
startup_stm32f4_xxx.s file used the THUMB directive, and I used ARM directive in sam7ef.s.
Changing the THUMB directive to ASM caused more errors. Changing the ARM directive to THUMB,
the assembler was much happier, but still threw lots of errors and warning at me.

Then I found that ARM Holdings changed the CPU core behind my back when I was not watching.
Their chips are not ARM chips any more. They are Cortex-M4 chips with only Thumb2 instructions.
Their assembler was also changed to UAL, as stated in one of its manuals:

Unified Assembler Language (UAL) is a common syntax for ARM and Thumb
instructions. It supersedes earlier versions of bot h the ARM and
Thumb assembler languages.

These are errors which I had to correct:

5

B<addr> becomes a 2-byte Thumb instruction. It causes following instructions to be misaligned. It has
to be changed to B.W<addr>, to retain 4 byte word alignment.

Target address in Forth transfer commands must have bit 0 set.

RSC (Reverse subtract with carry) does not exist. It was used only in DENEGATE.

I had made many mistakes on my own. I had to upgrade eForth1 to eForth2, though most changes were
deleting things I did not need. During the process, I really appreciated the debugger in the Keil uVision5.
It allowed me to set up to 6 hardware break points freely. Watching CPU registers and IO registers in
any device while single stepping the assembly code was very helpful. In the end, I was very pleased to
see stm32eForth signed on and processed my command correctly.

1.7 Branch and Link

In Cortex M4, subroutine call uses the Branch and Link BL<addr> instruction. All high level Forth
commands were assembled as tokens of BL instructions. BL instruction, as invented in the RISC
architecture, assumed a return stack of 1 level, which is the link register LR. If the called subroutine had
to call other subroutines, the return address in LR has to be saved on a real return stack of adequate
depth

I watched the disassembled BL instructions while single stepping through the code, but could not figure
out how the instructions were encoded. Only when I was testing the decompiler command SEE, I had to
figure it out without a shiver of doubt. It is composed of two 16-bit THUMB instructions in the form of:

Very strange, indeed! But, I was able to shift the bits around and eventually get the correct address back.

1.8 First ARM Assembly Program

I was desperate to get STM32F4-Discovery to do something. I Googled ARM and Discovery tutorials,
and with lots of patience I found this simple example from the website of Regina University. It contains
the least amount of code to get STM32F407 to increment a register. It assembled correctly on uVision5,
and the debugger lets me single step through the program. I could see that register R0 was actually
incrementing. Now, I got the toolchain working.

; First ARM Assembly program
; Chen-Hanson Ting, 16jun14cht
; Adapted from a lab lesson at Regina University
; http://www.cs.uregina.ca/Links/class-info/301/ARM /lecture.html
; for ATM32F-Discovery kit.
; Assembled on uVision 5.10 from Keil
; Use the uVision debugger to watch the registers i n ATM32F407
; First step to get used to Discovery kit and uVisi on

6

;;; Directives
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
; Linker requires __Vectors to be exported

AREA RESET, DATA, READONLY
EXPORT __Vectors

__Vectors
DCD 0x20001000 ; stack pointer value when stac k is empty
DCD Reset_Handler ; reset vector
ALIGN

; The program
; Linker requires Reset_Handler

AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler

Reset_Handler
MOV R0, #12
STOP
ADD R0, R0, #4
B STOP
END ;End of the program

1.9 Blinky

The next step was to get the LEDs blinking. Discovery has a Blinky demo, but it is huge. It was no fun
to read the C code, all the header files and library files. How many programmers does it take to turn on
a LED? Once I got the above kernel going, it was easy to add and few lines of code to turn the LEDs on
and off.

The LEDs on Discovery are connected to pins PD12-15. These 4 pins on GPIOD ports must be
initialized to be output pins. All IO devices require clocking, which is done through the Reset Clock
Control register RCC. The program is simply:

; SimpleBlinky, Chen-Hanson Ting, 18jun14cht
; Simplest program to blink the LEDs on the STM32F4 -Discovery kit.
; Assembled by uVision 5.10 from Keil.
; Adapted from Daniel Widyanto
; http://embeddedfreak.wordpress.com/2009/08/09/cor tex-m3-blinky-in-assembly/

;;; Directives

PRESERVE8
THUMB

; Vector Table Mapped to Address 0 at Reset
; Linker requires __Vectors to be exported

AREA RESET, DATA, READONLY
EXPORT __Vectors

__Vectors
DCD 0x20001000 ; stack pointer value when stac k is empty
DCD Reset_Handler ; reset vector
ALIGN

; The program

7

; Linker requires Reset_Handler
AREA MYCODE, CODE, READONLY
ENTRY
EXPORT Reset_Handler

Reset_Handler
; Blinky program for STM32F407 - ARM Cortex-M43
; The LEDs are at these pins:
; LD3, orange, PD13
; LD4, green, PD12
; LD3, red, PD14
; LD3, blue, PD15

; Declare __main() as global..Otherwise the linker won't find it

EXPORT __main
__main
; /* Set the pins direction as output */

LDR R0, =set_gpio_dir
 BLX R0
loop
 LDR R0, =clear_leds
 BLX R0
 LDR R0, =delay
 BLX R0
 LDR R0, =set_leds
 BLX R0
 LDR R0, =delay
 BLX R0
 B loop

set_gpio_dir
; Enable clock to GPIOD

ldr r0, =0x40023800 ; RCC
ldr r1, [r0, #0x30] ; RCC_AHB1ENR
orr r1, #8 ; GPIODEN (1)
str r1, [r0, #0x30]

; Configure PD12-15 as output with push-pull
ldr r0, =0x40020C00 ; GPIOD
ldr r1, [r0, #0x00] ; GPIOx_MODER
bic r1, #0xFF000000 ; Mask PD12-15
orr r1, #0x55000000 ; output
str r1, [r0, #0x00]
BX LR

set_leds
; Set PD12-15

ldr r0, =0x40020C00 ; GPIOD
ldr r1, [r0, #0x14] ; GPIOD_ODR
orr r1, #0xF000 ; set PD12-15
str r1, [r0, #0x14]
BX LR

clear_leds
; Clear PD12-15

ldr r0, =0x40020C00 ; GPIOD
ldr r1, [r0, #0x14] ; GPIOD_ODR
bic r1, #0xF000 ; PDclear12-15
str r1, [r0, #0x14]

 BX LR
delay

8

; Delay about 0.3 second, with internal HSI clock a t 16 MHz
 MOVW R3, #0x0000
 MOVT R3, #0x0004
__delay_loop
 CBZ R3, __delay_exit
 SUB R3, R3, #1
 B __delay_loop
__delay_exit
 BX LR
 ALIGN
 END

1.10 Hello World

eForth needs a USART to communicate with the user. I found a nice Hello World example using
USART1 to send out a message:

; Hello World!
; Adapted from an assembly example by clive1 on STM 32 Forum on www.st.com
; Chen-Hanson Ting 16jun14cht

; This is a demo program for STM32F4-Discovery Kit from STMicroelectronics.

; The STM32F407 chip is overwhelming. The demo pro gram Blinky provided by ST
; is also overwhelming. There must be a better w ay to get it working.
; I am porting my Sam7eForth system on this platf orm. This is another
; step towards this goal.

; It uses USART1 port on PB6/7 to send out the "Hel lo World!" message.
; USART1 is configured at 115200 baud, 1 start bit, 8 data bits, 1 stop bit,
; no parity, no flow control
; USART1 is an alternate function of the GPIOB port , pins PB6/7.
; We have to initialize the clock control register CCR, GPIOB port,
; and USART1 port.

; Code is assembled by uVision 5.10 from Keil. Obj ect code is downloaded to
; Discovery through on-board ST-Link, and debugge d through uVision.

; An Arduino Uno board is used as the USART COM por t. Remove Atmega328P chip
; from Uno board. Connect its RX at D0 to PB7 on Discovery board, and the
; TX at D1 to PB6 on Discovery board. Ground tog ether Uno and Discovery.
; Discovery sends characters from its USART1 to U no, and to HyperTerminal
; on its PC host.

 AREA RESET, CODE, READONLY
 THUMB
 EXPORT __Vectors ; linker needs it
 EXPORT Reset_Handler ; linker needs it

; Vector Table has only Reset Vector
__Vectors
 DCD 0x10000400 ; Top of hardware stack in CCM
 DCD Reset_Handler ; Reset Handler
 ENTRY

9

Reset_Handler
 BL InitUSART1
 LDR R0, =Hello
 BL _OutString
 B .
Hello DCB "\n\015Hello World!\n\015", 0
 ALIGN

;** **************************
; Assumes system running from 16 MHz, HSI (Normal a t Reset)
; USART1 PA9 TX, PA10 RX; this does not work. Outp ut spaces and a $.
; Try alternate USART1 PB6 TX and PB7 RX; this work s.

InitUSART1 PROC
; init Reset Clock Control RCC registers
 ldr r0, =0x40023800 ; RCC
 ldr r1, [r0, #0x30] ; RCC_AHB1ENR
 orr r1, #2 ; GPIOBEN (1<<1)
 str r1, [r0, #0x30]
 ldr r1, [r0, #0x44] ; RCC_APB2ENR
 orr r1, #0x10 ; USART1EN (1 << 4)
 str r1, [r0, #0x44]
; init GPIOB
 ldr r0, =0x40020400 ; GPIOB
 ldr r1, [r0, #0x00] ; GPIOx_MODER
 bic r1, #0xF000 ; Mask PB6/7
 orr r1, #0xA000 ; =AF Mode
 str r1, [r0, #0x00]
 ldr r1, [r0, #0x20] ; GPIOx_AFRL
 bic r1, #0xFF000000 ; Mask PB6/7
 orr r1, #0x77000000 ; =AF7 USART1
 str r1, [r0, #0x20]
; init UART1
 ldr r0, =0x40011000 ; USART1
 movw r1, #0x0200C ; enable USART
 strh r1, [r0, #12] ; +12 USART_CR1 = 0x2000
 movs r1, #139 ; 16MHz/8.6875 (139, 0x8B) == 11 5200
 strh r1, [r0, #8] ; +8 USART_BR
 ldr r2, =12 ; Output 12 pound/hash symbols
iu1
 ldrh r1, [r0, #0] ; USART->SR
 ands r1, #0x80 ; TXE
 beq iu1
 mov r1, #'#'
 strh r1, [r0, #4] ; USART->DR
 subs.w r2, r2, #1 ; $1
 bne.n iu1
 bx lr
 ENDP ; InitUSART1

;** **************************
; Uses
; r0 Character to output, masked
; r1 scratch, destroyed
; r2 scratch, destroyed

10

_OutChar PROC
 ldr r2, =0x40011000 ; USART1 F2/F4
 and r0, #0xFF
_OutChar10
 ldrh r1, [r2, #0] ; USART->SR
 ands r1, #0x80 ; TXE
 beq _OutChar10
 strh r0, [r2, #4] ; USART->DR
 bx lr
 ENDP ; _OutChar

;** **************************
; Uses
; r0 String to output, destroyed
; r1,r2,r3 assumed scratch

_OutString PROC
 push {r4, lr}
 mov r4, r0
_OutString10
 ldrb.w r0, [r4], #1 ; r0 = *r4++ (BYTE)
 orrs r0, r0
 beq _OutString20
 bl _OutChar
 b _OutString10
_OutString20
 pop {r4, pc}
 ENDP ; _OutString
 ALIGN
 END

1.11 HyperTerminal Setup

Stm32eforth720 uses USART1 to communication with a terminal. On STM32F407VG, USART1 can be
configured to use either Pins PA9-10 or PB6-7 for communication. Since the USB on CN5 is using
PA9-10 ports, I use PB6-7 for eForth. I am using a separate PC to run HyperTerminal through a USB to
serial converter, which happens to be an Arduino Uno Kit. Arduino Uno Kit has a integrated USB to
serial converter connecting the STmega328P chip to the host PC. It uses this USB to download
programs and to communication with the 328 chip. To use its USB to serial converter, I remove the
ATmega328P chip, and connect the PB6 (TX) on Discovery to D1 port on Arduino, and the PB7 (RX)
on Discovery to D0 port on Arduino. A ground wire connects the ground pins on both boards.

HyperTerminal on PC is configured at 115200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity, no flow
control. The USART1 on STM32F407 is configured similarly. STM32F407 is clocked by its high
speed internal clock HSI at 16 MHz on reset. Since this HSI is factory trimmed to 1% accuracy, it is
adequate to provide reliable communication on USART1.

With the HelloWorld demo displaying “Hello, World!” on HyperTerminal, I regained my self-confidence,
and proceeded to port eForth over. I used to boast that I could port eForth to a new microcontroller in 2
weeks. This time it took 5 weeks to get it working on Discovery. Am I getting too old? Or, is the world
passing me by too fast?

11

1.12 Irreducible Complexity

STM32F407 is a very complicated chip. If you are going to program in C, the software package you are
given is extremely complicated. What I am trying to do here is to reduce the complexity to the
minimum, and help you to control this chip with the least amount of code.

As Lao Tze said in Tao Te Ching, Chapter 48:

For knowledge, add a bit a day.
For wisdom, delete a bit a day.
Delete until there is nothing.
Then, everything can be done.

I use only one USART device.
I use only a reset vector to get the chip starting executing code.
A Virtual Forth Machine simplifies the complicated CPU.
The complier is wrapped inside the text interpreter.
The parameter stack simplifies language syntax and list processing.
Forth is the simplest LISP processor.

I think Albert Einstein said better: “Everything should be made as simple as possible, but not simpler”.

stm32eforth720 is assembled to a 8492 byte image. It seeks and. I believe, has achieved irreducible
complexity. Things cannot be made any simpler.

eForth leaves the least footprint in your mind. With this understanding, you can make the STM32F407
microcontroller do what you want it to do.

12

2. Assemble and Test STM32eForth720.s

2.1 STM32F4-Discovery Kit

To promote the commercial adoption of STM32F4 chips, STMicroelectronics provides a low-cost
STM32F4-Discovery Kit. I got my first kit for $14.90 from DigiKey. The second time I placed an order,
the price jumped to $20. But, it is still very cheap for its capabilities. STMicroelectronics is spending
lots of money promoting these microcontrollers. It is based on an STM32F407VGT6 and includes an
ST-LINK/V2 embedded debug tool interface, ST MEMS digital accelerometer, ST MEMS digital
microphone, audio DAC with integrated class D speaker driver, LEDs, pushbuttons and a USB OTG
micro-AB connector.

13

Here is a laundry list of features in STM32F4-Discovery Kit:

• STM32F407VGT6 microcontroller featuring 1 MB of Flash memory, 192 KB of RAM
• On-board ST-LINK/V2 with selection mode switch to use the kit as a standalone debugger
• Power through USB bus or from an external 5V supply voltage
• External application power supply: 3V and 5V
• LIS302DL or LIS3DSH, ST MEMS 3-axis digital accelerometer
• MP45DT02, ST MEMS audio sensor, omni-directional digital microphone
• CS43L22, audio DAC with integrated class D speaker driver
• Eight LEDs for power, accelerometer, and micro USB
• 8 LEDs for power, accelerometer, and micro USB
• Two pushbuttons (user and reset)
• USB OTG with micro-AB connector
• Extension headers for 80 IO pins
• Keil µVision5 Integrated Development Environment
• Binary code downloader through serial ports

STM32F407 microcontroller on Discovery is a very interesting and capable chip from
STMicroelectronics. It integrates an 32-bit Cortex M4 core with lots of digital and analog peripheral
devices. They greatly simplify control and monitoring in applications such as factory automation,
network communication, and perhaps automotive control. Following is a laundry list of features in this
chip:

• ARM 32-bit Cortex™-M4 CPU Core with FPU, frequency up to 168 MHz, 210 DMIPS/1.25
DMIPS/MHz (Dhrystone 2.1), and floating point and DSP instructions
• 1 MB of Flash memory, 192 KB of SRAM including 64-KB of CCM (core coupled memory)
data RAM
• LCD parallel interface, 8080/6800 modes
• 3×12-bit, 2.4 MSPS A/D converters: up to 24 channels and 7.2 MSPS in triple interleaved mode
• 2×12-bit D/A converters
• 16-stream DMA controller with FIFOs and burst support
• Twelve 16-bit and two 32-bit timers up to 168 MHz, IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input
• Serial wire debug (SWD) & JTAG interfaces
• Up to 140 I/O ports with interrupt capability, fast I/Os up to 84 MHz, 5 V-tolerant
• 15 communication interfaces, 3 × I2C interfaces, 6 USARTs/2 UARTs, 3 SPIs, 2 × CAN
interfaces, USB 2.0 full-speed device/host/OTG controller, USB 2.0 high-speed/full-speed
device/host/OTG controller
• 10/100 Ethernet MAC with dedicated DMA:
• 8- to 14-bit parallel camera interface up to 54 Mbytes/s
• True random number generator
• CRC calculation unit
• 96-bit unique ID
• RTC: subsecond accuracy, hardware calendar

14

2.2 IDE and Assembler

STMicroelectronics wisely focuses on the chip manufacturing, and delegates software tools companies
to provide assemblers and compilers to program its chips. In the STM32F4-Discovery User Manual, 4
software development toolchains are recommended:

• Embedded Workbench® for ARM (EWARM) by IAR
• Microcontroller Development Kit for ARM (MDK-ARM) by Keil
• TrueSTUDIO® by Atollic
• TASKING VX-toolset for ARM Cortex by Altium

I have been using Keil’s MDK-ARM Development Kit for years, and used it again for this project of
eForth on Discovery. You can download a free evaluation version form its website www.keil.com. The
current release is µVision5.10. The evaluation version has a size limit of 32 KB target code. This size
poses no problem for eForth systems, which usually assembles to about 8 KB.

uVison5 uses the standard armasm assembler from ARM Holdings. It is now using UAL syntax.

2.3 Install µVision5

After successfully install µVision5, you will see a µVision5 icon on the desk top. Double click it to start.
µVision5 organizes things in workspaces and projects. Workspace is a big folder which holds many
projects. A project is a smaller folder where you place your source code files for µVision5 to work on.
When µVision5 is first started, it asks you to specify a workspace. The default workspace is C:\mdk\,
but you can pick any folder you like.

Select Project>Create New Project .
In the File Selection window, navigate to a folder you want or create a new folder.
Name new project as eforth_7 or something you like.

15

In the Select Device for Target “Target 1” window, select STM32F407VG.

In the Manage Run Time Environment window, select nothing and click OK. eForth is very simple,
and does not need all the supporting files and libraries usually required by a C compiler.

16

Copy stm32eforth720.s file into the eforth_7 project folder your created.

In Project panel, click the + box to the right of Target 1 , to show Source Group 1 .

Right click Source Group 1 , and select Add Existing File to Group “Source Group 1”.

In the Add Files to Group “Source Group1” file selection window, select stm32eforth720.s, click
Add box and then Close box.

In Project panel, click the + box to the right of Source Group 1 , to show stm32eforth720.s.

Double click stm32eforth720.s, and the file is opened in the Edit panel.

17

Select Project>Rebuild all target files , stm32eforth720.s is assembled and linked, and a
stem32eforth720.axf file is created.

2.4 Setting up Target Environment

In order to assemble the eForth system correctly and test/debug it on Discovery, you have to be sure that
the target environment is set up correctly. Pull down the Project menu and select Options for

Target ‘Target1’ , and you will see the following window:

18

Select Project>Options for Target “Target 1”, or Flash>Configure Flash Tools .
The Options for Target “Target1” window appears.
Select Target menu, and change Xtal frequency to 16 MHz

Select Output menu, and check Create Hex File .

Select Listing menu, and uncheck Cross Reference .

19

Select Debug menu, check Use debugger. In the debugger box, select ST-Link Debugger ,

Click Settings box to the right of the debugger box.
In the Cortex M Target Driver Setup window, change JTAG in Port box to SW.
Click OK.

20

Select Utilities menu, and uncheck the box of Use Debug Driver.
In the device selection box under Use Target Driver…, select ST-Link Debugger .

Click the Settings box to the right of device selection box. The Cortex M Target Driver Setup
window opens.
Click Add box and add STM32F4xx Flash to Programming Algorithm.
Click OK to dismiss the Cortex M Target Driver Setup window.
Click OK to dismiss the Options for Target “Target1” window.

21

2.5 Build and Debug eForth System

To build and debug eForth System, pull down Project menu and select Rebuild all target files
option and µVision5 assembles eForth file and produces an downloadable object file eforth_7.axf. The
building sequence is shown in the Output panel at the bottom of window screen:

stm32eforth720.s is assembled and linked, and an eforth_7.hex file and an eforth_7.lst are also created
for you to inspect.

Select Debug>Start/Stop Debug Session .
Dismiss the warning box uVision warning: Evaluation Mode, Running with code size limit
32K.

22

Eforth_7.axf is downloaded into the flash memory of STM32F407 chip, and the Debugger is ready to
single step through the eForth code, or to run it at full speed.

Click Debug>Run, and stm32eforth720 signs up on HyperTerminal.

2.6 Set up HyperTerminal

Stm32eforth720 uses USART1 to communication with a terminal. On STM32F407VG, USART1 can be
configured to use either Pins PA9-10 or PB6-7 for communication. Since the micro USB on CN5 is
using PA9-10 pins, I use PB6-7 for eForth. I am using a separate Windows XP PC to run HyperTerminal
through a USB to serial converter, which happens to be an Arduino Uno Kit. Arduino Uno Kit has a
integrated USB to serial converter connecting the STmega328P chip to the host PC. To use its USB to
serial converter, I remove the ATmega328P chip, and connect the PB6 (TX) on Discovery to D1 port on
Arduino, the PB7 (RX) on Discovery to D0 port on Arduino. A ground wire connects the ground pins
on both boards.

23

HyperTerminal on PC is configured for 115200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity, no flow
control. The USART1 on STM32F407 is configured similarly. STM32F407 is clocked by its high
speed internal clock HSI at 16 MHz on reset. Since this HSI is factory trimmed to 1% accuracy, it is
adequate to provide reliable communication on USART1.

The default settings are COM1, 2400 baud, etc. You have to set the HyperTerminal to the terminal mode
at 115200 baud, 8 data bits, 1 stop bit, and no parity. First put it offline by clicking the Hang-up icon,
and pull down the File menu and select Properties option. Then you will see a property selection
window. Go through the selection window and make the proper selections to get the console window
like what was shown above.

 Press the RESET bottom on STM32F4Discovery and HyperTerminal should display the following
message:

 stm32eForth v7.20

24

Press Enter key and eForth will echo ok messages. Type an eForth command WORDS followed by a
Enter , and you will see the following console display:

HyperTerminal is thus the host environment for eForth, and you can type in Forth commands and
execute them.

2.7 Return to Debugger

While eForth is running, you can stop it and return to the debugger in µVision5. Click the µVision5
window to bring it to focus. Pull down the Debug menu and select Stop and STM32F4 stops running
eForth system. Now the µVision5 window changes to something like this:

Now you can inspect the Cortex M4 registers, the disassembled program, and memory contents. You

25

can single-step through the machine instruction, set and clear break points.

2.8 Firmware Engineering

µVision5 is a very sophisticated program development environment for STM32F4. Why do you need
Forth?

µVision5 is very good to develop applications. However, applications in embedded systems are only
parts in a system which must be able to initialize the hardware on power up and drop into the application
code correctly. It has to respond to real time stimuli and act appropriately. What Forth brings in is a
complete operating system which can interact with you. To be able to interact with a human being
requires a large number of commands or library routines, which are just as useful in real time
applications. The system is extensible in that you can add new commands to the library by combining
existing commands using very simple syntax rules. It is thus very easy to build applications which can
be committed to flash memory. Using a fully debugged embedded operating system as a platform, it is
easy to develop application on top of it. This is the central theme of Firmware Engineering.

There are two schools of embedded systems design. The old school is entrenched in the mentality of 8-
bit microcontrollers with very limited resources, especially in ROM and RAM memories. It considers
an embedded operating system unnecessary and a total waste of memory. The new school is recently
liberated from memory constrains by Moore’s Law, and endeavors to shoehorn entire modern operating
systems like Windows CE and Linux into embedded systems. I think the truth lies somewhere in
between.

Microcontroller manufacturers have struggled mightily to give us more memory and more IO devices
into an SOC, System On a Chip. For embedded applications, flash memory seemed to be more
important than RAM memory. This is understandable. Flash memory is cheaper and more abundant
than RAM memory. Embedded applications do not need too much RAM for data storage, but they can
use lots of flash to store programs. But in Forth, I can use as much RAM as possible. It is not until now
that we see enough RAM memory on board so Forth can operate smoothly. STM32F4 is the first
microcontroller I used that I did not feel being constrained by not having enough RAM memory.

Here we are. STM32F4-Discovery Kit is fast, big, and cheap. There are lots of projects that I had
thought about but could not do because of hardware constraints. It is time to dig up these project ideas
and start implementing them. 1 MB of flash, 192 KB of RAM, 80 GPIO pins, 14 counter-timers, etc.,
etc. Oh, boy. Where shall I start?

26

3. Stm32eforth720 Source Code

This chapter is a code walkthrough session. I am reading aloud the source code in the assembly file
stm32eforth720.s. I will comment on the source code while reading it from the beginning to the end. At
some resting pointing, where there is a big chunk of code, I will take some time to explain the intention
and the implementation of the code. I hope you will be patient to walk along. In the end, I hope you
will get to know this eForth system well enough to make good use of it.

3.1 A Brief History of ARM eForth

Moore’s Law marches on, and more and more circuits are crowded into microcontrollers. In the last 15
years, I had programmed many ARM chips, and had amazed the progress of these chips. My approach
had always been to port an eForth system onto the chips and tried to make good use of them. Here is a
brief history of my eForth systems evolved with the ARM chips.

ARM7 eForth v1.10
In 2001, a then very young engineer, Mr. Chien-ja Wu in Taiwan FIG, ported the original eForth model
to an ARM platform BK100PHTB from Avnet. It had a big LCD screen, and was a very impressive
demo for the portability of eForth. He wrote a target compiler in Win32Forth to meta-compile eForth
system.

ARM7 eForth v1.20
In 2002, I ported eForth to Nintendo’s GameBoyAdvance, which was a very popular platform for game
developers in Taiwan. Nintendo released very detailed information on GBA for people to build games,
using flash memory cartridges. The ARM7TDMI chip in GBA had only 32KB of RAM, no flash. It had
lots of external flash and RAM to host very substantial applications, besides games.

ARM7 eForth v2.01.
In 2004, I moved the eForth target compile from FPC to weForth, which later evolved into F#. At that
time, I had worked on eForth2 for a while. I switched to subroutine thread model, and tried to optimize
each implementation for performance. 16-bit 8086eForth also evolved into 32-bit 386eForth v4.03.
That’s when v.4 came to being.

ARM7 eForth v5.06
In late 2004, I started working on ADuC7024, an interesting ARM7 chip from Analog Devices. It had
62 KB of flash and 8 KB of RAM, and could thus stand alone without external memory, or any other
support chip. I built a ForthStamp based on it. Business failed, because I could not handle the surface
mount packages myself, and manufacturing costs killed it. Nevertheless, it was a beautiful stamp-size
computer, a very small single chip computer with lots of analog capabilities, as Analog Devices was the
master of ADC and DAC. I also moved the source code from Forth meta-compiler to regular assembler,
using Keil’s uVision3 for assembly, flash programming and debugging.

ARM7 eForth v6.03
In 2008, Dave Jaffe in Silicon Valley FIG gave me an Olimex Development Board with an
AT91SAM7x256 ARM7 chip on it. It had a color LCD panel, and I used it to build a digital storage
oscilloscope. The chip had 64 KB of flash and 16 KB of RAM, and lots of IO devices. Porting eForth

27

from the ADuC project was very easy on the same uVision3 IDE platform. It was released as Sam7ef
eForth system.

STM32F4-Discovery Kit is a very nice evaluation board from STMicroelectronics. The
STM32F407VG chip on it has 1 MB flash, 192 KB RAM, and a ton of peripheral devices. I ported
Sam7ef.s over. Since STM32F4 is no longer an ARM chip, it is not necessary to keep the name ARM in
the new eForth implementations. I planned and completed 4 versions of eForth for this chip:

STM32eforth v7.01 The eForth dictionary resides in flash memory, and executes from flash memory.

It was aligned to the eForth2 model, with subroutine tread model and fully
optimized for performance.

STM32eforth v7.10 The eForth dictionary resides in flash memory. Flash memory is remapped to
virtual memory in Page 0. eForth executes from Page 0 memory.

STM32eforth v7.20 The eForth dictionary is still stored in flash memory. The dictionary is copied
from flash to RAM. RAM memory is remapped to virtual memory in Page 0.
eForth executes from Page 0 memory. Applications can be easily embedded in
turnkey system.

STM32eforth v7.30 v7.20 ported to the ForthDuino Board. A thank-you gift to Taiwan FIG.

;** **************************
; STM32eForth version 7.20
; Chen-Hanson Ting, July 2014

; Subroutine Threaded Forth Model
; Adapted to STM32F407-Discovery Board
; Assembled by Keil uVision 5.10

; Version 4.03
; Direct Threaded Forth Model
; Derived from 80386 eForth versin 4.02
; and Chien-ja Wu's ARM7 eForth version 1.01

; Subroutine thread (Branch-Link) model
; Register assignments
; IP R0 ;scratch
; SP R1
; RP R2
; UP R3
; WP R4 ;scratch
; TOS R5
; XP R6 ;scratch
; YP R7 ;scratch
; All Forth words are called by
; BL.W addr
; All low level code words are terminaled by
; BX LR (_NEXT)
; All high level Forth words start with
; STRFD RP!,{LR} (_NEST)
; All high level Forth words end with
; LDRFD RP!,{PC} (_UNNEST)
; Top of data stack is cached in R5
; USART1 at 115200 baud, 8 data bits, 1 stop bit, no parity
; TX on PB6 and RX on PB7.

28

; Version 5.02, 09oct04cht
; fOR ADuC702x from Analog Devices

; Version 6.01, 10apr08cht a
; Align to at91sam7x256
; Tested on Olimax SAM7-EX256 Board with LCD displa y
; Running under uVision3 RealView from Keil

; Version 7.01, 29jun14cht
; Ported to STM32F407-Discovery Board, under uVisio n 5.10
; Aligned to eForth 2 Model
; Assembled to flash memory and executed therefrom.
; Version 7.10, 30jun14cht
; Flash memory mapped to Page 0 where codes are exe cuted
; Version 7.20, 02jul14cht
; Irreducible Complexity
; Code copied from flash to RAM, RAM mapped to Page 0.
; TURNKEY saves current application from RAM to fla sh.

3.2 Virtual Forth Machine

3.2.1 Virtual Forth Machine on STM32F4

Forth is a computer model which can be implemented on any real CPU with reasonable resources. This
model is generally called a Virtual Forth Machine. The components of a Virtual Forth Machine are:

• A set of Forth commands stored in memory as a dictionary.
• A text interpreter to interpret lists of Forth commands in text form.
• A compiler to compile lists of Forth commands into lists of tokens
• A CPU to traverse nested token lists and execute Forth commands.
• A return stack to traverse nested command lists.
• A parameter stack to pass parameters among commands.

The following registers are used by a Virtual Forth Machine on a Cortex M4 CPU:

Forth Register Cortex M4 Register Function
SP R1 Parameter stack pointer
RP R2 Return stack pointer
UP R3 User area pointer
TOS R5 Top of parameter stack
LR R14 Link register
PC R15 Program counter

The Virtual Forth Machine is shown schematically as in the following figure:

29

The text interpreter processes lists of Forth command names in text form, delimited by white spaces.
The simple syntax is:
 <name1> <name2> <name3> … <nameN>

The Forth compiler converts lists of Forth command names to lists of tokens as new commands added to
the dictionary. The syntax is:
 : <new-name> <name1> <name2> <name3> … <name N> ;

The text interpreter processes lists of names, the external representations of Forth commands. The
Virtual Forth Machine processes lists of tokens, the internal representations of Forth commands. Forth
is LISP turned inside out.

3.2.2 Reset Vector and Reset Handler

In stm32eforth720, we do not allow interrupts, do not use the interrupt stack, and do not use the heap.
So, the startup code is reduced to a single reset vector, and a reset handler which initializes the Virtual
Forth Machine and starts executing eForth code.

Reset_Handler This routine is in the Reset Vector . When STM32F407 resets or boots up, it

jumps to this routine and starts running. This is absolutely the simplest reset handler
to bring up an interactive operating system. It calls up the following routines:
InitDevices
UNLOCK
REMAP
COLD

;** **************************
; Minimal boot-up code

 AREA RESET, CODE, READONLY

30

 THUMB
 EXPORT __Vectors ; linker needs it
 EXPORT Reset_Handler ; linker needs it

; Vector Table has only Reset Vector
__Vectors DCD 0x10000400 ; Top of hardware stack i n CCM
 DCD Reset_Handler ; Reset Handler

 ENTRY

Reset_Handler
 BL InitDevices ; RCC, GPIOs, USART1
 BL UNLOCK ; unlock flash memory
 BL REMAP ; remap RAM to page 0
 LDR R0,=COLD-MAPOFFSET ; start Forth
 BX R0
 ALIGN

UNLOCK Unlock flash memory so we can write to flash. It writes two specific consecutive
words into the Flash Key Registers FLASH_KEYR. UNLOCK will be discussed in
the Section 3.4.10 on flash memory.

COLD eForth cold start routine now in Page 0 of the virtual RAM memory. It is the last
command at the very end of this assembly source code in Section 3.6.5.

COLD is the last command defined in stm32eforth720.s file. However, it is the Forth system itself, and
this whole document is trying to explain it fully, following the source code. Here is a schematic drawing
of the contents of COLD. It is enclosed in a big box, which contains a smaller box QUIT, which contains
yet some smaller boxes. These boxes are Forth commands I will discuss later in details. There are also
many diamond boxes representing branch structures. In the middle of the diagram are two boxes
$INTERGRET and $COMPILE. They are the text interpreter and command compiler. This is the best
graphical representation of the eForth system I can give you. You have a bird’s eye view of eForth to
guide you through the following discussions in minute details on how this system is constructed. You
saw the forest. Later, we will see trees, flowers, and weeds. They are all essential parts of an ecosystem.

31

Since I am on the topic of COLD, I might just well show you the actual code of COLD. It first initializes
the registers R1 as SP, R2 as RP, R3 as UP and R5 as TOS. Then it copies the user variables from 0xC0
to 0xFF00. Then it executes HI to send out eForth sign-on message. Finally it falls into the text
interpreter loop QUIT. Now, Forth is running and you can communicate with it through a terminal.

COLD
; Initiate Forth registers
 MOVW R3,#0xFF00 ; user area
; MOVT R3,#0x2000 ;
 MOV R2,R3 ; return stack
 SUB R1,R2,#0x100 ; data stack
 MOV R5,#0 ; tos
 NOP
 _NEST
COLD1
 _DOLIT
 DCD UZERO-MAPOFFSET
 _DOLIT
 DCD UPP
 _DOLIT
 DCD ULAST-UZERO
 BL MOVE ;initialize user area
 BL PRESE ;initialize stack and TIB

32

 BL TBOOT
 BL ATEXE ;application boot
 BL OVERT
 B.W QUIT ;start interpretation

3.2.3 Remap RAM memory

The primary objective in stm32eForth720 is to run in RAM, so that new command can be added to the
dictionary freely. Once an application is completely debugged, the entire dictionary can then be saved
into the flash memory to become a turnkey system, ready to run at power-up. The REMAP routine first
copies the eForth dictionary image from flash memory to RAM memory. Then, it remaps RAM
memory to Page 0, and starts eForth executing in Page 0. To remap, we simply write a 3 into the System
Configuration Register SYSCFG.

Currently, stm32eforth720 uses only 64 KB of RAM memory, and only 64KB are copied from flash to
RAM. It can be easily modified to use all 192 KB of available RAM.

REMAP Copy eForth dictionary from flash memory to RAM. Then RAM memory is

remapped to Page 0.

;** **************************
; Remap eForth to execute from RAM
;
; Copy eForth from flash to RAM
REMAP
 mov r0,#0x8000000
 mov r1,#0x20000000
 add r2,r1,#0x10000
REMAP1
 cmp r1, r2
 ldrcc r3, [r0], #4
 strcc r3, [r1], #4
 bcc REMAP1

; Remap RAM to page 0
 movw R0,#0x3800 ; SYSCFG register
 movt R0,#0x4001
 mov R1,#3
 str R1,[R0,#0] ; map RAM to page 0
 bx lr
 align

3.2.4 Initialize IO Devices

Stm32eforth720 uses only USART1 for communication, and GPIOD to lit up the LEDs. However,
USART1 borrows pins PB6-7 for TX and RX; therefore, GPIOB has to be initialized. All three devices
need to be clocked, and the Reset Clock Controller RCC must be initialized.

The USART1 on STM32F407 is configured to 115200 baud, 1 start bit, 8 data bits, 1 stop bit, no parity,
no flow control. STM32F407 is clocked by a high speed internal clock HSI at 16 MHz on reset. Since

33

this HSI is factory trimmed to 1% accuracy, it is adequate to provide reliable communication on
USART1.

Just to make your head spin, STM32F4 has 9 16-bit GPIO devices, from GPIOA to GPIOI. Most of the
pins in these IO devices have multiply functions. They can be configures as input pins, output pins,
analog pins, or alternate function pins. UASRT1 uses PB6 pin in GPIOB port for TX and PB7 for RX.
These pins are initialized for alternate function AF7 for USART1.

Wonder how 139 in USART1_BRR register sets up 115200 baud for USART1? We have a 16 MHz HSI
clock. USART1 has a default divide by 16 pre-scaler, which divides HSI to 1 MHz.
1000000/115200=8.680. We have an integer part of 8, and a fractional part of 0.680. The fractional part
is stored in a 4 bit field, which has 16 divisions. 0.680*16=10.88. The closest integer is 11 (0xB). Put
8 in bit 4-7, and B in bit 0-3 of the USART1_BRR register, and you have 0x8B. That’s 139 in decimal.
Cool?

On STM32F4-Discovery Kit, there are 4 color LEDs in the middle for an accelerometer demo. They are
driven by GPIOD port, on pins PD12-15. It is nice to lit up these LEDs when eForth is running. Hence,
PD12-15 are configured as output pins, and the corresponding bits in the GPIOD_ODR are set to lit up
the LEDs. This is already half of a Blinky demo.

InitDevices Initialize USART1, GPIOB and GPIOD. These are the devices we use. All devices

in STM32F4 must be properly clocked. Therefore, we have to initialize the Reset and
Clock Control RCC to clock USART1, GPIOB and GPIOD. GPIOB lends pins to
USART1, and GPIOD drives the LEDs.

;** **************************
; Here are devices used by eForth
RCC EQU 0x40023800
GPIOB EQU 0x40020400
GPIOD EQU 0x40020C00
USART1 EQU 0x40011000
; Assumes system running from 16 MHz, HSI (Normal a t Reset)
; USART1 PB6 TX and PB7 RX; this works.

InitDevices
; init Reset Clock Control RCC registers
 ldr r0, =RCC ; RCC
 ldr r1, [r0, #0x30] ; RCC_AHB1ENR
 orr r1, #0xA ; GPIOBEN+GPIODEN
 str r1, [r0, #0x30]
 ldr r1, [r0, #0x44] ; RCC_APB2ENR
 orr r1, #0x10 ; USART1EN (1 << 4)
 str r1, [r0, #0x44]
; init GPIOB
 ldr r0, =GPIOB ; GPIOB
 ldr r1, [r0, #0x00] ; GPIOx_MODER
 orr r1, #0xA000 ; =AF Mode
 str r1, [r0, #0x00]
 ldr r1, [r0, #0x20] ; GPIOx_AFRL
 orr r1, #0x77000000 ; =AF7 USART1
 str r1, [r0, #0x20]

34

; init USART1
 ldr r0, =USART1 ; USART1
 movw r1, #0x0200C ; enable USART
 strh r1, [r0, #12] ; +12 USART_CR1 = 0x2000
 movs r1, #139 ; 16MHz/8.6875 (139, 0x8B) == 11520 0
 strh r1, [r0, #8] ; +8 USART_BR
; Configure PD12-15 as output with push-pull
 ldr r0, =GPIOD ; GPIOD
 mov r1, #0x55000000 ; output
 str r1, [r0, #0x00]
 mov r1, #0xF000 ; set PD12-15, turn on LEDs
 str r1, [r0, #0x14]
 bx lr
 ALIGN
 LTORG

3.2.5 Virtual Memory of STM32F407

STM32F407 has this memory map:

Virtual Memory 0x00000000-000FFFFF
Flash Memory 0x08000000-0807FFFF
Core Coupled Memory 0x10000000-1000FFFF
System Memory 0x1FFF0000-1FFF77FF
RAM Memory 0x20000000-2001FFFF
System and IO Devices 0x40000000-0xFFFFFFFF

1 MB of memory space from 0 to 0xFFFFF is the virtual memory, which can be mapped or aliased to
Flash memory, RAM memory, or boot ROM in the System Memory. Identical code in these physical
memories can assume logical addresses in the virtual memory or Page 0 memory, and can be executed as
though it is in a Page 0 physical memory.

Mapping RAM memory to Page 0 is especially convenient for stm32eforth720, because new commands
can be easily added in the RAM memory to extend the command dictionary. It is possible to have
eForth in the flash memory and add new command to the flash memory directly. However, it requires a
different set of memory store commands for the RAM memory and for the flash memory, and the system
becomes more complicated than it should be.

eForth dictionary is initially stored in the flash memory. Upon booting, Reset_Handler copies the
entire dictionary from flash memory to RAM memory, re-maps RAM memory to Page 0, and executes
from Page 0. The dictionary can grow at will, as new commands are added to RAM memory mapped to
Page 0. When an application is complete, the entire dictionary including added commands can be saved
back to the flash memory. When re-booted, the new eForth system will be activated. This way, we can
develop new application interactively in RAM memory, and then save the results in flash for a final
product to be released.

All the STM32F4 transfer instructions, branching and conditional branching, use PC relative addressing,
and are assembled correctly for physical memory and for virtual memory. The high level branching
commands in eForth use absolute addresses. So are the link field addresses which link the eForth

35

commands as a linear list. These absolute addresses have to be corrected by a constant in MAPOFFSET.
If the code is executed in the physical flash memory, MAPOFFSET is 0. If the code is executed in the
virtual memory, MAPOFFSET must be 0x8000000. User variables stored in RAM must be so corrected
with RAMOFFSET.

Memory allocation of eForth system inside Page 0 is as follows:

Memory allocation Usage
0000-0007 Reset vector
0008-00BF Reset handler and device inits
00C0-00FF Initial user variables
0100-2127 Forth dictionary
2128- Word buffer
2178- PAD buffer
-FE00 Parameter stack
FE00- TIB, terminal input buffer
-FF00 Return stack
FF00-FF3F User variables

A graphical representation of the eForth memory map is show in the following figure:

36

3.2.6 Constants Used by Assembler

Constant Value Function
VER 7 Major release version
EXT 2 Minor extension
RAMOFFSET 0x20000000 For remapping. 0 if RAM is not remapped.
ROMOFFSET 0x08000000 For remapping. 0 if flash is not remapped.
COMPO 0x40 Lexicon compile-only bit
IMEDD 0x80 Lexicon immediate bit
BASEE 16 Default radix for number conversion
BKSPP 8 Back space ASCII character
LF 10 Line feed ASCII character
CRR 13 Carriage return ASCII character
RPP 0xFF00 Top of return stack (RP0)
TIBB 0xFE00 Terminal input buffer (TIB)
UPP 0xFF00 Start of user area (UP0)
SPP 0xFE00 Top of parameter stack (SP0)

;** **************************
; Version control

VER EQU 0x07 ;major release version
EXT EQU 0x20 ;minor extension

; Constants

;RAMOFFSET EQU 0x00000000 ;absolute
;MAPOFFSET EQU 0x00000000 ;absolute
RAMOFFSET EQU 0x20000000 ;remap
MAPOFFSET EQU 0x08000000 ;remap

COMPO EQU 0x040 ;lexicon compile only
IMEDD EQU 0x080 ;lexicon immediate bit
MASKK EQU 0x0FFFFFF1F ;lexicon bit mask, allowed fo r Chineze character

CELLL EQU 4 ;size of a cell
BASEE EQU 16 ;default radix
VOCSS EQU 8 ;depth of vocabulary stack

BKSPP EQU 8 ;backspace
LF EQU 10 ;line feed
CRR EQU 13 ;carriage return
ERR EQU 27 ;error escape
TIC EQU 39 ;tick

;; Memory allocation 0//code>--//--<sp//tib>--rp//u ser//
;; 0000 ;RAM memory mapped to Page 0, Reset vector
;; 0008 ;init devices
;; 00C0 ;initial system variables
;; 0100 ;Forth dictionary
;; 2150 ;top of dictionary, HERE

37

;; 2154 ;WORD buffer
;; FE00 ;top of data stack
;; FE00 ;TIB terminal input buffer
;; FF00 ;top of return stack
;; FF00 ;system variables
;; 8000000 ;flash, code image
;; 1000400 ;top of hardware stack for interrupts
;; 20000000 ;RAM

SPP EQU 0x2000FE00-RAMOFFSET ;top of data stack (S P0)
TIBB EQU 0x2000FE00-RAMOFFSET ;terminal input buff er (TIB)
RPP EQU 0x2000FF00-RAMOFFSET ;top of return stack (RP0)
UPP EQU 0x2000FF00-RAMOFFSET ;start of user area (UP0)
DTOP EQU 0x2000FC00-RAMOFFSET ;start of usable RAM area (HERE)

3.2.7 Assembly Macros

_NEXT, _NEST and _UNNEST are collectively called the 'inner interpreter' of eForth. They are the
corner stones of a Virtual Forth Machine as they control the execution flow of Forth commands in the
Cortex M4 system.

_NEXT Terminate a primitive command. It is like a return from subroutine. It assembles

a BX LR instruction, which jumps to the next command pointed to by the Link
Register LR in a token list calling this primitive command. _NEXT thus allows
the Virtual Forth Machine to exit a primitive command and resume processing
the token list in a compound command which calls this primitive command.

;** ************************
; Assemble inline direct threaded code ending.

 MACRO
 _NEXT ;end low level word
 BX LR
 MEND

_NEST Initiate a compound command. It pushes LR register onto the return stack, and
then starts executing the following token list, as branch-link instructions, using
LR to scan the token list. It assembles a single instruction STMFD R2!,{LR} ,
showing that Cortex M4 is a very efficient host for a Virtual Forth Machine.

 MACRO
 _NEST ;start high level word
 STMFD R2!,{LR}
 MEND

_UNNEST Terminate a compound command. It undoes what _NEST accomplished.
_UNNEST pops the top item on the return stack into the PC register.
Consequently, execution returns to the token list which calls this compound
command, briefly interrupted by calling this compound command. It assembles a
single Cortex M4 instruction LDMFD R2!,{PC}.

 MACRO

38

 _UNNEST ;end high level word
 LDMFD R2!,{PC}
 MEND

A compound eForth commands contains a token list. Tokens are in the form of branch and link
BL<addr> instructions in Cortex M4 CPU. Tokens may take other forms depending upon the Forth
implementation. In the original eForth1 direct thread model, tokens were code field addresses of Forth
commands. In the later eForth2 subroutine thread model, tokens were subroutine call instructions. In
this stm32eforth720 implementation, tokens are BL instructions.

BL instructions may call other compound instructions, and the return addresses in the LR register must
be nested on the return stack. At the end of a nested branch, there is always a leave of primitive
command containing machine instructions. Nesting and unnesting are shown in the following figure.
As shown in their macro definitions, _NEXT, _NEST and _UNNEST all assemble single Cortex M4
instructions, and the Virtual Forth Machine hosted on M4 is very efficient and very fast, because the
calling, returning, nesting and unnesting require very little resources in either memory space of in clock
cycles.

Token lists in the code field of compound commands are generally lists of BL instructions. However,
other structures can be embedded in token lists. The most prevalent structure is integer literal structure,
which pushes a integer value on parameter stack in run time. Numbers cannot be embedded in a token

39

list by themselves. They have to be enclosed in a integer literal structure which begins with a BL
doLIT instructions and ends with the integer value. The macro _doLIT assembles the BL doLIT
instruction. The integer value must be assembled with a DCD directive.

_DOLIT Start a integer literal structure in a compound command. It assembles a BL

doLIT instruction to begin an integer literal structure. It is followed by the
value of the integer. In run time, doLIT retrieves this integer and pushes it on
the parameter stack.

 MACRO
 _DOLIT ;long literals
 BL DOLIT
 MEND

Virtual Forth Machine has a dual stack architecture and a parameter stack is used to handle numeric
parameters passing among nested commands. For efficiency, the top item of the parameter stack is
cached in R5 register, and the body of the stack is managed by stack pointer SP in R1. The most
common stack operations are pushing R5 on the external stack, and popping the top of external stack
back into R5 register. These two operations are defined as macros _PUSH and _POP. Actually they are
the core of the primitive Forth stack commands DUP and DROP.

_PUSH Push the top item on the parameter stack, which is cached in R5 register, on the
external parameter stack. It is used to implement DUP command, and other
commands which push new data on the parameter stack.

 MACRO
 _PUSH ;push R5 on data stack
 STR R5,[R1,#-4]!
 MEND

_POP Pop external parameter stack and copy the popped item into R5 register, TOS. It
is used to implement DROP commands, and many other commands consuming
top items on the parameter stack.

 MACRO
 _POP ;pop data stack to R5
 LDR R5,[R1],#4
 MEND

3.2.8 User Variables

In a multitasking system, many user share one CPU and other resources in a computing system. Each
user has a private memory area to store many variables necessary to run his task. The system can leave
a task temporarily to serve other tasks, and return to this task continuing the unfinished work, if each
task has its own copies of user variables. eForth1 was designed with multitasking in mind, and the term
user variable persisted. In a single user environment, user variables can be called system variables.

Memory location 0xC0-0xFF is allocated for a table storing initial values of user variables, which are
used by eForth interpreter and compiler to perform necessary functions. This table is copied from 0xC0

40

to 0xFF00 when eForth enters its cold start routine COLD.

User Variable Initial Value

Address
Function

'BOOT 0xC4 Execution vector to start application command.
BASE 0xC8 Radix base for numeric conversion.
tmp 0xCC Scratch pad.
SPAN 0xD0 Number of characters received by ACCEPT.
>IN 0xD4 Input buffer character pointer used by text

interpreter.
#TIB 0xD8 Number of characters in input buffer.
'TIB 0xDC Address of Terminal Input Buffer.
'EVAL 0xE0 Execution vector switching between

$INTERPRET and $COMPILE.
HLD 0xE4 Pointer to a buffer holding next digit for numeric

conversion.
CONTEXT 0xE8 Vocabulary array pointing to last name field in

dictionary.
CP 0xEC Pointer to top of dictionary, the first available

flash memory location to compile new command
DP 0xF0 Pointer to the first available RAM memory

location. Not used in RAM based system,
LAST 0xF4 Pointer to name field of last command in

dictionary.

;** ************************
; COLD start moves the following to USER variables.
; MUST BE IN SAME ORDER AS USER VARIABLES.

 ALIGN 64 ; align to page boundary

UZERO
 DCD 0 ;Reserved
 DCD HI-MAPOFFSET ;'BOOT
 DCD BASEE ;BASE
 DCD 0 ;tmp
 DCD 0 ;SPAN
 DCD 0 ;>IN
 DCD 0 ;#TIB
 DCD TIBB ;TIB
 DCD INTER-MAPOFFSET ;'EVAL
 DCD 0 ;HLD
 DCD LASTN-MAPOFFSET ;CONTEXT
 DCD CTOP-MAPOFFSET ;FLASH
 DCD CTOP-MAPOFFSET ;RAM
 DCD LASTN-MAPOFFSET ;LAST
 DCD 0,0 ;reserved
ULAST
 ALIGN

41

3.2.9 USART1 Communication

Stm32eforth720 uses USART1 to communication with a terminal. On STM32F407VG, USART1 can be
configured to use either Pins PA9-10 or PB6-7 for communication. Since the micro USB port CN5 on
STM32F4-Discovery Kit is using PA9-10 pins, I have to use PB6-7 for eForth. I am using a separate
Windows XP PC to run HyperTerminal through a USB to serial converter, which happens to be an
Arduino Uno Kit. Arduino Uno Kit has an integrated USB to serial converter connecting the
STmega328P chip to a host PC. To use its USB to serial converter, I remove the ATmega328P chip, and
connect the PB6 (TX) on Discovery to D1 port on Arduino, the PB7 (RX) on Discovery to D0 port on
Arduino. A ground wire connects the ground pins on both boards. My Discovery-Arduino connection is
show in the following picture:

?KEY and EMIT are the two primitive commands atm32eforth720 communicate with a terminal. In
the ?KEY code, notice the code fragment
 DCD 0
_QRX DCB 4
 DCB "?KEY"
 ALIGN

It builds an header for the command ?KEY. All commands which are available to the user have similar
headers. The names of commands are linked into a linear chain to be searched by the Forth text
interpreter. There are many commands which are used to build the eForth system, but rarely or never
used by users. I commented out the header of these commands to save memory space, and also hide
these command from ordinary users so they will not ask too many embarrassing questions. The header
has a 32-bit link field and a variable length name field, wherein the first byte contains the length of the
name. The name field is zero filled to 32-bit world boundary. The code field follows the name field, as
shown in the following figure:

42

?KEY Examine the status register USART1_SR to see if there is a valid

character in the receiver. If a character is received, ?KEY reads the ASCII
code of the character in data register USART1_DR and pushes it on the
parameter stack. It then pushes a true flag on the top. If no character is
received, it only pushes a false flag on the parameter stack.

;** ********************
; Start of Forth dictionary
; usart1

; ?RX (-- c T | F)
; Return input character and true, or a false if no input.
 DCD 0
_QRX DCB 4
 DCB "?KEY"
 ALIGN
QKEY
QRX
 _PUSH
 ldr r4, =0x40011000 ; USART1 F2/F4
 ldrh r6, [r4, #0] ; USART->SR
 ands r6, #0x20 ; RXE
 BEQ QRX1
 LDR R5, [R4, #4]
 _PUSH
 MVNNE R5,#0
QRX1
 MOVEQ R5,#0
 _NEXT

EMIT Send a character to the transmitter. It first waits on the transmitter buffer
empty flag in USART1_SR register. When the transmitter is ready to

43

transmit, it pops the character off the parameter stack and writes it into
the transmitter data register USART1_DR. USART1 transmits the
character.

; TX! (c --)
; Send character c to the output device.

 DCD _QRX-MAPOFFSET
_TXSTO DCB 4
 DCB "EMIT"
 ALIGN
TXSTO
EMIT
TECHO
 ldr r4, =0x40011000 ; USART1 F2/F4
TX1 ldrh r6, [r4, #0] ; USART->SR
 ands r6, #0x80 ; TXE
 beq TX1
 strh r5, [r4, #4] ; USART->DR
 _POP
 _NEXT

 ALIGN
 LTORG

3.3 eForth Kernel

eForth kernel is a group of simple Forth commands which are necessary to build the Forth operating
system, and also useful to you when you develop applications programs. Forth has two classes of
commands: primitive command which contains machine instructions, and compound command which
contains a token list. Simple commands are grouped together in a kernel for the convenience of
discussion. After the kernel, specialized commands ar grouped together for the text interpreter, Forth
compiler, and debugging tools.

3.3.1 Original Primitive Commands

One of the very important features of the original eForth1 model was a very small machine dependent
kernel of primitive commands. A small set of primitive commands allows eForth1 to be ported to many
CPUs very conveniently. The selection of commands in this kernel is based on the criteria that they are
very difficult if not impossible to synthesize from other primitive commands. From this set of primitive
commands, all other Forth commands are derived. The primitive commands in the original eForth1
model are the following:

System interface: ?RX, TX!, !IO

Inner interpreters: DOLIT, DOLIST, NEXT, ?BRANCH, BRANCH, EXECUTE, EXIT
Memory access: ! , @, C!, C@
Return stack: RP@, RP!, R>, R@, R>
Data stack: SP@, SP!, DROP, DUP, SWAP, OVER
Logic: 0<, AND, OR, XOR
Arithmetic: UM+

44

In the current STM32eForth720 implementation, I re-coded and converted as many compound
commands as I can to primitive commands to improve execution speed. Since many Cortex M4
instructions match very well with many eForth compound commands, expanding the primitive
commands allows us to fully utilize the Cortex M4 core.

NOP No operation.

;** ************************
; The kernel

; NOP (-- w)
; Push an inline literal.

 DCD _TXSTO-MAPOFFSET
_NOP DCB 3
 DCB "NOP"
 ALIGN
NOP
 _NEXT
 ALIGN

3.3.2 Integer Literals

Integer literals are by far the most numerous data structure in compound commands other than regular
branch-link tokens. Address literals are used to build control structures. String literals are used to
embed text strings in compound commands.

doLIT Push the next program word onto the parameter stack as an integer literal instead of an
instruction to be executed by Cortex M4 CPU. It allows integers to be compiled as in-line
literals, supplying data to the parameter stack at run time. doLIT is not used by itself, but
rather compiled by LITERAL which inserts BL doLIT and its associated integer into the
token list under construction.

; doLIT (-- w)
; Push an inline literal.

; DCD _NOP-MAPOFFSET
;_LIT DCB COMPO+5
; DCB "doLIT"
; ALIGN
DOLIT
 _PUSH
 BIC LR,LR,#1 ; clear b0 in LR
 LDR R5,[LR],#4 ; get literal at word boundary
 ORR LR,LR,#1 ; aet b0 in LR
 _NEXT
 ALIGN

EXECUTE Pop the code field address from the parameter stack and executes that command. This
powerful command allows you to execute any command which is not a part of a branch-
link instruction list. Bit b0 of the address must be set to conform to THUMB2

45

requirement.

; EXECUTE (ca --)
; Execute the word at ca.

 DCD _NOP-MAPOFFSET
_EXECU DCB 7
 DCB "EXECUTE"
 ALIGN
EXECU
 ORR R4,R5,#1 ; b0=1
 _POP
 BX R4
 ALIGN

3.3.3 Loop and Branch Commands

Forth uses three different types of address literals. next , ?branch and branch are followed not by
branch-link instructions but by addresses to locations in a list to be executed next. These address literals
are the building blocks upon which loop structures and branch structures are constructed. An address
literal is a branch command followed by a branch address which causes execution to be transferred to
that address. The branch address most often points to a different location in the token list of the same
compound command.

next is compiled by NEXT. ?branch is compiled by IF, WHILE and UNTIL . branch is
compiled by AFT, ELSE, REPEAT and AGAIN, as show in the next figure.

46

next Terminate an indexed loop structures in a token list. A loop starts with >R
which pushes a loop index on the return stack. When next is executed,
it decrements this loop index on the return stack. If resulting index is not
negative, jump back to the address in the next cell and repeat the loop. If
the resulting index is negative, pop the return stack to discard the index,
and exit the loop.

; next (--)
; Run time code for the single index loop.
; : next (--) \ hilevel model
; r> r> dup if 1 - >r @ >r exit then drop cell+ >r ;

; DCD _EXECU-MAPOFFSET
;_DONXT DCB COMPO+4
; DCB "next"
; ALIGN
DONXT
 LDR R4,[R2]
 MOVS R4,R4
 BNE NEXT1
 ADD R2,R2,#4
 ADD LR,LR,#4
 _NEXT
NEXT1 SUB R4,R4,#1
 STR R4,[R2]
 LDR LR,[LR,#-1] ; handle b0 in LR
 ORR LR,LR,#1

47

 _NEXT

?branch Start a conditional branch in compound commands. In run time, if TOS is
0, branch to the address following this command; otherwise, continue the
next command after the address.

; ?branch (f --)
; Branch if flag is zero.

; DCD _DONXT-MAPOFFSET
;_QBRAN DCB COMPO+7
; DCB "?branch"
; ALIGN
QBRAN
 MOVS R4,R5
 _POP
 BNE QBRAN1
 LDR LR,[LR,#-1]
 ORR LR,LR,#1
 _NEXT
QBRAN1 ADD LR,LR,#4
 _NEXT

branch Start an unconditional branch in compound commands. In run time,
branch to the address following this command.

; branch (--)
; Branch to an inline address.

; DCD _QBRAN-MAPOFFSET
;_BRAN DCB COMPO+6
; DCB "branch"
; ALIGN
BRAN
 LDR LR,[LR,#-1]
 ORR LR,LR,#1
 _NEXT
 ALIGN

EXIT Terminate a compound command before reaching the end. Since it is
executed as a BL EXIT command, the return address must be popped
off the return stack and then a _NEXT instruction is executed.

; EXIT (--)
; Exit the currently executing command.

 DCD _EXECU-MAPOFFSET
_EXIT DCB 4
 DCB "EXIT"
 ALIGN
EXIT
 _UNNEST

48

3.3.4 Memory Commands

The 4 memory commands @, !, C@, and C! access data and code stored in memory. They access the
entire memory space of STM32F4, all type of memory devices and all IO devices. Since all IO devices
are mapped in memory space, their registers can be read and written at will. You can control STM32F4
chip interactively using these commands. This is the greatest advantage stm32eForth has over other
operating system which severely restrict your access to memory and IO devices.

You can use @ and C@ to read flash memory. To write flash memory, we have an I! command which
will be discussed in Section 3.6.5 on flash memory.

! Store the 32-bit data w. the second item on parameter stack, into the

address a on top of the parameter stack.

; ! (w a --)
; Pop the data stack to memory.

 DCD _EXIT-MAPOFFSET
_STORE DCB 1
 DCB "!"
 ALIGN
STORE
 LDR R4,[R1],#4
 STR R4,[R5]
 _POP
 _NEXT

@ Read a 32-bit data w stored in the address a on top of the parameter
stack. The address is a byte address pointing to a location in memory.

; @ (a -- w)
; Push memory location to the data stack.

 DCD _STORE-MAPOFFSET
_AT DCB 1
 DCB "@"
 ALIGN
AT
 LDR R5,[R5]
 _NEXT

C! Store an 8-bit data c, the second item on parameter stack, into the
address a on top of the parameter stack.

; C! (c b --)
; Pop the data stack to byte memory.

 DCD _AT-MAPOFFSET
_CSTOR DCB 2
 DCB "C!"
 ALIGN
CSTOR

49

 LDR R4,[R1],#4
 STRB R4,[R5]
 _POP
 _NEXT

C@ Read an 8-bit data c stored in the address a on top of the parameter
stack.

; C@ (b -- c)
; Push byte memory location to the data stack.

 DCD _CSTOR-MAPOFFSET
_CAT DCB 2
 DCB "C@"
 ALIGN
CAT
 LDRB R5,[R5]
 _NEXT

3.3.5 Return Stack

eForth system uses the return stack for two specific purposes: to save return addresses while nest and
unnest through token lists, and to store the loop index for a FOR-NEXT loop.

Return stack is used primarily by the Virtual Forth Machine to save return addresses to be processed
later. It is also a convenient place to store data temporarily. The return stack can thus be considered as
an extension of the parameter stack. However, one must be very careful in using the return stack for
temporary storage. The data pushed on the return stack must be popped off before _UNNEST is
executed. Otherwise, _UNNEST will get the wrong address to return to, and the system generally will
crash. Since >R and R> are very dangerous to use, they are designed as compile-only commands
and you can only use them in the compiling mode.

In setting up a loop, FOR compiles >R, which pushes a loop index from the parameter stack to the return
stack. Inside the FOR-NEXT loop, the running index can be recalled by R@. _NEXT compiles BL
next with an address after FOR. When next is executed, it decrements the loop index on the top of
the return stack. If the index becomes negative, the loop is terminated; otherwise, next jumps back to
the command after FOR. Therefore, if you have to exit a FOR-NEXT loop prematurely, you have to pop
the loop index off the return stack first. Otherwise, you will surely crash the system because loop index
is definitely not a good address to return to.

R> Pop a number off the return stack and pushes it on the parameter stack.

; R> (-- w)
; Pop the return stack to the data stack.

 DCD _CAT-MAPOFFSET
_RFROM DCB 2
 DCB "R>"
 ALIGN
RFROM

50

 _PUSH
 LDR R5,[R2],#4
 _NEXT
 ALIGN

R@ Copy the top item on the return stack and pushes it on the parameter stack
without disturbing the return stack

; R@ (-- w)
; Copy top of return stack to the data stack.

 DCD _RFROM-MAPOFFSET
_RAT DCB 2
 DCB "R@"
 ALIGN
RAT
 _PUSH
 LDR R5,[R2]
 _NEXT

>R Pop a number off the parameter stack and pushes it on the return stack.

; >R (w --)
; Push the data stack to the return stack.

 DCD _RAT-MAPOFFSET
_TOR DCB COMPO+2
 DCB ">R"
 ALIGN
TOR
 STR R5,[R2,#-4]!
 _POP
 _NEXT
 ALIGN

3.3.6 Parameter Stack

The parameter stack is the central place where all numerical data are processed, and where parameters
are passed among commands. The stack items have to be arranged properly so that they can be retrieved
in the Last-In-First-Out (LIFO) manner. When stack items are out of order, they can be rearranged by
the stack commands DUP, SWAP, OVER and DROP. There are many other stack commands useful in
manipulating stack items, but these four are considered to be the minimum set, or the classic stack
operators.

SP@ Return the depth of parameter stack. It is used to determine the

depth of the parameter stack, and to detect stack underflow error
condition.

; SP@ (-- a)
; Push the current data stack pointer.

 DCD _TOR-MAPOFFSET
_SPAT DCB 3

51

 DCB "SP@"
 ALIGN
SPAT
 _PUSH
 MOV R5,R1
 _NEXT

DROP Pop the parameter stack, discards the top item on it.

; DROP (w --)
; Discard top stack item.

 DCD _SPAT-MAPOFFSET
_DROP DCB 4
 DCB "DROP"
 ALIGN
DROP
 _POP
 _NEXT
 ALIGN

DUP Duplicate the top item and pushes it on the parameter stack.

; DUP (w -- w w)
; Duplicate the top stack item.

 DCD _DROP-MAPOFFSET
_DUPP DCB 3
 DCB "DUP"
 ALIGN
DUPP
 _PUSH
 _NEXT
 ALIGN

SWAP Exchange the two top item on the parameter stack.

; SWAP (w1 w2 -- w2 w1)
; Exchange top two stack items.

 DCD _DUPP-MAPOFFSET
_SWAP DCB 4
 DCB "SWAP"
 ALIGN
SWAP
 LDR R4,[R1]
 STR R5,[R1]
 MOV R5,R4
 _NEXT

OVER Duplicates the second item and pushes it on the parameter stack.

; OVER (w1 w2 -- w1 w2 w1)
; Copy second stack item to top.

52

 DCD _SWAP-MAPOFFSET
_OVER DCB 4
 DCB "OVER"
 ALIGN
OVER
 _PUSH
 LDR R5,[R1,#4]
 _NEXT

3.3.7 Logic and Arithmetic Commands

The only primitive command which cares about logic is ?branch . It tests the top item on the stack. If
it is zero, ?branch will branch to the following address. If it is not zero, ?branch will ignore the
address and execute the command after the branch address. Thus we distinguish two logic values, zero
for false and non-zero for true . Numbers used this way are called logic flags which can be either
true or false . Logic flags thus cause conditional branching in control structures.

0< Examine the top item n on the parameter stack for its negativeness. If n is

negative, return a -1 for true. If n is 0 or positive, return a 0 for false.

; 0< (n -- t)
; Return true if n is negative.

 DCD _OVER-MAPOFFSET
_ZLESS DCB 2
 DCB "0<"
 ALIGN
ZLESS
 MOV R4,#0
 ADD R5,R4,R5,ASR #32
 _NEXT
 ALIGN

AND Pop top two items on the parameter stack and pushes their bitwise logic
AND results on the parameter stack.

; AND (w w -- w)
; Bitwise AND.

 DCD _ZLESS-MAPOFFSET
_ANDD DCB 3
 DCB "AND"
 ALIGN
ANDD
 LDR R4,[R1],#4
 AND R5,R5,R4
 _NEXT
 ALIGN

OR Pop top two items on the parameter stack and pushes their bitwise logic OR
results on the parameter stack.

; OR (w w -- w)

53

; Bitwise inclusive OR.

 DCD _ANDD-MAPOFFSET
_ORR DCB 2
 DCB "OR"
 ALIGN
ORR
 LDR R4,[R1],#4
 ORR R5,R5,R4
 _NEXT
 ALIGN

XOR Pop top two items on the parameter stack and pushes their bitwise logic
exclusive OR results on the parameter stack.

; XOR (w w -- w)
; Bitwise exclusive OR.

 DCD _ORR-MAPOFFSET
_XORR DCB 3
 DCB "XOR"
 ALIGN
XORR
 LDR R4,[R1],#4
 EOR R5,R5,R4
 _NEXT
 ALIGN

UM+ Add top two unsigned number on the parameter stack and replaces them
with the unsigned sum of these two numbers and a carry on top of the sum.
eForth does not have access to the carry flag in STM32F4 CPU, and UM+
preserves the carry flag to be used in double integer arithmetic operations.
In stm32eforth720, most arithmetic commands are coded in assembly and
UM+ is not used often.

; UM+ (w w -- w cy)
; Add two numbers, return the sum and carry flag.

 DCD _XORR-MAPOFFSET
_UPLUS DCB 3
 DCB "UM+"
 ALIGN
UPLUS
 LDR R4,[R1]
 ADDS R4,R4,R5
 MOV R5,#0
 ADC R5,R5,#0
 STR R4,[R1]
 _NEXT

3.3.8 Extended Primitive Commands

This group of Forth commands are commonly used in writing Forth applications. In the original eForth1
Model they were coded as compound commands for portability. Here in STM32eForth720

54

implementations, they are coded in assembly language for performance.

RSHIFT Pop TOS # off parameter stack, and use it as a count to shift the next item w right by that

many bits.

; RSHIFT (w # -- w)
; Right shift # bits.

 DCD _UPLUS-MAPOFFSET
_RSHIFT DCB 6
 DCB "RSHIFT"
 ALIGN
RSHIFT
 LDR R4,[R1],#4
 MOV R5,R4,ASR R5
 _NEXT
 ALIGN

LSHIFT Pop TOS # off parameter stack, and use it as a count to shift the next item w left by that many
bits.

; LSHIFT (w # -- w)
; Right shift # bits.

 DCD _RSHIFT-MAPOFFSET
_LSHIFT DCB 6
 DCB "LSHIFT"
 ALIGN
LSHIFT
 LDR R4,[R1],#4
 MOV R5,R4,LSL R5
 _NEXT
 ALIGN

+ Add the top item on the parameter to the second item, and then pops the top item off the
parameter stack.

; + (w w -- w)
; Add.

 DCD _LSHIFT-MAPOFFSET
_PLUS DCB 1
 DCB "+"
 ALIGN
PLUS
 LDR R4,[R1],#4
 ADD R5,R5,R4
 _NEXT

 - Subtract the top item on the parameter stack from the second item, and then pops the top
item off the parameter stack.

; - (w w -- w)
; Subtract.

55

 DCD _PLUS-MAPOFFSET
_SUBB DCB 1
 DCB "-"
 ALIGN
SUBB
 LDR R4,[R1],#4
 RSB R5,R5,R4
 _NEXT
 ALIGN

* Multiply the top item on the parameter to the second item, and then pops the top item off the
parameter stack.

; * (w w -- w)
; Multiply.

 DCD _SUBB-MAPOFFSET
_STAR DCB 1
 DCB "*"
 ALIGN
STAR
 LDR R4,[R1],#4
 MUL R5,R4,R5
 _NEXT
 ALIGN

UM* Unsigned multiplication. Multiply the top item on the parameter to the second item. Return
unsigned double integer product.

; UM* (w w -- ud)
; Unsigned multiply.

 DCD _STAR-MAPOFFSET
_UMSTA DCB 3
 DCB "UM*"
 ALIGN
UMSTA
 LDR R4,[R1]
 UMULL R6,R7,R5,R4
 STR R6,[R1]
 MOV R5,R7
 _NEXT

M* Signed multiplication. Multiply the top item on the parameter to the second item. Return
signed double integer product.

; M* (w w -- d)
; Unsigned multiply.

 DCD _UMSTA-MAPOFFSET
_MSTAR DCB 2
 DCB "M*"
 ALIGN
MSTAR

56

 LDR R4,[R1]
 SMULL R6,R7,R5,R4
 STR R6,[R1]
 MOV R5,R7
 _NEXT

1+ Increment TOS by 1.

; 1+ (w -- w+1)
; Add 1.

 DCD _MSTAR-MAPOFFSET
_ONEP DCB 2
 DCB "1+"
 ALIGN
ONEP
 ADD R5,R5,#1
 _NEXT
 ALIGN

1- Decrement TOS by 1.

; 1- (w -- w-1)
; Subtract 1.

 DCD _ONEP-MAPOFFSET
_ONEM DCB 2
 DCB "1-"
 ALIGN
ONEM
 SUB R5,R5,#1
 _NEXT
 ALIGN

2+ Increment TOS by 2.

; 2+ (w -- w+2)
; Add 1.

 DCD _ONEM-MAPOFFSET
_TWOP DCB 2
 DCB "2+"
 ALIGN
TWOP
 ADD R5,R5,#2
 _NEXT
 ALIGN

2- Decrement TOS by 2.

; 2- (w -- w-2)
; Subtract 2.

 DCD _TWOP-MAPOFFSET
_TWOM DCB 2

57

 DCB "2-"
 ALIGN
TWOM
 SUB R5,R5,#2
 _NEXT
 ALIGN

CELL+ Increment TOS by 4.

; CELL+ (w -- w+4)
; Add 4.

 DCD _TWOM-MAPOFFSET
_CELLP DCB 5
 DCB "CELL+"
 ALIGN
CELLP
 ADD R5,R5,#4
 _NEXT
 ALIGN

CELL- Decrement TOS by 4.

; CELL- (w -- w-4)
; Subtract 4.

 DCD _CELLP-MAPOFFSET
_CELLM DCB 5
 DCB "CELL-"
 ALIGN
CELLM
 SUB R5,R5,#4
 _NEXT
 ALIGN

BL Push a blank or space character (ASCII 32) on parameter stack. BL is often used in parsing
out space delimited strings.

; BL (-- 32)
; Blank (ASCII space).

 DCD _CELLM-MAPOFFSET
_BLANK DCB 2
 DCB "BL"
 ALIGN
BLANK
 _PUSH
 MOV R5,#32
 _NEXT
 ALIGN

CELLS Multiply TOS by 4.

; CELLS (w -- w*4)
; Multiply 4.

58

 DCD _BLANK-MAPOFFSET
_CELLS DCB 5
 DCB "CELLS"
 ALIGN
CELLS
 MOV R5,R5,LSL#2
 _NEXT
 ALIGN

CELL/ Divide TOS by 4.

; CELL/ (w -- w*4)
; Divide by 4.

 DCD _CELLS-MAPOFFSET
_CELLSL DCB 5
 DCB "CELL/"
 ALIGN
CELLSL
 MOV R5,R5,ASR#2
 _NEXT
 ALIGN

2* Multiply TOS by 2.

; 2* (w -- w*2)
; Multiply 2.

 DCD _CELLSL-MAPOFFSET
_TWOST DCB 2
 DCB "2*"
 ALIGN
TWOST
 MOV R5,R5,LSL#1
 _NEXT
 ALIGN

2/ Divide TOS by 2.

; 2/ (w -- w/2)
; Divide by 2.

 DCD _TWOST-MAPOFFSET
_TWOSL DCB 2
 DCB "2/"
 ALIGN
TWOSL
 MOV R5,R5,ASR#1
 _NEXT
 ALIGN

?DUP Duplicate the top item on the parameter stack if it is non-zero.

; ?DUP (w -- w w | 0)

59

; Conditional duplicate.

 DCD _TWOSL-MAPOFFSET
_QDUP DCB 4
 DCB "?DUP"
 ALIGN
QDUP
 MOVS R4,R5
 STRNE R5,[R1,#-4]!
 _NEXT
 ALIGN

ROT Rotate the top three items on the parameter stack. The third item w1 is pulled out to the top.
The second item w2 is pushed down to the third item, and the top item w3 is pushed down
to be the second item.

; ROT (w1 w2 w3 -- w2 w3 w1)
; Rotate top 3 items.

 DCD _QDUP-MAPOFFSET
_ROT DCB 3
 DCB "ROT"
 ALIGN
ROT
 LDR R4,[R1]
 STR R5,[R1]
 LDR R5,[R1,#4]
 STR R4,[R1,#4]
 _NEXT
 ALIGN

2DROP Discard the top two items on the parameter stack.

; 2DROP (w1 w2 --)
; Drop top 2 items.

 DCD _ROT-MAPOFFSET
_DDROP DCB 5
 DCB "2DROP"
 ALIGN
DDROP
 _POP
 _POP
 _NEXT
 ALIGN

2DUP Duplicate the top two items on the parameter stack.

; 2DUP (w1 w2 -- w1 w2 w1 w2)
; Duplicate top 2 items.

 DCD _DDROP-MAPOFFSET
_DDUP DCB 4
 DCB "2DUP"
 ALIGN

60

DDUP
 LDR R4,[R1]
 STR R5,[R1,#-4]!
 STR R4,[R1,#-4]!
 _NEXT

D+ Add two double integers and return a double integer sum.

; D+ (d1 d2 -- d3)
; Add top 2 double numbers.

 DCD _DDUP-MAPOFFSET
_DPLUS DCB 2
 DCB "D+"
 ALIGN
DPLUS
 LDR R4,[R1],#4
 LDR R6,[R1],#4
 LDR R7,[R1]
 ADDS R4,R4,R7
 STR R4,[R1]
 ADC R5,R5,R6
 _NEXT

NOT Invert each individual bit in the top item on the parameter stack. It is often called 1's
complement operation.

; NOT (w -- !w)
; 1"s complement.

 DCD _DPLUS-MAPOFFSET
_INVER DCB 3
 DCB "NOT"
 ALIGN
INVER
 MVN R5,R5
 _NEXT
 ALIGN

NEGATE Negate the top item on the parameter stack. It is often called 2's complement operation.

; NEGATE (w -- -w)
; 2's complement.

 DCD _INVER-MAPOFFSET
_NEGAT DCB 6
 DCB "NEGATE"
 ALIGN
NEGAT
 RSB R5,R5,#0
 _NEXT
 ALIGN

ABS Replace the top item on the parameter stack with its absolute value.

61

; ABS (w -- |w|)
; Absolute.

 DCD _NEGAT-MAPOFFSET
_ABSS DCB 3
 DCB "ABS"
 ALIGN
ABSS
 TST R5,#0x80000000
 RSBNE R5,R5,#0
 _NEXT
 ALIGN

= Compare top two items on the parameter stack. If they are equal, replace these two items
with a true flag; otherwise, replace them with a false flag.

; = (w w -- t)
; Equal?

 DCD _ABSS-MAPOFFSET
_EQUAL DCB 1
 DCB "="
 ALIGN
EQUAL
 LDR R4,[R1],#4
 CMPS R5,R4
 MVNEQ R5,#0
 MOVNE R5,#0
 _NEXT

U< Compare two unsigned numbers on the top of the parameter stack. If the top item is less
than the second item in unsigned comparison, replace these two items with a true flag;
otherwise, replace them with a false flag. .

; U< (w w -- t)
; Unsigned equal?

 DCD _EQUAL-MAPOFFSET
_ULESS DCB 2
 DCB "U<"
 ALIGN
ULESS
 LDR R4,[R1],#4
 CMPS R4,R5
 MVNCC R5,#0
 MOVCS R5,#0
 _NEXT

< Compare two signed numbers on the top of the parameter stack. If the top item is less than
the second item in signed comparison, replace these two items with a true flag; otherwise,
replace them with a false flag.

; < (w w -- t)
; Less?

62

 DCD _ULESS-MAPOFFSET
_LESS DCB 1
 DCB "<"
 ALIGN
LESS
 LDR R4,[R1],#4
 CMPS R4,R5
 MVNLT R5,#0
 MOVGE R5,#0
 _NEXT

> Compare two signed numbers on the top of the parameter stack. If the top item is greater
than the second item in signed comparison, replace these two items with a true flag;
otherwise, replace them with a false flag.

; > (w w -- t)
; greater?

 DCD _LESS-MAPOFFSET
_GREAT DCB 1
 DCB ">"
 ALIGN
GREAT
 LDR R4,[R1],#4
 CMPS R4,R5
 MVNGT R5,#0
 MOVLE R5,#0
 _NEXT

MAX Retain the larger of the top two items on the parameter stack. Both numbers are assumed to
be signed integers.

; MAX (w w -- max)
; Leave maximum.

 DCD _GREAT-MAPOFFSET
_MAX DCB 3
 DCB "MAX"
 ALIGN
MAX
 LDR R4,[R1],#4
 CMPS R4,R5
 MOVGT R5,R4
 _NEXT

MIN Retain the smaller of the top two items on the parameter stack. Both numbers are assumed
to be signed integers.

; MIN (w w -- min)
; Leave minimum.

 DCD _MAX-MAPOFFSET
_MIN DCB 3
 DCB "MIN"
 ALIGN

63

MIN
 LDR R4,[R1],#4
 CMPS R4,R5
 MOVLT R5,R4
 _NEXT

+! Add the second item on the parameter stack w to the cell addressed by a, the top item on the
stack.

; +! (w a --)
; Add to memory.

 DCD _MIN-MAPOFFSET
_PSTOR DCB 2
 DCB "+!"
 ALIGN
PSTOR
 LDR R4,[R1],#4
 LDR R6,[R5]
 ADD R6,R6,R4
 STR R6,[R5]
 _POP
 _NEXT

2! Store a double integer d into memory at addr .

; 2! (d addr --)
; Store double number.

 DCD _PSTOR-MAPOFFSET
_DSTOR DCB 2
 DCB "2!"
 ALIGN
DSTOR
 LDR R4,[R1],#4
 LDR R6,[R1],#4
 STR R4,[R5],#4
 STR R6,[R5]
 _POP
 _NEXT

2@ Fetch a double integer d from memory at addr .

; 2@ (addr -- d)
; Fetch double number.

 DCD _DSTOR-MAPOFFSET
_DAT DCB 2
 DCB "2@"
 ALIGN
DAT
 LDR R4,[R5,#4]
 STR R4,[R1,#-4]!
 LDR R5,[R5]
 _NEXT

64

 ALIGN

COUNT Fetch one byte c from memory pointed to by the address b on the top of the parameter stack.
This address is incremented by 1, and the byte just read is pushed on the stack. COUNT is
designed to get the count byte at the beginning of a counted string, and returns the address of
the first byte in the string and the length of this string. However, it is often used in a loop to
read consecutive bytes in a byte array.

; COUNT (b -- b+1 c)
; Fetch length of string.

 DCD _DAT-MAPOFFSET
_COUNT DCB 5
 DCB "COUNT"
 ALIGN
COUNT
 LDRB R4,[R5],#1
 _PUSH
 MOV R5,R4
 _NEXT

DNEGATE Negate the top two items on the parameter stack, as a 64-bit double integer.

; DNEGATE (d -- -d)
; Negate double number.

 DCD _COUNT-MAPOFFSET
_DNEGA DCB 7
 DCB "DNEGATE"
 ALIGN
DNEGA
 LDR R4,[R1]
 SUB R8,R8,R8
 SUBS R4,R6,R4
 SBC R5,R6,R5
 STR R4,[R1]
 _NEXT

doVAR Fetch the address in LR register after the BL doVAR instruction and pushes it on the

parameter stack. BL doVAR instruction and the value after it form the code field of
all variable commands. The address in LR has the lowest bit b0 set as a THUMB2
instruction. This bit must be cleared to be a correct address.

;** ************************
; System and user variables

; doVAR (-- a)
; Run time routine for VARIABLE and CREATE.

; DCD _DNEGA-MAPOFFSET
;_DOVAR DCB COMPO+5
; DCB "doVAR"
; ALIGN

65

DOVAR
 _PUSH
 SUB R5,LR,#1 ; CLEAR B0
 _UNNEST
 ALIGN

doCON Fetch a value stored after the BL doCON instruction, as pointed to by LR register,
and pushes it on the parameter stack. BL doCON instruction and the value after it
form the code field of all constant commands.

; doCON (-- a)
; Run time r outine for CONSTANT.

; DCD _DOVAR-MAPOFFSET
;_DOCON DCB COMPO+5
; DCB "doCON"
; ALIGN
DOCON
 _PUSH
 LDR R5,[LR,#-1] ; clear b0
 _UNNEST

3.3.9 User Variables Commands

In stm32eForth720, all user variables used by the system are merged together and are sometimes called
system variables. They are stored in a memory array starting from location 0xFF00. They are initialized
by copying a table of initial values starting at 0xC0. They are variables and memory area pointers
eForth needs to manage the interpreter and compiler.

The CPU register R3 is used to point to this user variable array, allowing easy and fast access to these
user variables.

Variable Address Function
'BOOT FF04 Execution vector to start application command.
BASE FF08 Radix base for numeric conversion.
tmp FF0C Scratch pad.
SPAN FF10 Number of characters received by EXPECT.
>IN FF14 Input buffer character pointer used by text interpreter.
#TIB FF18 Number of characters in input buffer.
'TIB FF1C Address of Terminal Input Buffer.
'EVAL FF20 Execution vector switching between $INTERPRET and

$COMPILE.
HLD FF24 Pointer to a buffer holding next digit for numeric

conversion.
CONTEXT FF28 Vocabulary array pointing to last name fields of

dictionary.
CP FF2C Pointer to top of dictionary, the first available flash

memory location to compile new command
DP FF30 Pointer to the first available RAM memory location.

66

LAST FF34 Pointer to name field of last command in dictionary.

; 'BOOT (-- a)
; Applicarion.

 DCD _DNEGA-MAPOFFSET
_TBOOT DCB 5
 DCB "'BOOT"
 ALIGN
TBOOT
 _PUSH
 ADD R5,R3,#4
 _NEXT
 ALIGN

; BASE (-- a)
; Storage of the radix base for numeric I/O.

 DCD _TBOOT-MAPOFFSET
_BASE DCB 4
 DCB "BASE"
 ALIGN
BASE
 _PUSH
 ADD R5,R3,#8
 _NEXT
 ALIGN

; tmp (-- a)
; A temporary storage location used in parse and fi nd.

; DCD _BASE-MAPOFFSET
;_TEMP DCB COMPO+3
; DCB "tmp"
; ALIGN
TEMP
 _PUSH
 ADD R5,R3,#12
 _NEXT
 ALIGN

; SPAN (-- a)
; Hold character count received by EXPECT.

 DCD _BASE-MAPOFFSET
_SPAN DCB 4
 DCB "SPAN"
 ALIGN
SPAN
 _PUSH
 ADD R5,R3,#16
 _NEXT
 ALIGN

; >IN (-- a)
; Hold the character pointer while parsing input st ream.

67

 DCD _SPAN-MAPOFFSET
_INN DCB 3
 DCB ">IN"
 ALIGN
INN
 _PUSH
 ADD R5,R3,#20
 _NEXT
 ALIGN

; #TIB (-- a)
; Hold the current count and address of the termina l input buffer.

 DCD _INN-MAPOFFSET
_NTIB DCB 4
 DCB "#TIB"
 ALIGN
NTIB
 _PUSH
 ADD R5,R3,#24
 _NEXT
 ALIGN

; 'EVAL (-- a)
; Execution vector of EVAL.

 DCD _NTIB-MAPOFFSET
_TEVAL DCB 5
 DCB "'EVAL"
 ALIGN
TEVAL
 _PUSH
 ADD R5,R3,#32
 _NEXT
 ALIGN

; HLD (-- a)
; Hold a pointer in building a numeric output strin g.

 DCD _TEVAL-MAPOFFSET
_HLD DCB 3
 DCB "HLD"
 ALIGN
HLD
 _PUSH
 ADD R5,R3,#36
 _NEXT
 ALIGN

; CONTEXT (-- a)
; A area to specify vocabulary search order.

 DCD _HLD-MAPOFFSET
_CNTXT DCB 7
 DCB "CONTEXT"
 ALIGN

68

CNTXT
CRRNT
 _PUSH
 ADD R5,R3,#40
 _NEXT
 ALIGN

; CP (-- a)
; Point to top name in vocabulary.

 DCD _CNTXT-MAPOFFSET
_CP DCB 2
 DCB "CP"
 ALIGN
CPP
 _PUSH
 ADD R5,R3,#44
 _NEXT
 ALIGN

; LAST (-- a)
; Point to the last name in the name dictionary.

 DCD _CP-MAPOFFSET
_LAST DCB 4
 DCB "LAST"
 ALIGN
LAST
 _PUSH
 ADD R5,R3,#52
 _NEXT
 ALIGN

3.3.10 Common Functions

These commands are coded as compound command. They contain logic structures which are difficult
to express in assembly code.

WITHIN Check whether the third item u on the parameter stack is within the range as specified by

the top two numbers on the parameter stack. The range is inclusive as to the lower limit
ul and exclusive to the upper limit uh . If the third item is within range, a true flag is
returned on the parameter stack, replacing all three items. Otherwise, a false flag is
returned. All numbers are assumed to be signed integers.

;** ************************
; Common functions

; WITHIN (u ul uh -- t)
; Return true if u is within the range of ul and uh .

 DCD _LAST-MAPOFFSET
_WITHI DCB 6
 DCB "WITHIN"
 ALIGN

69

WITHI
 _NEST
 BL OVER
 BL SUBB
 BL TOR
 BL SUBB
 BL RFROM
 BL ULESS
 _UNNEST

UM/MOD Divide an unsigned double integer udl-udh by an unsigned single integer u. It returns
an unsigned remainder ur and an unsigned quotient uq on the parameter stack.
Division is carried out similar to long hand division.

; Divide

; UM/MOD (udl udh u -- ur uq)
; Unsigned divide of a double by a single. Return m od and quotient.

 DCD _WITHI-MAPOFFSET
_UMMOD DCB 6
 DCB "UM/MOD"
 ALIGN
UMMOD
 MOV R7,#1
 LDR R4,[R1],#4
 LDR R6,[R1]
UMMOD0 ADDS R6,R6,R6
 ADCS R4,R4,R4
 BCC UMMOD1
 SUB R4,R4,R5
 ADD R6,R6,#1
 B UMMOD2
UMMOD1 SUBS R4,R4,R5
 ADDCS R6,R6,#1
 BCS UMMOD2
 ADD R4,R4,R5
UMMOD2 ADDS R7,R7,R7
 BCC UMMOD0
 MOV R5,R6
 STR R4,[R1]
 _NEXT
 ALIGN

M/MOD Divide a signed double integer d by a signed single integer n. It returns signed
remainder r and signed quotient q on the parameter stack. The signed division is
floored towards negative infinity.

; M/MOD (d n -- r q)
; Signed floored divide of double by single. Return mod and quotient.

 DCD _UMMOD-MAPOFFSET
_MSMOD DCB 5
 DCB "M/MOD"
 ALIGN

70

MSMOD
 _NEST
 BL DUPP
 BL ZLESS
 BL DUPP
 BL TOR
 BL QBRAN
 DCD MMOD1-MAPOFFSET
 BL NEGAT
 BL TOR
 BL DNEGA
 BL RFROM
MMOD1 BL TOR
 BL DUPP
 BL ZLESS
 BL QBRAN
 DCD MMOD2-MAPOFFSET
 BL RAT
 BL PLUS
MMOD2 BL RFROM
 BL UMMOD
 BL RFROM
 BL QBRAN
 DCD MMOD3-MAPOFFSET
 BL SWAP
 BL NEGAT
 BL SWAP
MMOD3
 _UNNEST

/MOD Divide a signed single integer by a signed integer. It replaces these two items with
signed remainder and quotient.

; /MOD (n n -- r q)
; Signed divide. Return mod and quotient.

 DCD _MSMOD-MAPOFFSET
_SLMOD DCB 4
 DCB "/MOD"
 ALIGN
SLMOD
 _NEST
 BL OVER
 BL ZLESS
 BL SWAP
 BL MSMOD
 _UNNEST

MOD Divide a signed single integer by a signed integer. It replaces these two items with a
signed remainder.

; MOD (n n -- r)
; Signed divide. Return mod only.

 DCD _SLMOD-MAPOFFSET
_MODD DCB 3

71

 DCB "MOD"
 ALIGN
MODD
 _NEST
 BL SLMOD
 BL DROP
 _UNNEST

/ Divide a signed single integer by a signed integer. It replaces these two items with a
signed quotient.

; / (n n -- q)
; Signed divide. Return quotient only.

 DCD _MODD-MAPOFFSET
_SLASH DCB 1
 DCB "/"
 ALIGN
SLASH
 _NEST
 BL SLMOD
 BL SWAP
 BL DROP
 _UNNEST

3.3.11 Scaling, Multiply-Divide

*/MOD Multiply the signed integers n1 and n2 , and then divides the double integer product by

n3 . It in fact is scaling n1 by n2/n3 . It returns both the remainder and the quotient.
The intermediate product is kept as double integer, and scaling has minimal round off
error. This scaling operation allows high precision integer arithmetic operations
equivalent to floating point operations.

; */MOD (n1 n2 n3 -- r q)
; Multiply n1 and n2, then divide by n3. Return mod and quotient.

 DCD _SLASH-MAPOFFSET
_SSMOD DCB 5
 DCB "*/MOD"
 ALIGN
SSMOD
 _NEST
 BL TOR
 BL MSTAR
 BL RFROM
 BL MSMOD
 _UNNEST

*/ Multiply the signed integers n1 and n2 , and then divides the double integer product by
n3 . It returns only the quotient. Scaling n1 by n2/n3 .

; */ (n1 n2 n3 -- q)
; Multiply n1 by n2, then divide by n3. Return quot ient only.

72

 DCD _SSMOD-MAPOFFSET
_STASL DCB 2
 DCB "*/"
 ALIGN
STASL
 _NEST
 BL SSMOD
 BL SWAP
 BL DROP
 _UNNEST

3.3.12 Miscellaneous Commands

ALIGNED Modify the byte address on top of the parameter stack so that it points to the next 32-bit
word boundary.

;** ************************
; Miscellaneous

; ALIGNED (b -- a)
; Align address to the cell boundary.

 DCD _STASL-MAPOFFSET
_ALGND DCB 7
 DCB "ALIGNED"
 ALIGN
ALGND
 ADD R5,R5,#3
 MVN R4,#3
 AND R5,R5,R4
 _NEXT
 ALIGN

>CHAR Convert a non-printable character to a harmless underscore character(ASCII 95). As
stm32eForth is designed to communicate with a terminal through a serial I/O device, it is
important that stm32eForth will not emit control characters to the host and thereby causes
unexpected behavior on the terminal. >CHAR thus filters the characters before they are
sent out by EMIT.

; >CHAR (c -- c)
; Filter non-printing characters.

 DCD _ALGND-MAPOFFSET
_TCHAR DCB 5
 DCB ">CHAR"
 ALIGN
TCHAR
 _NEST
 _DOLIT
 DCD 0x7F
 BL ANDD
 BL DUPP ;mask msb
 BL BLANK
 _DOLIT
 DCD 127

73

 BL WITHI ;check for printable
 BL INVER
 BL QBRAN
 DCD TCHA1-MAPOFFSET
 BL DROP
 _DOLIT
 DCD '_' ;replace non-printables
TCHA1
 _UNNEST

DEPTH Push the number of items currently on the parameter stack to the top of the stack.

; DEPTH (-- n)
; Return the depth of the data stack.

 DCD _TCHAR-MAPOFFSET
_DEPTH DCB 5
 DCB "DEPTH"
 ALIGN
DEPTH
 _PUSH
 MOVW R5,#0XFE00
; MOVT R5,#0X2000
 SUB R5,R5,R1
 ASR R5,R5,#2
 SUB R5,R5,#1
 _NEXT
 ALIGN

PICK Pop the number +n off the parameter stack and replaces it with the n'th item on the
parameter stack. The number +n is 0-based; i.e., the top item is number 0, the next item is
number 1, etc. Therefore, 0 PICK is equivalent to DUP, and 1 PICK is equivalent to
OVER.

; PICK (... +n -- ... w)
; Copy the nth stack item to tos.

 DCD _DEPTH-MAPOFFSET
_PICK DCB 4
 DCB "PICK"
 ALIGN
PICK
 _NEST
 BL ONEP
 BL CELLS
 BL SPAT
 BL PLUS
 BL AT
 _UNNEST

3.3.13 Memory Array Commands

A memory array is generally specified by its starting address and its length in bytes. In a count string,
the first byte is a count byte, specifying the number of bytes in the following string. String literals in

74

compound commands and the name strings in the headers of command records are all represented by
count strings. Following commands are useful in accessing memory arrays used by eForth.

HERE Push the address of the first free memory above the eForth dictionary. The text interpreter

stores at HERE a string parsed out of the Terminal Input Buffer and then searches the
dictionary for a command with this name. The compiler builds a header at HERE for a new
command. It is generally referred to as the word buffer in Forth terminology.

;** ************************
; Memory access

; HERE (-- a)
; Return the top of the code dictionary.

 DCD _PICK-MAPOFFSET
_HERE DCB 4
 DCB "HERE"
 ALIGN
HERE
 _NEST
 BL CPP
 BL AT
 _UNNEST

PAD Push on the parameter stack the address of the text buffer where numbers to be output are
constructed and text strings are stored temporarily. It is 80 bytes above HERE, and floats
above the dictionary. It is always available to store things temporarily. It moves when you
defined a new command.
The area below PAD is used to build numeric strings in ASCII characters for output to the
terminal. A numeric string is built backwards from PAD, the least significant digit is laid
down first, and the area below PAD is often referred to as number buffer.

; PAD (-- a)
; Return the address of a temporary buffer.

 DCD _HERE-MAPOFFSET
_PAD DCB 3
 DCB "PAD"
 ALIGN
PAD
 _NEST
 BL HERE
 ADD R5,R5,#80
 _UNNEST

TIB Push the address of the Terminal Input Buffer on the parameter stack. Terminal Input
Buffer stores a line of text from the serial I/O input device. Forth text interpreter then
processes or interprets this line of text. In stm32eforth720, TIB starts at 0xFE00, at the
top of the 64 KB RAM space. It grows up from 0xFE00, and the return stack grows
down from 0xFF00. They generaaly do not bother each other.

; TIB (-- a)

75

; Return the address of the terminal input buffer.

 DCD _PAD-MAPOFFSET
_TIB DCB 3
 DCB "TIB"
 ALIGN
TIB
 _PUSH
 MOVW R5,#0xFE00
 _NEXT
 ALIGN

@EXECUTE Fetch a code field address of a command which is stored in the address a on the top of
the parameter stack, and jumps to it to execute this command. It is used extensively to
execute vectored commands stored in memory. The behavior of a vectored command
can be changed dynamically at the run time.

; @EXECUTE (a --)
; Execute vector stored in address a.

 DCD _TIB-MAPOFFSET
_ATEXE DCB 8
 DCB "@EXECUTE"
 ALIGN
ATEXE
 MOVS R4,R5
 _POP
 LDR R4,[R4]
 BXNE R4
 _NEXT
 ALIGN

CMOVE Copy a byte array from one location to another in memory. The top three item on the
parameter stack are the source address b1 , the destination address b2 , and the number of
bytes to be copied u.

; CMOVE (b1 b2 u --)
; Copy u bytes from b1 to b2.

 DCD _ATEXE-MAPOFFSET
_CMOVE DCB 5
 DCB "CMOVE"
 ALIGN
CMOVE
 LDR R6,[R1],#4
 LDR R7,[R1],#4
 B CMOV1
CMOV0 LDRB R4,[R7],#1
 STRB R4,[R6],#1
CMOV1 MOVS R5,R5
 BEQ CMOV2
 SUB R5,R5,#1
 B CMOV0
CMOV2
 _POP

76

 _NEXT
 ALIGN

MOVE Copy a word array from one location to another in memory. The top three item on the
parameter stack are the source address a1 , the destination address a2 , and the number of
bytes to be copied u. Addresses are on word boundary, and number of bytes moved must be
divisible by 4.

; MOVE (a1 a2 u --)
; Copy u words from a1 to a2.

 DCD _CMOVE-MAPOFFSET
_MOVE DCB 4
 DCB "MOVE"
 ALIGN
MOVE AND R5,R5,#-4
 LDR R6,[R1],#4
 LDR R7,[R1],#4
 B MOVE1
MOVE0 LDR R4,[R7],#4
 STR R4,[R6],#4
MOVE1 MOVS R5,R5
 BEQ MOVE2
 SUB R5,R5,#4
 B MOVE0
MOVE2
 _POP
 _NEXT
 ALIGN

FILL Fill a memory array with the same byte. The top three items on the parameter stack are
the address of the array b, the length of the array in bytes u, and the byte value to be
filled into this array c .

; FILL (b u c --)
; Fill u bytes of character c to area beginning at b.

 DCD _MOVE-MAPOFFSET
_FILL DCB 4
 DCB "FILL"
 ALIGN
FILL
 LDR R6,[R1],#4
 LDR R7,[R1],#4
FILL0 B FILL1
 MOV R5,R5
FILL1 STRB R5,[R7],#1
 MOVS R6,R6
 BEQ FILL2
 SUB R6,R6,#1
 B FILL0
FILL2
 _POP
 _NEXT

77

PACK$ Pack a byte string at address b of length u to form a counted string at cell address a.
Null filled to cell boundary. This is how a name field is constructed.

; PACK$ (b u a -- a)
; Build a counted string with u characters from b. Null fill.

 DCD _FILL-MAPOFFSET
_PACKS DCB 5
 DCB "PACK$$"
 ALIGN
PACKS
 _NEST
 BL ALGND
 BL DUPP
 BL TOR ;strings only on cell boundary
 BL OVER
 BL PLUS
 BL ONEP
 _DOLIT
 DCD 0xFFFFFFFC
 BL ANDD ;count mod cell
 _DOLIT
 DCD 0
 BL SWAP
 BL STORE ;null fill cell
 BL RAT
 BL DDUP
 BL CSTOR
 BL ONEP ;save count
 BL SWAP
 BL CMOVE
 BL RFROM
 _UNNEST ;move string

3.4 Text Interpreter

The text interpreter is actually the Forth operating system itself. It performs these tasks:

Step 1. Accept one line of text from the terminal.
Step 2. Parse out a space delimited name string.
Step 3. Search the dictionary for a command of this name.
Step 4. If it is a command, execute it. Go to Step 8.
Step 5. If it is not a command, convert it to a number.
Step 6. If it is a number, push it on parameter stack. Go to Step 8.
Step 7. If it is not a number, abort. Go back to step 1.
Step 8. If the text line is not exhausted, go back to step 2.
Step 9. If the text line is exhausted, go back to Step 1.

It looks very complicated. Yes, it is complicated and we will discuss all the supporting commands
leading to the text interpreter. But, it is an operating system! Have you ever read the source code of an
operating system? Very few people did. Very few people wrote operating systems. Here I will show
you how to write this Forth operating system. We will do parsing, command searching, number

78

conversion, terminal input, terminal output, command execution, and everything else that’s necessary.

Need to see a flow chart? You had seen it already. It was in the figure on COLD I showed you in Section
3.2.2 on the reset handler. It was not a flow chart you used to see, but it is a flow chart nonetheless. It
not only shows the text interpreter. It also shows the Forth compiler as well.

3.4.1 Numeric Output

Forth is interesting in its special capabilities in handling numbers across a man-machine interface. It
recognizes that machines and humans prefer very different representations of numbers. Machines prefer
binary representation, but humans prefer decimal Arabic representation. However, depending on
circumstances, you may want numbers to be represented in other radices, like hexadecimal, octal, and
sometimes binary.

Forth solves this problem of internal (machine) versus external (human) number representations by
insisting that all numbers are represented in binary form in CPU and memory. Only when numbers are
imported or exported for human consumption are they converted to external ASCII representation. The
radix of the external representation is stored in user variable BASE. You can select any reasonable radix
in BASE, up to perhaps 72, limited by available printable characters in the ASCII character set.

The output number string is built below the PAD buffer in memory. The least significant digit is
extracted from the integer on the top of the parameter stack by dividing it by the current radix in BASE.
The digit thus extracted is added to the output string backwards from PAD to the low memory. The
conversion is terminated when the integer is divided to zero. The address and length of the number
string are made available by #> for output.

An output number conversion is initiated by <# and terminated by #>. Between them, # converts one
digit at a time, #S converts all the digits, while HOLD and SIGN inserts special characters into the string
under construction. This set of commands is very versatile and can handle many different output
formats. The following figure shows how a number on parameter stack is converted to an output string.

79

DIGIT Convert an integer digit u to the corresponding ASCII character c .

;** ************************
; Numeric output, single precision

; DIGIT (u -- c)
; Convert digit u to a character.

 DCD _PACKS-MAPOFFSET
_DIGIT DCB 5
 DCB "DIGIT"
 ALIGN
DIGIT
 _NEST
 _DOLIT
 DCD 9
 BL OVER
 BL LESS
 AND R5,R5,#7
 BL PLUS
 ADD R5,R5,#'0'
 _UNNEST

EXTRACT Extract the least significant digit from a number n on the top of the parameter stack. n is
divided by the radix base and the extracted digit is converted to its ASCII character c
which is pushed on the top of new n.

; EXTRACT (n base -- n c)
; Extract the least significant digit from n.

 DCD _DIGIT-MAPOFFSET
_EXTRC DCB 7
 DCB "EXTRACT"
 ALIGN
EXTRC
 _NEST
 _DOLIT
 DCD 0
 BL SWAP
 BL UMMOD
 BL SWAP
 BL DIGIT
 _UNNEST

<# Initiate the output number conversion process by storing PAD buffer address into user
variable HLD, which points to a location the next numeric digit will be stored.

; <# (--)
; Initiate the numeric output process.

 DCD _EXTRC-MAPOFFSET
_BDIGS DCB 2
 DCB "<#"

80

 ALIGN
BDIGS
 _NEST
 BL PAD
 BL HLD
 BL STORE
 _UNNEST

HOLD Append an ASCII character c whose code is on the top of the parameter stack, to the
numeric out put string at HLD. HLD is decremented to receive the next digit.

; HOLD (c --)
; Insert a character into the numeric output string .

 DCD _BDIGS-MAPOFFSET
_HOLD DCB 4
 DCB "HOLD"
 ALIGN
HOLD
 _NEST
 BL HLD
 BL AT
 BL ONEM
 BL DUPP
 BL HLD
 BL STORE
 BL CSTOR
 _UNNEST

Extract one digit from integer u on the top of the parameter stack, according to radix in user
variable BASE, and append it to output numeric string.

; # (u -- u)
; Extract one digit from u and append the digit to output string.

 DCD _HOLD-MAPOFFSET
_DIG DCB 1
 DCB "#"
 ALIGN
DIG
 _NEST
 BL BASE
 BL AT
 BL EXTRC
 BL HOLD
 _UNNEST

#S Extract all digits in u to output string until the integer u on the top of the
parameter stack is divided to 0.

; #S (u -- 0)
; Convert u until all digits are added to the outpu t string.

 DCD _DIG-MAPOFFSET
_DIGS DCB 2

81

 DCB "#S"
 ALIGN
DIGS
 _NEST
DIGS1 BL DIG
 BL DUPP
 BL QBRAN
 DCD DIGS2-MAPOFFSET
 B DIGS1
DIGS2
 _UNNEST
 ALIGN

SIGN Insert a - sign into the numeric output string if the integer on the top of the
parameter stack is negative.

; SIGN (n --)
; Add a minus sign to the numeric output string.

 DCD _DIGS-MAPOFFSET
_SIGN DCB 4
 DCB "SIGN"
 ALIGN
SIGN
 _NEST
 BL ZLESS
 BL QBRAN
 DCD SIGN1-MAPOFFSET
 _DOLIT
 DCD '-'
 BL HOLD
SIGN1
 _UNNEST

#> Terminate the numeric conversion and pushes the address b and length of
output numeric string u on the parameter stack.

; #> (w -- b u)
; Prepare the output string to be TYPE'd.

 DCD _SIGN-MAPOFFSET
_EDIGS DCB 2
 DCB "#>"
 ALIGN
EDIGS
 _NEST
 BL DROP
 BL HLD
 BL AT
 BL PAD
 BL OVER
 BL SUBB
 _UNNEST

str Convert a signed integer n on the top of the parameter stack to a numeric

82

output string at address b with u digits.

; str (n -- b u)
; Convert a signed integer to a numeric string.

; DCD _EDIGS-MAPOFFSET
;_STRR DCB 3
; DCB "str"
; ALIGN
STRR
 _NEST
 BL DUPP
 BL TOR
 BL ABSS
 BL BDIGS
 BL DIGS
 BL RFROM
 BL SIGN
 BL EDIGS
 _UNNEST

HEX Set numeric conversion radix to 16 for hexadecimal conversions.

; HEX (--)
; Use radix 16 as base for numeric conversions.

 DCD _EDIGS-MAPOFFSET
_HEX DCB 3
 DCB "HEX"
 ALIGN
HEX
 _NEST
 _DOLIT
 DCD 16
 BL BASE
 BL STORE
 _UNNEST

DECIMAL Set numeric conversion radix to 10 for decimal conversions.

; DECIMAL (--)
; Use radix 10 as base for numeric conversions.

 DCD _HEX-MAPOFFSET
_DECIM DCB 7
 DCB "DECIMAL"
 ALIGN
DECIM
 _NEST
 _DOLIT
 DCD 10
 BL BASE
 BL STORE
 _UNNEST

83

3.4.2 Numeric Input

The stm32eForth text interpreter must handle numbers input to the system. It parses commands out of
the input stream and executes them in sequence. When the text interpreter encounters a string which is
not the name of a command in the dictionary, it assumes that the string must be a number and attempts
to convert the ASCII string to a number according to the current radix. When the text interpreter
succeeds in converting the string to a number, the number is pushed on the parameter stack for future
use, if the text interpreter is in the interpreting mode. If it is in the compiling mode, the text interpreter
will compile the number to the dictionary as an integer literal so that when the command under
construction is later executed, the integer value will be pushed on the parameter stack.

The following figure show how a number string is converted to a number and pushed on the parameter
stack.

If the text interpreter fails to convert the string to a number, this is an error condition which will cause
the text interpreter to ABORT, post an error message to you, and then wait for your next line of
commands.

DIGIT? Convert an ASCII numeric digit c on the top of the parameter stack to its numeric value

u according to current radix base . If conversion is successful, push a true flag above u.
If not successful, return c and a false flag.

;** ************************
; Numeric input, single precision

; DIGIT? (c base -- u t)
; Convert a character to its numeric value. A flag indicates success.

 DCD _DECIM-MAPOFFSET
_DIGTQ DCB 6
 DCB "DIGIT?"
 ALIGN
DIGTQ

84

 _NEST
 BL TOR
 _DOLIT
 DCD '0'
 BL SUBB
 _DOLIT
 DCD 9
 BL OVER
 BL LESS
 BL QBRAN
 DCD DGTQ1-MAPOFFSET
 _DOLIT
 DCD 7
 BL SUBB
 BL DUPP
 _DOLIT
 DCD 10
 BL LESS
 BL ORR
DGTQ1 BL DUPP
 BL RFROM
 BL ULESS
 _UNNEST

NUMBER? Convert a count string of ASCII numeric digits at location a to an integer. If first
character is a $, convert in hexadecimal; otherwise, convert using radix in BASE. If first
character is a -, negate converted integer. If an illegal character is encountered, the
address of string a and a false flag F are pushed on the parameter stack. Successful
conversion pushes integer value and a true flag on the parameter stack. NUMBER? is
very complicated because it has to handle many different characters in the input numeric
string. It also has to detect the error condition when it encounters an illegal numeric
digit. .

; NUMBER? (a -- n T | a F)
; Convert a numberDCB to integer. Push a flag on to s.

 DCD _DIGTQ-MAPOFFSET
_NUMBQ DCB 7
 DCB "NUMBER?"
 ALIGN
NUMBQ
 _NEST
 BL BASE
 BL AT
 BL TOR
 _DOLIT
 DCD 0
 BL OVER
 BL COUNT
 BL OVER
 BL CAT
 _DOLIT
 DCD '_'
 BL EQUAL
 BL QBRAN

85

 DCD NUMQ1-MAPOFFSET
 BL HEX
 BL SWAP
 BL ONEP
 BL SWAP
 BL ONEM
NUMQ1 BL OVER
 BL CAT
 _DOLIT
 DCD '-'
 BL EQUAL
 BL TOR
 BL SWAP
 BL RAT
 BL SUBB
 BL SWAP
 BL RAT
 BL PLUS
 BL QDUP
 BL QBRAN
 DCD NUMQ6-MAPOFFSET
 BL ONEM
 BL TOR
NUMQ2 BL DUPP
 BL TOR
 BL CAT
 BL BASE
 BL AT
 BL DIGTQ
 BL QBRAN
 DCD NUMQ4-MAPOFFSET
 BL SWAP
 BL BASE
 BL AT
 BL STAR
 BL PLUS
 BL RFROM
 BL ONEP
 BL DONXT
 DCD NUMQ2-MAPOFFSET
 BL RAT
 BL SWAP
 BL DROP
 BL QBRAN
 DCD NUMQ3-MAPOFFSET
 BL NEGAT
NUMQ3 BL SWAP
 B.W NUMQ5
NUMQ4 BL RFROM
 BL RFROM
 BL DDROP
 BL DDROP
 _DOLIT
 DCD 0
NUMQ5 BL DUPP
NUMQ6 BL RFROM
 BL DDROP

86

 BL RFROM
 BL BASE
 BL STORE
 _UNNEST

3.4.3 Terminal Output

KEY Execute ?KEY continually until a valid character is received and the character c is returned.

;** ************************
; Basic I/O

; KEY (-- c)
; Wait for and return an input character.

 DCD _NUMBQ-MAPOFFSET
_KEY DCB 3
 DCB "KEY"
 ALIGN
KEY
 _NEST
KEY1 BL QRX
 BL QBRAN
 DCD KEY1-MAPOFFSET
 _UNNEST

SPACE Output a blank (space) character, ASCII 32.

; SPACE (--)
; Send the blank character to the output device.

 DCD _KEY-MAPOFFSET
_SPACE DCB 5
 DCB "SPACE"
 ALIGN
SPACE
 _NEST
 BL BLANK
 BL EMIT
 _UNNEST

SPACES Output +n blank (space) characters.

; SPACES (+n --)
; Send n spaces to the output device.

 DCD _SPACE-MAPOFFSET
_SPACS DCB 6
 DCB "SPACES"
 ALIGN
SPACS
 _NEST
 _DOLIT
 DCD 0
 BL MAX

87

 BL TOR
 B.W CHAR2
CHAR1 BL SPACE
CHAR2 BL DONXT
 DCD CHAR1-MAPOFFSET
 _UNNEST

TYPE Output u characters from a string at memory location a. The second item on the parameter
stack b is the address of the string array, and the length in bytes u is on the top of the
parameter stack. TYPE is safe, because all non-printable characters are converted to a
harmless underscore character.

; TYPE (b u --)
; Output u characters from b.

 DCD _SPACS-MAPOFFSET
_TYPEE DCB 4
 DCB "TYPE"
 ALIGN
TYPEE
 _NEST
 BL TOR
 B.W TYPE2
TYPE1 BL COUNT
 BL TCHAR
 BL EMIT
TYPE2 BL DONXT
 DCD TYPE1-MAPOFFSET
 BL DROP
 _UNNEST

CR Output a carriage-return and a line-feed, ASCII 13 and 10.

; CR (--)
; Output a carriage return and a line feed.

 DCD _TYPEE-MAPOFFSET
_CR DCB 2
 DCB "CR"
 ALIGN
CR
 _NEST
 _DOLIT
 DCD CRR
 BL EMIT
 _DOLIT
 DCD LF
 BL EMIT
 _UNNEST

3.4.4 String Literals

String literals are data structures compiled in compound command, in-line with other tokens, literal
structures, and control structures. A string literal must start with a string token which knows how to

88

handle the following string at run time. Here are two examples of string literals:

: xxx ... $" A compiled string" ... ;
: yyy " An output string" ... ;

In compound command xxx, $" is an immediate command which compiles the following string as a
string literal preceded by a special token $"| . When $"| is executed at run time, it returns the address
of this string on the parameter stack. In yyy, ." compiles a string literal preceded by another
token ."| , which prints the compiled string to the output device at run time.

do$ Push the address of a string literal on the parameter stack. It is called by a string

token like $"| or ."| , which precede their respective strings in memory.
Therefore, the second item on the return stack points to this string. This address is
pushed on the parameter stack. This second item on the return stack must be
modified so that it will point to the next token after the string literal. This way. the
token after the string literal will be executed, skipping over the string literal. Both
$"| and ."| use this command do$, which retrieve the address a of the counted
string.

; do_$ (-- a)
; Return the address of a compiled string.

; DCD _CR-MAPOFFSET
;_DOSTR DCB COMPO+3
; DCB "do$$"
; ALIGN
DOSTR
 _NEST
 BL RFROM
 BL RFROM ; b0 set
 BL ONEM ; clear b0
 BL DUPP
 BL COUNT ; get addr-1 count
 BL PLUS
 BL ALGND ; end of string
 BL ONEP ; restore b0
 BL TOR ; address after string
 BL SWAP ; count tugged
 BL TOR
 _UNNEST

$"| Push the address a of the following string on the parameter stack, and then
executes the token immediately following the string.

; $"| (-- a)
; Run time routine compiled by _". Return address o f a compiled string.

; DCD _DOSTR-MAPOFFSET
;_STRQP DCB COMPO+3
; DCB "$$""|"
; ALIGN

89

STRQP
 _NEST
 BL DOSTR
 _UNNEST ;force a call to dostr

.$ Print a string at address a.

; .$ (a --)
; Run time routine of ." . Output a compiled string .

; DCD _STRQP-MAPOFFSET
;_DOTST DCB COMPO+2
; DCB ".$$"
; ALIGN
DOTST
 _NEST
 BL COUNT
 BL TYPEE
 _UNNEST

."| Print the following string, and then executes the token immediately
following the string.

; ."| (--)
; Run time routine of ." . Output a compiled string .

; DCD _DOTST-MAPOFFSET
;_DOTQP DCB COMPO+3
; DCB ".""|"
; ALIGN
DOTQP
 _NEST
 BL DOSTR
 BL DOTST
 _UNNEST

.R Print a signed integer n , the second item on the parameter stack, right-
justified in a field of +n characters. +n is on the top of the parameter stack.

; .R (n +n --)
; Display an integer in a field of n columns, right justified.

 DCD _CR-MAPOFFSET
_DOTR DCB 2
 DCB ".R"
 ALIGN
DOTR
 _NEST
 BL TOR
 BL STRR
 BL RFROM
 BL OVER
 BL SUBB
 BL SPACS
 BL TYPEE

90

 _UNNEST

U.R Print an unsigned integer u right-justified in a field of +n characters.

; U.R (u +n --)
; Display an unsigned integer in n column, right ju stified.

 DCD _DOTR-MAPOFFSET
_UDOTR DCB 3
 DCB "U.R"
 ALIGN
UDOTR
 _NEST
 BL TOR
 BL BDIGS
 BL DIGS
 BL EDIGS
 BL RFROM
 BL OVER
 BL SUBB
 BL SPACS
 BL TYPEE
 _UNNEST

U. Print an unsigned integer u in free format, followed by a space.

; U. (u --)
; Display an unsigned integer in free format.

 DCD _UDOTR-MAPOFFSET
_UDOT DCB 2
 DCB "U."
 ALIGN
UDOT
 _NEST
 BL BDIGS
 BL DIGS
 BL EDIGS
 BL SPACE
 BL TYPEE
 _UNNEST

. Print a signed integer n in free format, followed by a space.

; . (w --)
; Display an integer in free format, preceeded by a space.

 DCD _UDOT-MAPOFFSET
_DOT DCB 1
 DCB "."
 ALIGN
DOT
 _NEST
 BL BASE
 BL AT
 _DOLIT

91

 DCD 10
 BL XORR ;?decimal
 BL QBRAN
 DCD DOT1-MAPOFFSET
 BL UDOT
 _UNNEST ;no,display unsigned
DOT1 BL STRR
 BL SPACE
 BL TYPEE
 _UNNEST ;yes, display signed

? Print signed integer stored in memory a on the top of the parameter stack,
in free format followed by a space.

; ? (a --)
; Display the contents in a memory cell.

 DCD _DOT-MAPOFFSET
_QUEST DCB 1
 DCB "?"
 ALIGN
QUEST
 _NEST
 BL AT
 BL DOT
 _UNNEST

3.4.5 Parsing

Parsing is always considered a very advanced topic in computer science. However, because Forth uses
very simple syntax rules, parsing is easy. Forth input stream consists of a list of ASCII names separated
by spaces and other white space characters like tabs, carriage returns, and line feeds. The text interpreter
scans the input stream, parses out names, search tokens in the dictionary, and executes them in sequence.
After a name is parsed out of the input stream, the text interpreter will 'interpret' it; i.e., execute it if it is
a valid command, compile it if the text interpreter is in the compiling mode, and convert it to a number if
the name is not a Forth command.

The case where the delimiting character is a space (ASCII 32) is special, because this is when the text
interpreter is parsing for valid names. It thus must skip over leading space characters. When parse is
used to compile string literals, it will use a double quote character (ASCII 34) as the delimiting character.
It the delimiting character is not space, parse starts scanning immediately, looking for the designated
delimiting character.

parse The elementary command to parse text. From the input stream, which starts at b1 and is of

u1 characters long, it parses out the first text string delimited by character c . It returns the
address b2 and length u2 of the string just parsed out and the difference n between b1 and
b2 . Leading spaces are skipped over if space is the delimiting character.

;** ************************
; Parsing

92

; parse (b u c -- b u delta ; string>)
; ScanDCB delimited by c. Return found string and i ts offset.

; DCD _QUEST-MAPOFFSET
;_PARS DCB 5
; DCB "parse"
; ALIGN
PARS
 _NEST
 BL TEMP
 BL STORE
 BL OVER
 BL TOR
 BL DUPP
 BL QBRAN
 DCD PARS8-MAPOFFSET
 BL ONEM
 BL TEMP
 BL AT
 BL BLANK
 BL EQUAL
 BL QBRAN
 DCD PARS3-MAPOFFSET
 BL TOR
PARS1 BL BLANK
 BL OVER
 BL CAT ;skip leading blanks
 BL SUBB
 BL ZLESS
 BL INVER
 BL QBRAN
 DCD PARS2-MAPOFFSET
 BL ONEP
 BL DONXT
 DCD PARS1-MAPOFFSET
 BL RFROM
 BL DROP
 _DOLIT
 DCD 0
 BL DUPP
 _UNNEST
PARS2 BL RFROM
PARS3 BL OVER
 BL SWAP
 BL TOR
PARS4 BL TEMP
 BL AT
 BL OVER
 BL CAT
 BL SUBB ;scan for delimiter
 BL TEMP
 BL AT
 BL BLANK
 BL EQUAL
 BL QBRAN
 DCD PARS5-MAPOFFSET
 BL ZLESS

93

PARS5 BL QBRAN
 DCD PARS6-MAPOFFSET
 BL ONEP
 BL DONXT
 DCD PARS4-MAPOFFSET
 BL DUPP
 BL TOR
 B PARS7
PARS6 BL RFROM
 BL DROP
 BL DUPP
 BL ONEP
 BL TOR
PARS7 BL OVER
 BL SUBB
 BL RFROM
 BL RFROM
 BL SUBB
 _UNNEST
PARS8 BL OVER
 BL RFROM
 BL SUBB
 _UNNEST
 ALIGN

PARSE Scan the input stream in the Terminal Input Buffer from where >IN
points to, until the end of the buffer, for a string delimited by character c .
It returns the address and length of the string parsed out. PARSE calls
parse to do the dirty work. PARSE is used to implement many
specialized parsing commands to perform different parsing operations.

; PARSE (c -- b u ; string>)
; Scan input stream and return counted string delim ited by c.

 DCD _QUEST-MAPOFFSET
_PARSE DCB 5
 DCB "PARSE"
 ALIGN
PARSE
 _NEST
 BL TOR
 BL TIB
 BL INN
 BL AT
 BL PLUS ;current input buffer pointer
 BL NTIB
 BL AT
 BL INN
 BL AT
 BL SUBB ;remaining count
 BL RFROM
 BL PARS
 BL INN
 BL PSTOR
 _UNNEST

94

.(Print the following string till the next) character. It is used to output text
to the serial output device.

; .((--)
; Output following string up to next) .

 DCD _PARSE-MAPOFFSET
_DOTPR DCB IMEDD+2
 DCB ".("
 ALIGN
DOTPR
 _NEST
 _DOLIT
 DCD ')'
 BL PARSE
 BL TYPEE
 _UNNEST

(Discard the following string till the next) character. It is used to place comments in source
code.

; ((--)
; Ignore following string up to next) . A comment.

 DCD _DOTPR-MAPOFFSET
_PAREN DCB IMEDD+1
 DCB "("
 ALIGN
PAREN _NEST
 _DOLIT
 DCD ')'
 BL PARSE
 BL DDROP
 _UNNEST

\ Discard all characters till end of a line. It is used to insert comment lines in source code.

; \ (--)
; Ignore following text till the end of line.

 DCD _PAREN-MAPOFFSET
_BKSLA DCB IMEDD+1
 DCB "\\"
 ALIGN
BKSLA
 _NEST
 BL NTIB
 BL AT
 BL INN
 BL STORE
 _UNNEST

CHAR Parse the next string out but returns only the first character in this string. It gets an ASCII
character from the input stream.

95

; CHAR (-- c)
; Parse next word and return its first character.

 DCD _BKSLA-MAPOFFSET
_CHAR DCB 4
 DCB "CHAR"
 ALIGN
CHAR
 _NEST
 BL BLANK
 BL PARSE
 BL DROP
 BL CAT
 _UNNEST

WORD Parse out the next string delimited by the ASCII character c . It then copies this string as a
counted string to the word buffer on top of the dictionary and returns its address a. The
length of the string is limited to 255 characters. It is used to parse text strings in general.

; WORD (c -- a ; string>)
; Parse a word from input stream and copy it to cod e dictionary.

 DCD _CHAR-MAPOFFSET
_WORDD DCB 4
 DCB "WORD"
 ALIGN
WORDD
 _NEST
 BL PARSE
 BL HERE
 BL CELLP
 BL PACKS
 _UNNEST

TOKEN Parse out the next string delimited by space characters. It then copies this string as a
counted string to the word buffer on top of dictionary and returns its address a. The length
of the string is limited to 31 characters. It is used to parse out names of command tokens for
interpretation and compilation.

; TOKEN (-- a ; string>)
; Parse a word from input stream and copy it to nam e dictionary.

 DCD _WORDD-MAPOFFSET
_TOKEN DCB 5
 DCB "TOKEN"
 ALIGN
TOKEN
 _NEST
 BL BLANK
 BL WORDD
 _UNNEST

3.4.6 Dictionary Search

96

In eForth, command records are linearly linked into a dictionary. A command record contains three
fields: a link field holding the name field address of the previous command record, a name field holding
the name as a counted string, and a code field holding executable code and data. A dictionary search
follows the linked list of records to find a command with a matching name. It returns the name field
address and the code field address, if a match is found.

The link field of the first command record in dictionary contains a 0, indicating it is the end of the linked
list. A user variable CONTEXT holds an address pointing to the name field of the last command record.
The dictionary search starts at CONTEXT and terminates at the first matched name, or at the first
command record. The linking of records in dictionary is show in the following figure:

From CONTEXT, we can locate the name field of the last command record in the dictionary. If this name
does not match the search string to be searched, we can find the link field of this record, which is 4 bytes
less than the name field address. From this link field, we can locate the name field of the prior
command record. Compare the name with the search string. And so forth. We will either find a
command or reach the end of the linked list.

NAME> Convert a name field address na in a command record to the code field address ca of this

command record. Code field address is the name field address plus length of name plus

97

one, and aligned to the next cell boundary.

;** ************************
; Dictionary search

; NAME> (na -- ca)
; Return a code address given a name address.

 DCD _TOKEN-MAPOFFSET
_NAMET DCB 5
 DCB "NAME>"
 ALIGN
NAMET
 _NEST
 BL COUNT
 _DOLIT
 DCD 0x1F
 BL ANDD
 BL PLUS
 BL ALGND
 _UNNEST

SAME? Compare two strings at addresses a and b for u words. It returns a 0 if two strings are
equal. It returns a positive integer if a string is greater than b string. It returns a negative
integer if a string is less than b string.

; SAME? (a a u -- a a f \ -0+)
; Compare u cells in two strings. Return 0 if ident ical.

 DCD _NAMET-MAPOFFSET
_SAMEQ DCB 5
 DCB "SAME?"
 ALIGN
SAMEQ
 _NEST
 BL TOR
 B.W SAME2
SAME1 BL OVER
 BL RAT
 BL CELLS
 BL PLUS
 BL AT ;32/16 mix-up
 BL OVER
 BL RAT
 BL CELLS
 BL PLUS
 BL AT ;32/16 mix-up
 BL SUBB
 BL QDUP
 BL QBRAN
 DCD SAME2-MAPOFFSET
 BL RFROM
 BL DROP
 _UNNEST ;strings not equal
SAME2 BL DONXT

98

 DCD SAME1-MAPOFFSET
 _DOLIT
 DCD 0
 _UNNEST ;strings equal

find Assume that a count string is at memory address a, and the name field address of the last
command record is in address va . If the string matches the name of a command, both the
code field address ca and the name field address na of the command record are returned. If
the string is not a valid command, the original string address and a false flag are returned.
find runs the dictionary search very quickly because it first compares the length byte and
the first 3 characters in the name field as a 32 bit integer. In most cases of mismatch, this
comparison would fail and the next record can be reached through the link field. If the first 4
characters match, then SAME? is invoked to compare the rest of the name field, one cell at a
time. Since both the target text string and the name field are null filled to the cell boundary,
the comparison can be performed quickly across the entire name field without worrying
about the word boundaries.

; find (a na -- ca na | a F)
; Search a vocabulary for a string. Return ca and n a if succeeded.

; DCD _SAMEQ-MAPOFFSET
;_FIND DCB 4
; DCB "find"
; ALIGN
FIND
 _NEST
 BL SWAP ; na a
 BL DUPP ; na a a
 BL CAT ; na a count
 BL CELLSL ; na a count/4
 BL TEMP
 BL STORE ; na a
 BL DUPP ; na a a
 BL AT ; na a word1
 BL TOR ; na a
 BL CELLP ; na a+4
 BL SWAP ; a+4 na
FIND1
 BL DUPP ; a+4 na na
 BL QBRAN
 DCD FIND6-MAPOFFSET ; end of vocabulary
 BL DUPP ; a+4 na na
 BL AT ; a+4 na name1
 _DOLIT
 DCD MASKK
 BL ANDD
 BL RAT ; a+4 na name1 word1
 BL XORR ; a+4 na ?
 BL QBRAN
 DCD FIND2-MAPOFFSET
 BL CELLM ; a+4 la
 BL AT ; a+4 next_na
 B.w FIND1 ; try next word
FIND2

99

 BL CELLP ; a+4 na+4
 BL TEMP
 BL AT ; a+4 na+4 count/4
 BL SAMEQ ; a+4 na+4 ?
FIND3
 B.w FIND4
FIND6
 BL RFROM ; a+4 0 name1 -- , no match
 BL DROP ; a+4 0
 BL SWAP ; 0 a+4
 BL CELLM ; 0 a
 BL SWAP ; a 0
 _UNNEST ; return without a match
FIND4
 BL QBRAN ; a+4 na+4
 DCD FIND5-MAPOFFSET ; found a match
 BL CELLM ; a+4 na
 BL CELLM ; a+4 la
 BL AT ; a+4 next_na
 B.w FIND1 ; compare next name
FIND5
 BL RFROM ; a+4 na+4 count/4
 BL DROP ; a+4 na+4
 BL SWAP ; na+4 a+4
 BL DROP ; na+4
 BL CELLM ; na
 BL DUPP ; na na
 BL NAMET ; na ca
 BL SWAP ; ca na
 _UNNEST ; return with a match
 ALIGN

NAME? Search the dictionary starting at CONTEXT for a name string at address a. Return the code
field address ca and name field address na if a matching command is found. Otherwise,
return the original string address a and a false flag.

; NAME? (a -- ca na | a F)
; Search all context vocabularies for a string.

 DCD _SAMEQ-MAPOFFSET
_NAMEQ DCB 5
 DCB "NAME?"
 ALIGN
NAMEQ
 _NEST
 BL CNTXT
 BL AT
 BL FIND
 _UNNEST

3.4.7 Terminal Input

The text interpreter interprets a line of text received from an terminal and stored it in the Terminal Input
Buffer. To process characters received from the terminal, we need special commands to deal with
backspace character and carriage return. On top of stack, three special parameters are referenced in

100

many commands: bot is the Beginning Of the Input Buffer, eot is the End Of the Input Buffer, and
cur points to the current character in the input buffer.

^H Process back-space character (ASCII 8). It erases the last character previously entered, and

decrement the character pointer cur . If cur =bot , do nothing because you cannot backup
beyond beginning of input buffer.

;** ************************
; Terminal input

; ^H (bot eot cur -- bot eot cur)
; Backup the cursor by one character.

; DCD _NAMEQ-MAPOFFSET
;_BKSP DCB 2
; DCB "^H"
; ALIGN
BKSP
 _NEST
 BL TOR
 BL OVER
 BL RFROM
 BL SWAP
 BL OVER
 BL XORR
 BL QBRAN
 DCD BACK1-MAPOFFSET
 _DOLIT
 DCD BKSPP
 BL TECHO
; BL ATEXE
 BL ONEM
 BL BLANK
 BL TECHO
; BL ATEXE
 _DOLIT
 DCD BKSPP
 BL TECHO
; BL ATEXE
BACK1
 _UNNEST

TAP Output character c to terminal, store c in cur , and increment the character pointer cur ,
which points to the current character in the input buffer. bot and eot are pointers pointing
to the beginning and end of the input buffer.

; TAP (bot eot cur c -- bot eot cur)
; Accept and echo the key stroke and bump the curso r.

; DCD _BKSP-MAPOFFSET
;_TAP DCB 3
; DCB "TAP"
; ALIGN
TAP

101

 _NEST
 BL DUPP
 BL TECHO
; BL ATEXE
 BL OVER
 BL CSTOR
 BL ONEP
 _UNNEST

kTAP Process character c . bot is pointing at the beginning of the input buffer, and eot is
pointing at the end. cur points to the current character in the input buffer. The character c
is normally stored at cur , which is then incremented by 1. If c is a carriage-return (ASCII
13), echo a space and make eot =cur ., thus terminating the input process If c is a back-
space (ASCII 8), erase the last character and decrement cur .

; kTAP (bot eot cur c -- bot eot cur)
; Process a key stroke, CR or backspace.

; DCD _TAP-MAPOFFSET
;_KTAP DCB 4
; DCB "kTAP"
; ALIGN
KTAP
TTAP
 _NEST
 BL DUPP
 _DOLIT
 DCD CRR
 BL XORR
 BL QBRAN
 DCD KTAP2-MAPOFFSET
 _DOLIT
 DCD BKSPP
 BL XORR
 BL QBRAN
 DCD KTAP1-MAPOFFSET
 BL BLANK
 BL TAP
 _UNNEST
 DCD 0 ;patch
KTAP1 BL BKSP
 _UNNEST
KTAP2 BL DROP
 BL SWAP
 BL DROP
 BL DUPP
 _UNNEST

ACCEPT Accept u characters into an input buffer starting at address b, or until a carriage return
(ASCII 13) is encountered. The value of u returned is the actual number of characters
received.

; ACCEPT (b u -- b u)
; Accept characters to input buffer. Return with ac tual count.

102

 DCD _NAMEQ-MAPOFFSET
_ACCEP DCB 6
 DCB "ACCEPT"
 ALIGN
ACCEP
 _NEST
 BL OVER
 BL PLUS
 BL OVER
ACCP1 BL DDUP
 BL XORR
 BL QBRAN
 DCD ACCP4-MAPOFFSET
 BL KEY
 BL DUPP
 BL BLANK
 _DOLIT
 DCD 127
 BL WITHI
 BL QBRAN
 DCD ACCP2-MAPOFFSET
 BL TAP
 B ACCP3
ACCP2 BL KTAP
; BL ATEXE
ACCP3
 B ACCP1
ACCP4 BL DROP
 BL OVER
 BL SUBB
 _UNNEST

QUERY Accept up to 80 characters from the input device to the Terminal Input Buffer. It also
prepares the Terminal Input Buffer for parsing by setting #TIB to the length of the input
text stream, and clearing >IN so it points to the beginning of the Terminal Input Buffer.

; QUERY (--)
; Accept input stream to terminal input buffer.

 DCD _ACCEP-MAPOFFSET
_QUERY DCB 5
 DCB "QUERY"
 ALIGN
QUERY
 _NEST
 BL TIB
 _DOLIT
 DCD 80
 BL ACCEP
 BL NTIB
 BL STORE
 BL DROP
 _DOLIT
 DCD 0
 BL INN

103

 BL STORE
 _UNNEST

3.4.8 Error Handling

When the text interpreter encounters a string which is not a name and not a number, it prints out this
string followed by a ? mark as an error message. Then the text interpreter starts over. Stacks are cleared
and then jump to QUIT.

ABORT Print the string in memory located at address a, followed by a ? mark and aborts. 'Abort'

means clearing the parameter stack and the return stack, and returns to the text interpreter
loop QUIT.

;** ************************
; Error handling

; ABORT (a --)
; Reset data stack and jump to QUIT.

 DCD _QUERY-MAPOFFSET
_ABORT DCB 5
 DCB "ABORT"
 ALIGN
ABORT
 _NEST
 BL SPACE
 BL COUNT
 BL TYPEE
 _DOLIT
 DCD 0X3F
 BL EMIT
 BL CR
 BL PRESE
 B.W QUIT
 ALIGN

abort" It is compiled with an error message in a compound command. When abort" is executed
in run time, it examines the top item on the parameter stack. It the flag is true, print out the
following error message and QUIT; otherwise, skip over the error message and continue
executing the next command.

; _abort" (f --)
; Run time routine of ABORT" . Abort with a message .

; DCD _ABORT-MAPOFFSET
;_ABORQ DCB COMPO+6
; DCB "abort\""
; ALIGN
ABORQ
 _NEST
 BL QBRAN
 DCD ABOR1-MAPOFFSET ;text flag
 BL DOSTR

104

 BL COUNT
 BL TYPEE
 BL CR
 B.W QUIT
ABOR1 BL DOSTR
 BL DROP
 _UNNEST ;drop error

3.4.9 String Interpreter

Text interpreter in Forth is like a conventional operating system of a computer. It is the primary
interface you use to get the computer to do work. Since Forth uses very simple syntax rule--commands
are separated by spaces, the text interpreter is also very simple. It accepts a line of text from the
terminal, parses out a name delimited by spaces, locates the name in the dictionary and then executes it.
The process is repeated until the input text is exhausted. Then the text interpreter waits for another line
of text and interprets it again. This cycle repeats until you are exhausted and turns off the computer.

In eForth, the text interpreter is coded in the command QUIT. QUIT contains an infinite loop which
repeats the QUERY-EVAL command pair. QUERY accepts a line of text from the input terminal. EVAL
interprets the text one name at a time till the end of the text line. EVAL uses the command whose
address is in user variable ‘EVAL to process the name string. ‘EVAL contains either $INTERPRET or
$COMPILE, which executes or compiles the name, respectively.

$INTERPRET Execute a command whose name string is stored at address a on the parameter stack.
If the string is not a valid command, convert it to a number. Failing the numeric
conversion, execute ABORT and return to QUIT.

;** ************************
; The text interpreter

; $INTERPRET (a --)
; Interpret a word. If failed, try to convert it to an integer.

 DCD _ABORT-MAPOFFSET
_INTER DCB 10
 DCB "$$INTERPRET"
 ALIGN
INTER
 _NEST
 BL NAMEQ
 BL QDUP ;?defined
 BL QBRAN
 DCD INTE1-MAPOFFSET
 BL AT
 _DOLIT
 DCD COMPO
 BL ANDD ;?compile only lexicon bits
 BL ABORQ
 DCB 13
 DCB " compile only"
 ALIGN
 BL EXECU

105

 _UNNEST ;execute defined word
INTE1 BL NUMBQ
 BL QBRAN
 DCD INTE2-MAPOFFSET
 _UNNEST
INTE2 B.W ABORT ;error

[Activate the text interpreter by storing the code field address of $INTERPRET into the
variable 'EVAL , which is executed in EVAL while the text interpreter is in the interpretive
mode.

; [(--)
; Start the text interpreter.

 DCD _INTER-MAPOFFSET
_LBRAC DCB IMEDD+1
 DCB "["
 ALIGN
LBRAC
 _NEST
 _DOLIT
 DCD INTER-MAPOFFSET
 BL TEVAL
 BL STORE
 _UNNEST

.OK Print the familiar ok> prompting message after executing to the end of a line. The message
ok> is printed only when the text interpreter is in the interpretive mode. While compiling,
the prompt is suppressed.

; .OK (--)
; Display "ok" only while interpreting.

 DCD _LBRAC-MAPOFFSET
_DOTOK DCB 3
 DCB ".OK"
 ALIGN
DOTOK
 _NEST
 _DOLIT
 DCD INTER-MAPOFFSET
 BL TEVAL
 BL AT
 BL EQUAL
 BL QBRAN
 DCD DOTO1-MAPOFFSET
 BL DOTQP
 DCB 3
 DCB " ok"
 ALIGN
DOTO1 BL CR
 _UNNEST

?STACK Check for stack underflow. Abort, resetting the parameter stack pointer, if the stack depth

106

is negative.

; ?STACK (--)
; Abort if the data stack underflows.

 DCD _DOTOK-MAPOFFSET
_QSTAC DCB 6
 DCB "?STACK"
 ALIGN
QSTAC
 _NEST
 BL DEPTH
 BL ZLESS ;check only for underflow
 BL ABORQ
 DCB 10
 DCB " underflow"
 ALIGN
 _UNNEST

EVAL It is contained in the text interpreter loop QUIT. It parses tokens from the input stream and
invokes whatever command in 'EVAL to process the token, either execute it with
$INTERPRET or compile it with $COMPILE.

; EVAL (--)
; Interpret the input stream.

 DCD _QSTAC-MAPOFFSET
_EVAL DCB 4
 DCB "EVAL"
 ALIGN
EVAL
 _NEST
EVAL1 BL TOKEN
 BL DUPP
 BL CAT ;?input stream empty
 BL QBRAN
 DCD EVAL2-MAPOFFSET
 BL TEVAL
 BL ATEXE
 BL QSTAC ;evaluate input, check stack
 B.W EVAL1
EVAL2 BL DROP
 BL DOTOK
 _UNNEST ;prompt
 ALIGN

PRESET Reset the parameter stack pointer to clear the parameter stack.

; PRESET (--)
; Reset data stack pointer and the terminal input b uffer.

 DCD _EVAL-MAPOFFSET
_PRESE DCB 6
 DCB "PRESET"
 ALIGN

107

PRESE
 _NEST
 MOVW R1,#0XFE00 ; init SP
; MOVT R1,#0X2000
 MOVW R0,#0 ; init TOS
 _UNNEST

QUIT It is the operating system, the text interpreter, or a shell, of the stm32eForth system. It is
an infinite loop eForth will never get out. It uses QUERY to accept a line of commands
from the input terminal and then lets EVAL to parse out tokens and execute them. After a
line is processed, it displays an ok> message and wait for the next line of commands.
When an error occurred during execution, it prints the string which caused the error as an
error message. After the error is reported, it re-initializes the system by clearing the stacks
and comes back to receive the next line of commands. Because the behavior of EVAL can
be changed by storing either $INTERPRET or $COMPILE into 'EVAL , QUIT exhibits
the dual nature of a text interpreter and a compiler.

; QUIT (--)
; Reset return stack pointer and start text interpr eter.

 DCD _PRESE-MAPOFFSET
_QUIT DCB 4
 DCB "QUIT"
 ALIGN
QUIT
 _NEST
 MOVW R2,#0XFF00
; MOVT R2,#0X2000
QUIT1 BL LBRAC ;start interpretation
QUIT2 BL QUERY ;get input
 BL EVAL
 BL BRAN
 DCD QUIT2-MAPOFFSET ;continue till error

3.4.10 Flash Memory

STM32F407VG on Discovery Kit has only 1 MB of flash. That’s plenty as far as eForth is concerned.
eForth core occupies about 8-10 KB, but it can use lots of memory for applications. Flash memory is
generally difficult to use, and you have to be very careful so that your system will not inadvertently mess
up the flash memory and cause the system to crash.

When programming in eForth, you add new command to the dictionary. New commands can generally
be added to the flash memory directly, if the area is erased properly. Once a command is added, you
cannot modify it. You cannot erase a command individually, because flash memory must be erased in
whole sectors. One particular problem in eForth is that you cannot change a command so that it
becomes an immediate command, as the immediate bit in the header of a command is already cleared,
and cannot be set again. Another problem is that it is very difficult to build turnkey system, because the
table of initial values of user variables cannot be updated without erasing a whole sector wherein the
table is located.

108

Happily, STM32F4 has 192 KB of RAM memory which can be used as program memory. In
stm32eforth720, eForth system is first copied from flash to RAM, and executed in RAM. In RAM
memory, eForth system can grow at will, without limitations posed by flash memory. When an
application is completely debugged, the entire eForth dictionary can be saved into flash memory. Your
application can start running after reset by saving its execution address in the user variable ‘BOOT.

In STM32F4, there is a flash memory controller, which is just like another IO device. It is called ‘Flash
Memory Interface’, and has a set of status, control, and data registers. Following the chapter on flash
memory in the reference manual, it is not very difficult to program the flash memory to do what you
want it to do.

In STM32F407 chip, 1 MB of flash memory are organized in 12 sectors. Sectors 0-3 have 16 KB each.
Sector 4 has 64 KB. Sectors 5-11 have 128 KB each. Stm32eforth720 only uses sectors 0-3.

Regular eForth memory read commands @ and C@ can read flash memory. Memory write commands !
and C! have no effect on flash memory. I added a special command I! to write a 32-bit word into flash
memory. While flash memory is unlocked, a 2 is also stored into the PSIZE field of FLASH_CR
register. It specifies that we will only write 32-bit words into flash memory.

UNLOCK Unlock flash memory to be writable. This is done only once on reset. Two special
words 0x45670123 and 0xCDEF89AB are written to FLASH_KEYR register.

;** ************************
; Flash memory interface

FLASH EQU 0x40023C00
FLASH_KEYR EQU 0X04
FLASH_SR EQU 0x0C
FLASH_CR EQU 0X10
FLASH_KEY1 EQU 0x45670123
FLASH_KEY2 EQU 0xCDEF89AB

UNLOCK ; unlock flash memory
 ldr r0, =FLASH
 ldr r4, =FLASH_KEY1
 str r4, [r0, #0x4]
 ldr r4, =FLASH_KEY2
 str r4, [r0, #0x4]
 mov r4, #0x200 ; PSIZE 32 bits
 str r4, [r0, #0x10]

 _NEXT

WAIT_BSY Wait until the busy flag BSY in the FLASH_SR register is cleared, so that we can
start the next flash operation.

WAIT_BSY
 ldr r0, =FLASH
WAIT1 ldr r4, [r0, #0x0C] ; FLASH_SR
 ands r4, #0x1000 ; BSY
 bne WAIT1
 _NEXT

109

 ALIGN

ERASE_SECTOR Erase one sector (0-11) of flash memory. stm32eforth720 only uses the first 4
sectors (16 KB each) of flash memory.

; ERASE_SECTOR (sector --)
; Erase one sector of flash memory. Sector=0 to 11

 DCD _QUIT-MAPOFFSET
_ESECT DCB 12
 DCB "ERASE_SECTOR"
 ALIGN

ESECT ; sector --
 _NEST
 bl WAIT_BSY
 ldr r4,[r0, #0x10] ; FLASH_CR
 bic r4,r4,#0x78 ; clear SNB
 lsl R5,R5,#3 ; align sector #
 orr r4,r4,r5 ; put in sector #
 orr R4,R4,#0x10000 ; set STRT bit
 orr R4,R4,#0x200 ; PSIZE=32
 orr R4,R4,#2 ; set SER bit, enable erase
 str r4,[r0, #0x10] ; start erasing
; bl WAIT_BSY
 _POP
 _UNNEST

I! Write 32 bit data into flash memory location address . Enable flash writing before
writing. Disable flash writing afterwards to protect flash memory.

; I! (data address --)
; Write one word into flash memory

 DCD _ESECT-MAPOFFSET
_ISTOR DCB 2
 DCB "I!"
 ALIGN

ISTOR ; data address --
 _NEST
 bl WAIT_BSY
 ldr r4, [r0, #0x10] ; FLASH_CR
 orr r4,R4,#0x1 ; PG
 str r4, [r0, #0x10] ; enable programming
 bl STORE
 bl WAIT_BSY
 ldr r4, [r0, #0x10] ; FLASH_CR
 bic r4,R4,#0x1 ; PG
 str r4, [r0, #0x10] ; disable programming
 _UNNEST
 ALIGN
 LTORG

TURNKEY Copy eForth dictionary from RAM to flash. The user variables are copied first from

110

0xFF00-0xFF3F to 0xC0-0xFF so that the new eForth system will be boot up properly
with current user variables. ‘BOOT must be initialized correctly to point to an
application command you wish to run after reset.

; TURNKEY (--)
; Copy dictionary from RAM to flash.

 DCD _ISTOR-MAPOFFSET
_TURN DCB 7
 DCB "TURNKEY"
 ALIGN
TURN _NEST
 _DOLIT ; save user area
 DCD 0XFF00
 _DOLIT
 DCD 0xC0 ; to boot array
 _DOLIT
 DCD 0x40
 BL MOVE
 _DOLIT
 DCD 0
 _DOLIT
 DCD 0x8000000
 BL CPP
 BL AT
 BL CELLSL
 BL TOR
TURN1 BL OVER
 BL AT
 BL OVER
 BL ISTOR
 BL SWAP
 BL CELLP
 BL SWAP
 BL CELLP
 BL DONXT
 DCD TURN1-MAPOFFSET
 BL DDROP
 _UNNEST
 ALIGN

3.5 Forth Compiler

3.5.1 Compiler Loop

The Forth compile is the twin brother of the text interpreter. They share lot of code and they reside in
the same interpreter loop QUIT. Let us use the same task sequence in the text interpreter section to
show what the compiler does:

Step 1. Accept one line of text from the terminal.
Step 2. Parse out a space delimited name string.
Step 3. Search the dictionary for a command of this name.
Step 4. If it is an immediate command, execute it. Go to Step 9.

111

Step 5. If it is a command, compile it as a token. Go to Step 9.
Step 6. If it is not a command, convert it to a number.
Step 7. If it is a number, compile a integer literal structure. Go to Step 9.
Step 8. If it is not a number, abort. Go back to step 1.
Step 9. If the text line is not exhausted, go back to step 2.
Step 10. If the text line is exhausted, go back to Step 1.

Compiler and interpreter are both processing a linear list of names. However, interpreter is like talking,
a simple linear list is generally sufficient. Compiler is like writing, and it can express deeply convoluted
thoughts and ideas. These ideas cannot be expressed in a single line of names. You need a big sheet of
paper, or a file, to put them down properly. In addition to compile linear lists of tokens, the Forth
compile can build complicated branch structures, loop structures, and control structures embedded in
token lists. These structures are built with the immediate commands, which are executed immediately
by the compiler. These are things we will discuss in this section.

3.5.2 Compiler Tools

' Search the dictionary for the following string. If the string is a valid command, return its

code field address ca . If the string is not a valid command, print it with a ? mark.

;** ************************
; The compiler

; ' (-- ca)
; Search context vocabularies for the next word in input stream.

 DCD _TURN-MAPOFFSET
_TICK DCB 1
 DCB "'"
 ALIGN
TICK
 _NEST
 BL TOKEN
 BL NAMEQ ;?defined
 BL QBRAN
 DCD TICK1-MAPOFFSET
 _UNNEST ;yes, push code address
TICK1 B.W ABORT ;no, error

ALLOT Allocate n bytes of memory on top of the dictionary. User variable CP points to the top of
dictionary. Increment CP by n.

; ALLOT (n --)
; Allocate n bytes to the ram area.

 DCD _TICK-MAPOFFSET
_ALLOT DCB 5
 DCB "ALLOT"
 ALIGN
ALLOT
 _NEST
 BL CPP

112

 BL PSTOR
 _UNNEST ;adjust code pointer

, (comma) It is the most primitive compiler command. It compiles an integer w to the top of
dictionary. It usually adds a new item to the growing token list of the current command
under construction. This is the primitive compiler upon which the Forth compiler rests.

; , (w --)
; Compile an integer into the code dictionary.

 DCD _ALLOT-MAPOFFSET
_COMMA DCB 1,","
 ALIGN
COMMA
 _NEST
 BL HERE
 BL DUPP
 BL CELLP ;cell boundary
 BL CPP
 BL STORE
 BL STORE
 _UNNEST ;adjust code pointer, compile

[COMPILE] Compile the code field address of the next command in the input stream. It is used to
compile immediate commands, which would otherwise be executed while compiling.

; [COMPILE] (-- ; string>)
; Compile the next immediate word into code diction ary.

 DCD _COMMA-MAPOFFSET
_BCOMP DCB IMEDD+9
 DCB "[COMPILE]"
 ALIGN
BCOMP
 _NEST
 BL TICK
 BL COMMA
 _UNNEST

COMPILE Compile the code field address of the next command in the input stream. It forces
compilation of a command at run time.

; COMPILE (--)
; Compile the next address in colon list to code di ctionary.

 DCD _BCOMP-MAPOFFSET
_COMPI DCB COMPO+7
 DCB "COMPILE"
 ALIGN
COMPI
 _NEST
 BL RFROM
 BIC R5,R5,#1
 BL DUPP
 BL AT

113

 BL CALLC ;compile BL instruction
 BL CELLP
 ORR R5,R5,#1
 BL TOR
 _UNNEST ;adjust return address

LITERAL Compile an integer literal structure. It first compiles a BL doLIT machine instruction,
followed by an integer w. When doLIT is executed in run time, it extracts this integer in
the next program word and pushes it on the parameter stack.

; LITERAL (w --)
; Compile tos to code dictionary as an integer lite ral.

 DCD _COMPI-MAPOFFSET
_LITER DCB IMEDD+7
 DCB "LITERAL"
 ALIGN
LITER
 _NEST
 BL COMPI
 DCD DOLIT-MAPOFFSET
 BL COMMA
 _UNNEST

$," Compile a string literal structure. String text is taken from the input stream and terminated
by a double quote. A string token (such as ."| or $"|) must be compiled before the string
to initiate this sting literal structure.

; $," (--)
; Compile a literal string up to next " .

; DCD _LITER-MAPOFFSET
;_STRCQ DCB 3
; DCB "$$,"""
; ALIGN
STRCQ
 _NEST
 _DOLIT
 DCD -4
 BL CPP
 BL PSTOR
 _DOLIT
 DCD '\"'
 BL WORDD ;moveDCB to code dictionary
 BL COUNT
 BL PLUS
 BL ALGND ;calculate aligned end ofDCB
 BL CPP
 BL STORE
 _UNNEST ;adjust the code pointer

3.5.3 Structure Commands

Immediate commands are not compiled as tokens by the compiler. Instead, they are executed by the

114

compiler immediately. They are used to build control structures in the token lists of compound
commands. Immediate commands has its IMMEDIATE lexicon bit set, in the length byte of the name
field. The control structures used in eForth are the following:

Conditional branch IF ... THEN
 IF ... ELSE ... THEN
Finite loop FOR ... NEXT
 FOR ... AFT ... THEN... NEXT
Infinite loop BEGIN ... AGAIN
Indefinite loop BEGIN ... UNTIL
 BEGIN ... WHILE ... REPEAT

A control structure contains one or more address literals with BL ?branch, BL branch and BL
next tokens, which cause execution to branch out of the normal sequence. The control structure
commands are immediate commands which compile the address literal and resolve the branch address.
These control structures are shown in the following figure:

115

One should note that BEGIN and THEN do not compile any token. They set up or resolve control
structures in a token list. IF , ELSE, WHILE, UNTIL , and AGAIN do compile address literals with
branching tokens.

I use two characters a and A to denote different addresses on the parameter stack. a points to a location
to where a branch commands will jump to. A points to a location where a new address will be stored
when the address is resolved.

FOR Compile a BL TOR token and pushes the address of the next token a on the parameter

stack. It starts a FOR-NEXT loop.

;** ************************
; Structures

; FOR (-- a)
; Start a FOR-NEXT loop structure in a colon defini tion.

 DCD _LITER-MAPOFFSET
_FOR DCB IMEDD+3
 DCB "FOR"
 ALIGN
FOR
 _NEST
 BL COMPI
 DCD TOR-MAPOFFSET
 BL HERE
 _UNNEST

BEGIN Start a loop structure. It pushes an address a on the parameter stack. a points to the top of
the dictionary where new tokens will be compiled. If begins an infinite loop or an
indefinite loop.

; BEGIN (-- a)
; Start an infinite or indefinite loop structure.

 DCD _FOR-MAPOFFSET
_BEGIN DCB IMEDD+5
 DCB "BEGIN"
 ALIGN
BEGIN
 _NEST
 BL HERE
 _UNNEST

NEXT Compile a BL next token with a target address a on the top of the parameter stack. It
resolves a FOR NEXT loop.

; NEXT (a --)
; Terminate a FOR-NEXT loop structure.

 DCD _BEGIN-MAPOFFSET
_NEXT DCB IMEDD+4

116

 DCB "NEXT"
 ALIGN
NEXT
 _NEST
 BL COMPI
 DCD DONXT-MAPOFFSET
 BL COMMA
 _UNNEST

UNTIL Compile a BL ?branch token with a target address a on the top of the parameter stack. It
resolves a BEGIN-UNTIL indefinite loop.

; UNTIL (a --)
; Terminate a BEGIN-UNTIL indefinite loop structure .

 DCD _NEXT-MAPOFFSET
_UNTIL DCB IMEDD+5
 DCB "UNTIL"
 ALIGN
UNTIL
 _NEST
 BL COMPI
 DCD QBRAN-MAPOFFSET
 BL COMMA
 _UNNEST

AGAIN Compile a BL branch token with a target address a on the top of the parameter stack. It
resolves a BEGIN-AGAIN infinite loop.

; AGAIN (a --)
; Terminate a BEGIN-AGAIN infinite loop structure.

 DCD _UNTIL-MAPOFFSET
_AGAIN DCB IMEDD+5
 DCB "AGAIN"
 ALIGN
AGAIN
 _NEST
 BL COMPI
 DCD BRAN-MAPOFFSET
 BL COMMA
 _UNNEST

IF Compile a BL ?branch address literal and pushes its address, a, is left on the parameter
stack. It starts an IF-ELSE-THEN or an IF-THEN branch structure.

; IF (-- A)
; Begin a conditional branch structure.

 DCD _AGAIN-MAPOFFSET
_IFF DCB IMEDD+2
 DCB "IF"
 ALIGN
IFF
 _NEST

117

 BL COMPI
 DCD QBRAN-MAPOFFSET
 BL HERE
 _DOLIT
 DCD 4
 BL CPP
 BL PSTOR
 _UNNEST

AHEAD Compile a BL branch address literal and pushes its next address A on the parameter
stack. It starts a AHEAD-THEN branch structure.

; AHEAD (-- A)
; Compile a forward branch instruction.

 DCD _IFF-MAPOFFSET
_AHEAD DCB IMEDD+5
 DCB "AHEAD"
 ALIGN
AHEAD
 _NEST
 BL COMPI
 DCD BRAN-MAPOFFSET
 BL HERE
 _DOLIT
 DCD 4
 BL CPP
 BL PSTOR
 _UNNEST

REPEAT Compile a BL branch token with a target address a on the top of the parameter stack. It
resolves the address of BL ?branch token at A left by WHILE. It terminates a BEGIN-
WHILE-REPEAT indefinite loop structure.

; REPEAT (A a --)
; Terminate a BEGIN-WHILE-REPEAT indefinite loop.

 DCD _AHEAD-MAPOFFSET
_REPEA DCB IMEDD+6
 DCB "REPEAT"
 ALIGN
REPEA
 _NEST
 BL AGAIN
 BL HERE
 BL SWAP
 BL STORE
 _UNNEST

THEN Resolve the address in a BL branch token whose address is A on the top of the parameter
stack. It resolves a IF-ELSE-TEHN or IF-THEN branch structure.

; THEN (A --)
; Terminate a conditional branch structure.

118

 DCD _REPEA-MAPOFFSET
_THENN DCB IMEDD+4
 DCB "THEN"
 ALIGN
THENN
 _NEST
 BL HERE
 BL SWAP
 BL STORE
 _UNNEST

AFT Compile a BL branch literal and leaves its address as A on stack, It also replaces the
address a left by FOR with the address a1 of the next token. A will be used by THEN to
resolve the AFT-THEN branch structure, and a1 will be used by NEXT to resolve the loop
structure.

; AFT (a – a1 A)
; Jump to THEN in a FOR-AFT-THEN-NEXT loop the firs t time through.

 DCD _THENN-MAPOFFSET
_AFT DCB IMEDD+3
 DCB "AFT"
 ALIGN
AFT
 _NEST
 BL DROP
 BL AHEAD
 BL BEGIN
 BL SWAP
 _UNNEST

ELSE Compile a BL branch token, and use the address of the next token to resolve the address
field of BL ?branch token in a, as left by IF . It also replaces a with A, the address of its
address field for THEN to resolve. ELSE starts the false clause in the IF-ELSE-THEN
branch structure.

; ELSE (A -- A)
; Start the false clause in an IF-ELSE-THEN structu re.

 DCD _AFT-MAPOFFSET
_ELSEE DCB IMEDD+4
 DCB "ELSE"
 ALIGN
ELSEE
 _NEST
 BL AHEAD
 BL SWAP
 BL THENN
 _UNNEST

WHILE Compile a BL ?branch token and leave its address, A, on the stack. Address a left by
BEGIN is swapped to the top of the parameter stack. WHILE is used to start the true clause

119

in the BEGIN-WHILE-REPEAT loop.

; WHILE (a -- A a)
; Conditional branch out of a BEGIN-WHILE-REPEAT lo op.

 DCD _ELSEE-MAPOFFSET
_WHILE DCB IMEDD+5
 DCB "WHILE"
 ALIGN
WHILE
 _NEST
 BL IFF
 BL SWAP
 _UNNEST

ABORT" Compile an error message as a string literal structure. This error message is display at run
time if the top item on the parameter stack is true , and the rest of the tokens in this
compound command are skipped and eForth enters the interpreter loop in QUIT. This is the
programmed response to an error condition.

; ABORT" (-- ; string>)
; Conditional abort with an error message.

 DCD _WHILE-MAPOFFSET
_ABRTQ DCB IMEDD+6
 DCB "ABORT\""
 ALIGN
ABRTQ
 _NEST
 BL COMPI
 DCD ABORQ-MAPOFFSET
 BL STRCQ
 _UNNEST

$" Compile a string literal structure. When it is executed in run time, only the address of the
string is pushed on the parameter stack. Later commands can use this address to access the
string and individual characters in the string as a string array.

; $" (-- ; string>)
; Compile an inlineDCB literal.

 DCD _ABRTQ-MAPOFFSET
_STRQ DCB IMEDD+2
 DCB "$$"""
 ALIGN
STRQ
 _NEST
 BL COMPI
 DCD STRQP-MAPOFFSET
 BL STRCQ
 _UNNEST

." Compile a string literal structure which will print a text string when it is executed in run
time. This is the best way to present messages to user in an application.

120

; ." (-- ; string>)
; Compile an inlineDCB literal to be typed out at r un time.

 DCD _STRQ-MAPOFFSET
_DOTQ DCB IMEDD+2
 DCB "."""
 ALIGN
DOTQ
 _NEST
 BL COMPI
 DCD DOTQP-MAPOFFSET
 BL STRCQ
 _UNNEST

3.5.4 String Compiler

We had seen how tokens and structures are compiled into the code field of a compound command in the
dictionary. To build a new command, we have to build its header first. A header consists of a link field
and a name field. Here are the commands to build the header.

?UNIQUE Display a warning message to show that the name of a new command already exists in the

dictionary. Forth does not prevent your reusing the same name for different commands.
However, giving the same name to many different commands often causes problems in
software projects. It is to be avoided if possible and ?UNIQUE reminds you of it.

;** ************************
; Name compiler

; ?UNIQUE (a -- a)
; Display a warning message if the word already exi sts.

 DCD _DOTQ-MAPOFFSET
_UNIQU DCB 7
 DCB "?UNIQUE"
 ALIGN
UNIQU
 _NEST
 BL DUPP
 BL NAMEQ ;?name exists
 BL QBRAN
 DCD UNIQ1-MAPOFFSET ;redefinitions are OK
 BL DOTQP
 DCB 7
 DCB " reDef " ;but warn the user
 ALIGN
 BL OVER
 BL COUNT
 BL TYPEE ;just in case its not planned
UNIQ1 BL DROP
 _UNNEST

$,n Build a new header with a name string at memory address na . It first builds a link field
with an address pointing to the name field of the prior command. At this point, the parser

121

had already packed the name into the name field. Move the dictionary pointer CP to the end
of this name field, and the header is complete. The top of dictionary now is the code field
of the new command, and tokens can be compiled.

; $,n (na --)
; Build a new dictionary name using the data at na.

; DCD _UNIQU-MAPOFFSET
;_SNAME DCB 3
; DCB "$$,n"
; ALIGN
SNAME
 _NEST
 BL DUPP ; na na
 BL CAT ; ?null input
 BL QBRAN
 DCD SNAM1-MAPOFFSET
 BL UNIQU ; na
 BL LAST ; na last
 BL AT ; na la
 BL COMMA ; na
 BL DUPP ; na na
 BL LAST ; na na last
 BL STORE ; na , save na for vocabulary link
 BL COUNT ; na+1 count
 BL PLUS ; na+1+count
 BL ALGND ; word boundary
 BL CPP
 BL STORE ; top of dictionary now
 _UNNEST
SNAM1
 BL STRQP
 DCB 7," name? "
 B.W ABORT

$COMPILE Build the token list of a new compound command in its code field, which is on the top of
the dictionary. It takes a string address a on the top of the parameter stack, search
dictionary for a matching token, and appends the token to the token list. If the string is
not a valid command, it is converted to a number, and a integer literal is appended to the
token list. If the string is not a number, abort the compilation process and return to the
text interpreter loop in QUIT. If the string is the name of an immediate command, this
command is not compiled, but executed immediately. Immediate commands are tools
used by the compiler to build structures in a token list.

; $COMPILE (a --)
; Compile next word to code dictionary as a token o r literal.

 DCD _UNIQU-MAPOFFSET
_SCOMP DCB 8
 DCB "$$COMPILE"
 ALIGN
SCOMP
 _NEST
 BL NAMEQ

122

 BL QDUP ;defined?
 BL QBRAN
 DCD SCOM2-MAPOFFSET
 BL AT
 _DOLIT
 DCD IMEDD
 BL ANDD ;immediate?
 BL QBRAN
 DCD SCOM1-MAPOFFSET
 BL EXECU
 _UNNEST ;it's immediate, execute
SCOM1 BL CALLC ;it's not immediate, compile
 _UNNEST
SCOM2 BL NUMBQ
 BL QBRAN
 DCD SCOM3-MAPOFFSET
 BL LITER
 _UNNEST ;compile number as integer
SCOM3 B.W ABORT ;error

OVERT Link a new command to the dictionary and thus makes it available for dictionary searches.
When a new header is build, its name field address is stored in system variable LAST, and it
is not yet linked to the dictionary which starts at CONTEXT. OVERT copies the name field
address in LAST to CONTEXT and links the new command to the dictionary. It is used to
protect the dictionary so that new commands not compiled successfully will not be linked
incorrectly into the dictionary.

; OVERT (--)
; Link a new word into the current vocabulary.

 DCD _SCOMP-MAPOFFSET
_OVERT DCB 5
 DCB "OVERT"
 ALIGN
OVERT
 _NEST
 BL LAST
 BL AT
 BL CNTXT
 BL STORE
 _UNNEST

; Terminate a new compound command. It compiles an _UNNEST machine instruction to
terminate the new token list, links this new command to the dictionary, and then returns to
interpreting mode by storing the code field address of $INTERPRET into user variable
'EVAL .

; ; (--)
; Terminate a colon definition.

 DCD _OVERT-MAPOFFSET
_SEMIS DCB IMEDD+COMPO+1
 DCB ";"
 ALIGN

123

SEMIS
 _NEST
 _DOLIT
 _UNNEST
 BL COMMA
 BL LBRAC
 BL OVERT
 _UNNEST

] Turn the text interpreter to a compiler by storing the code field address of $COMPILE into
user variable 'EVAL ..

;] (--)
; Start compiling the words in the input stream.

 DCD _SEMIS-MAPOFFSET
_RBRAC DCB 1
 DCB "]"
 ALIGN
RBRAC
 _NEST
 _DOLIT
 DCD SCOMP-MAPOFFSET
 BL TEVAL
 BL STORE
 _UNNEST

3.5.5 Branch and Link Token

In STM32F4, subroutine call uses the Branch and Link BL<addr> instruction. All high level
compound commands are assembled as tokens of BL instructions. BL instruction, as invented in the
ARM RISC architecture, assumed a return stack of 1 level. If the called subroutine had to call other
subroutines, the return address in LR had to be saved on a real return stack of adequate depth. (In eForth,
the return stack and the parameter stack run to about 20 levels deep. 64 levels are reserved for the return
stack. About 16K levels are available for the parameter stack.)

In the uVision5 debugger, I watched the disassembled BL instructions while single stepping through the
code, but could not figure out how the instructions were encoded. Only when I was testing the
decompiler command SEE, I had to figure it out without a shiver of doubt. It is composed of two 16-bit
THUMB2 instructions in the form of:

Very strange, indeed! But, I was able to shift the bits around and eventually get the correct address out.

BL.W Compile or assemble a BL instruction as a token. The destination address ca is on the

parameter stack. Compound commands are compiled as lists of BL tokens.

124

; BL.W (ca --)
; Assemble a branch-link long instruction to ca.
; BL.W is split into 2 16 bit instructions with 11 bit address fields.

; DCD _RBRAC-MAPOFFSET
;_CALLC DCB 5
; DCB "call,"
; ALIGN
CALLC
 _NEST
 BIC R5,R5,#1 ; clear b0 of address from R>
 BL HERE
 BL SUBB
 SUB R5,R5,#4 ; pc offset
 MOVW R0,#0x7FF ; 11 bit mask
 MOV R4,R5
 LSR R5,R5,#12 ; get bits 22-12
 AND R5,R5,R0
 LSL R4,R4,#15 ; get bits 11-1
 ORR R5,R5,R4
 ORR R5,R5,#0xF8000000
 ORR R5,R5,#0xF000
 BL COMMA ; assemble BL.W instruction
 _UNNEST
 ALIGN

: (colon) Create a new header and start a new compound command. It takes the following string in
the input stream to be the name of the new command. The dictionary is ready to accept a
token list.] turns the text interpreter into compiler, which will compile the following text
strings to build a new compound command. The new compound command will then be
terminated by ; .

; : (-- ; string>)
; Start a new colon definition using next word as i ts name.

 DCD _RBRAC-MAPOFFSET
_COLON DCB 1
 DCB ":"
 ALIGN
COLON
 _NEST
 BL TOKEN
 BL SNAME
 _DOLIT
 _NEST
 BL COMMA
 BL RBRAC
 _UNNEST

IMMEDIATE Set the immediate lexicon bit in the name field of the new command. When the
compiler encounters a command with this bit set, it will not compile this command into
the token list under construction, but execute it immediately. This bit allows immediate
commands to build special structures in compound commands, and to deal with special
conditions while compiling.

125

; IMMEDIATE (--)
; Make the last compiled word an immediate word.

 DCD _COLON-MAPOFFSET
_IMMED DCB 9
 DCB "IMMEDIATE"
 ALIGN
IMMED
 _NEST
 _DOLIT
 DCD IMEDD
 BL LAST
 BL AT
 BL AT
 BL ORR
 BL LAST
 BL AT
 BL STORE
 _UNNEST

3.5.6 Defining Commands

Defining commands are molds which can be used to create classes of commands which share the same
run time behavior. In stm32eForth720, we have the following defining commands: : , CREATE,
CONSTANT and VARIABLE. The contents of the code fields in different classes of commands are
shown in the following figure:

CONSTANT Create a new constant command with a BL doCON token followed by the constant value

u. When a constant command is executed, it pushes the constant value on the parameter
stack.

;** ************************
; Defining words

; CONSTANT (u -- ; string>)

126

; Compile a new constant.

 DCD _IMMED-MAPOFFSET
_CONST DCB 8
 DCB "CONSTANT"
 ALIGN
CONST
 _NEST
 BL TOKEN
 BL SNAME
 BL OVERT
 _DOLIT
 _NEST
 BL COMMA
 _DOLIT
 DCD DOCON-MAPOFFSET
 BL CALLC
 BL COMMA
 _UNNEST

CREATE Create a new command with a BL doVAR token. It creates a data array in dictionary
without allocating memory. When a command created by CREATE is executed, it will
push the address after BL doVAR token on the parameter stack. Memory space of an
actual array is allocated using ALLOT command.

; CREATE (-- ; string>)
; Compile a new array entry without allocating code space.

 DCD _CONST-MAPOFFSET
_CREAT DCB 6
 DCB "CREATE"
 ALIGN
CREAT
 _NEST
 BL TOKEN
 BL SNAME
 BL OVERT
 _DOLIT
 _NEST
 BL COMMA
 _DOLIT
 DCD DOVAR-MAPOFFSET
 BL CALLC
 _UNNEST

VARIABLE Create a new variable command with a BL doVAR token followed by one 32-bit
memory cell. This memory cell is initialized to 0, its address is returned when the
variable command is executed. Its contents can be read by @ command and written by !
command.

; VARIABLE (-- ; string>)
; Compile a new variable initialized to 0.

 DCD _CREAT-MAPOFFSET

127

_VARIA DCB 8
 DCB "VARIABLE"
 ALIGN
VARIA
 _NEST
 BL CREAT
 _DOLIT
 DCD 0
 BL COMMA
 _UNNEST

128

3.6 Debugging Tools

Stm32eForth720 is a very small system and only a very small set of tool commands is provided for
debugging. Nevertheless, this set of tool commands is powerful enough to help you debug new
commands you add to the system. They are also very interesting programming examples on how to use
the commands in eForth to build substantial applications.

Generally, the tool commands present information stored in different parts of the CPU in appropriate
formats to let you inspect the results as you execute commands in the eForth system and commands you
defined yourself. The tool commands include memory dump, stack dump, dictionary dump, and a
compound command decompiler..

3.6.1 Memory Dump

This tool allows you inspect memory at any address, RAM, flash, and IO registers. You can dump data
and inspect code. You can use it to monitor and control IO devices. It makes you feel that you are the
master of your computer.

dm+ Print u bytes of data starting at address a to the terminal. It returns a new address a+u on

the stack to facilitate dumping of the next line of memory.

;** ************************
; Tools

; dm+ (a u -- a)
; Dump u bytes from a, leaving a+u on the stack.

; DCD _VARIA-MAPOFFSET
;_DMP DCB 3
; DCB "dm+"
; ALIGN
DMP
 _NEST
 BL OVER
 _DOLIT
 DCD 4
 BL UDOTR ;display address
 BL SPACE
 BL TOR ;start count down loop
 B.W PDUM2 ;skip first pass
PDUM1 BL DUPP
 BL CAT
 _DOLIT
 DCD 3
 BL UDOTR ;display numeric data
 BL ONEP ;increment address
PDUM2 BL DONXT
 DCD PDUM1-MAPOFFSET ;loop till done
 _UNNEST

DUMP Print an array, u bytes of data starting at address b, to the terminal. It dumps 16 bytes to a
line. A line begins with the address of the first byte, followed by 16 bytes shown in hex, 3

129

columns per bytes. At the end of a line are the 16 bytes shown in ASCII characters. Non-
printable characters are replaced by underscores (ASCII 95).

; DUMP (a u --)
; Dump u bytes from a, in a formatted manner.

 DCD _VARIA-MAPOFFSET
_DUMP DCB 4
 DCB "DUMP"
 ALIGN
DUMP
 _NEST
 BL BASE
 BL AT
 BL TOR
 BL HEX ;save radix,set hex
 _DOLIT
 DCD 16
 BL SLASH ;change count to lines
 BL TOR
 B.W DUMP4 ;start count down loop
DUMP1 BL CR
 _DOLIT
 DCD 16
 BL DDUP
 BL DMP ;display numeric
 BL ROT
 BL ROT
 BL SPACE
 BL SPACE
 BL TYPEE ;display printable characters
DUMP4 BL DONXT
 DCD DUMP1-MAPOFFSET ;loop till done
DUMP3 BL DROP
 BL RFROM
 BL BASE
 BL STORE ;restore radix
 _UNNEST

3.6.2 Parameter Stack Dump

One important discipline in learning Forth is to learn how to use the parameter stack correctly and
effectively. All commands must consume their input parameters on the stack and leave only their
intended results on the stack. Sloppy usage of the parameter stack is often the cause of bugs which are
very difficult to detect later, as unexpected items left on the stack could result in unpredictable
behavior. .S should be used liberally during programming and debugging to ensure that the correct
parameters are consumed and left on the parameter stack.

The parameter stack is the center for arithmetic and logic operations. It is where commands receive
their parameters and also where they left their results. In debugging a new command which may use
stack items and leave items on the stack, the best was to debug it is to inspect the parameter stack, before
and after its execution. To inspect the parameter stack non-destructively, use the command .S .

130

.S Print the contents of the parameter stack in the free format. The bottom of
the stack is aligned to the left margin. The top item is shown towards the
right and followed by the characters ok . .S does not change the parameter
stack so it can be used to inspect the parameter stack non-destructively at
any time.

; .S (... -- ...)
; Display the contents of the data stack.

 DCD _DUMP-MAPOFFSET
_DOTS DCB 2
 DCB ".S"
 ALIGN
DOTS
 _NEST
 BL SPACE
 BL DEPTH ;stack depth
 BL TOR ;start count down loop
 B.W DOTS2 ;skip first pass
DOTS1 BL RAT
 BL PICK
 BL DOT ;index stack, display contents
DOTS2 BL DONXT
 DCD DOTS1-MAPOFFSET ;loop till done
 BL SPACE
 _UNNEST

>NAME finds the name field address of a word from the corresponding code field address in a command
record. If the command does not exist in the dictionary, it returns a false flag. It is the mirror image of
the command NAME>, which returns the code field address of a command from its name field address.
However, it is very difficult to scan backward from code field to locate the beginning of the name field,
because we do not know how long the name field is. >NAME is therefore more complicated because the
entire dictionary must be searched to locate its name field.

>NAME Return a name field address, na , of a command from its code field address, ca . If ca is not

a valid code field address, or if the code field does not have an header, return 0. It follows the
linked list of the dictionary, and from every name field address we can get a corresponding
code field address. If this address is not the same as ca , we go to the name field of the next
command. If ca is a valid code field address with an header, we surely will find it. If the
entire dictionary is searched and ca is not found, it is not a valid code field address or it does
not have an header, and a false flag is returned.

; >NAME (ca -- na | F)
; Convert code address to a name address.

 DCD _DOTS-MAPOFFSET
_TNAME DCB 5
 DCB ">NAME"
 ALIGN
TNAME
 _NEST
 BL TOR ;

131

 BL CNTXT ; va
 BL AT ; na
TNAM1
 BL DUPP ; na na
 BL QBRAN
 DCD TNAM2-MAPOFFSET ; vocabulary end, no match
 BL DUPP ; na na
 BL NAMET ; na ca
 BL RAT ; na ca code
 BL XORR ; na f --
 BL QBRAN
 DCD TNAM2-MAPOFFSET
 BL CELLM ; la
 BL AT ; next_na
 B.W TNAM1
TNAM2
 BL RFROM
 BL DROP ; 0|na --
 _UNNEST ;0

.ID Display the name of a command, given the name field address na of this command. It
replaces non-printable characters in a name by under-scores.

; .ID (na --)
; Display the name at address.

 DCD _TNAME-MAPOFFSET
_DOTID DCB 3
 DCB ".ID"
 ALIGN
DOTID
 _NEST
 BL QDUP ;if zero no name
 BL QBRAN
 DCD DOTI1-MAPOFFSET
 BL COUNT
 _DOLIT
 DCD 0x1F
 BL ANDD ;mask lexicon bits
 BL TYPEE
 _UNNEST ;display name string
DOTI1 BL DOTQP
 DCB 9
 DCB " {noName}"
 ALIGN
 _UNNEST

3.6.3 Compound Command Decompiler

In the cold field of a compound command, there is a token list of BL instructions. It is very easy to
extract the code field addresses from the BL tokens. If the token has a name field, we can display its
name. This is the decompiler. If the token does not have a name field, or it is a piece of data, the
decompiler simply displays its value, and let you figure out what it really means.

132

The decompiler is very useful in recovering the source code of a command in the dictionary when the
source code listing is not immediately available, or non-existent. It is also useful to check on a new
command you just compiled, to see if the computer is thinking what you are thinking. Computer is a
“Do what you say, not what you mean” device. It always helps to check that what you say is actually
what you mean with the decompiler.

SEE Search dictionary for a command with the name in the following string. If it is a valid

command, decompile the token list in its code field.

; SEE (-- ; string>)
; A simple decompiler.

 DCD _DOTID-MAPOFFSET
_SEE DCB 3
 DCB "SEE"
 ALIGN
SEE
 _NEST
 BL TICK ; ca --, starting address
 BL CR
 _DOLIT
 DCD 20
 BL TOR
SEE1 BL CELLP ; a
 BL DUPP ; a a
 BL DECOMP ; a
 BL DONXT
 DCD SEE1-MAPOFFSET
 BL DROP
 _UNNEST

DECOMILE Search dictionary for a command whose code field address is in memory address a. If it
is a valid command, display its name; otherwise, display its value.

; DECOMPILE (a --)
; Convert code in a. Display name of command or as data.

 DCD _SEE-MAPOFFSET
_DECOM DCB 9
 DCB "DECOMPILE"
 ALIGN

DECOMP
 _NEST
 BL DUPP ; a a
; BL TOR ; a
 BL AT ; a code
 BL DUPP ; a code code
 _DOLIT
 DCD 0xF800F800
 BL ANDD
 _DOLIT
 DCD 0xF800F000
 BL EQUAL ; a code ?

133

 BL QBRAN
 DCD DECOM2-MAPOFFSET ; not a command
 ; a valid_code --, extract address and display nam e
 MOVW R0,#0xFFE
 MOV R4,R5
 LSL R5,R5,#21 ; get bits 22-12
 ASR R5,R5,#9 ; with sign extension
 LSR R4,R4,#15 ; get bits 11-1
 AND R4,R4,R0 ; retain only bits 11-1
 ORR R5,R5,R4 ; get bits 22-1
 NOP
 BL OVER ; a offset a
 BL PLUS ; a target-4
 BL CELLP ; a target
 BL TNAME ; a na/0 --, is it a name?
 BL QDUP ; name address or zero
 BL QBRAN
 DCD DECOM1-MAPOFFSET
 BL SPACE ; a na
 BL DOTID ; a --, display name
; BL RFROM ; a
 BL DROP
 _UNNEST
DECOM1 ;BL RFROM ; a
 BL AT ; data
 BL UDOT ; display data
 _UNNEST
DECOM2 BL UDOT
; BL RFROM
 BL DROP
 _UNNEST

3.6.4 Dictionary Dump

The dictionary contains all command records defined in the system, ready for execution and compilation.
WORDS command allows you to examine the dictionary and to look for the correct names of commands
in case you are not sure of their spellings. WORDS follows the dictionary link in the system variable
CONTEXT and displays the names of all commands in the dictionary. The dictionary links can be
traced easily because the link field in the header of a command points to the name field of the previous
command, and the link field is two bytes below the corresponding name field.

WORDS Display all the names in the dictionary. The order of words is reversed from the compiled
order. The last defined command is shown first.

; WORDS (--)
; Display the names in the context vocabulary.

 DCD _DECOM-MAPOFFSET
_WORDS DCB 5
 DCB "WORDS"
 ALIGN
WORDS
 _NEST

134

 BL CR
 BL CNTXT
 BL AT ;only in context
WORS1
 BL QDUP ;?at end of list
 BL QBRAN
 DCD WORS2-MAPOFFSET
 BL DUPP
 BL SPACE
 BL DOTID ;display a name
 BL CELLM
 BL AT
 B.W WORS1
WORS2
 _UNNEST
 ALIGN

3.6.5 Cold Start

After the STM32F407 is turned on, it starts executing initial machine code at Reset_Handler to set
up the CPU hardware. Then it jumps to COLD to initialize the Virtual Forth Machine. It finally jumps
to QUIT and starts the text interpreter. COLD and QUIT are the topmost layers of stm32eForth720
system.

Before falling into QUIT to enter into the text interpreter loop, COLD command executes an
application routine whose code address is stored in user variable 'BOOT. This code address can be
vectored to a command which defines the proper behavior of the system on power-up and on reset.
Initially 'BOOT contains the code field address of HI, which simply displays a sign-on message.

VER Combine the major version number VER and minor version number EXT and return a 32-

bit number to be displayed in the sign-on message. VER and EXT are assembler equate
constants.

;** ************************
; cold start

; VER (-- n)
; Return the version number of this implementation.

; DCD _WORDS-MAPOFFSET
;_VERSN DCB 3
; DCB "VER"
; ALIGN
VERSN
 _NEST
 _DOLIT
 DCD VER*256+EXT
 _UNNEST

HI The default start-up routine in stm32eForth720. It displays a sign-on message with the
correct version number. This is the default start up routine whose code field address is
stored in the user variable ‘BOOT. From ‘BOOT you can initialize the system to start your

135

own application.

; HI (--)
; Display the sign-on message of eForth.

 DCD _WORDS-MAPOFFSET
_HI DCB 2
 DCB "HI"
 ALIGN
HI
 _NEST
 BL CR
 BL DOTQP
 DCB 13
 DCB "stm32eForth v" ;model
 ALIGN
 BL BASE
 BL AT
 BL HEX ;save radix
 BL VERSN
 BL BDIGS
 BL DIG
 BL DIG
 _DOLIT
 DCD '.'
 BL HOLD
 BL DIGS
 BL EDIGS
 BL TYPEE ;format version number
 BL BASE
 BL STORE
 BL CR
 _UNNEST ;restore radix

COLD A high level compound command executed upon cold start, called froml Reset_Hanlder
routine. Its initializes the CPU registers including the parameter stack, the return stack, and
user variables, executes the boot-up routine vectored in 'BOOT, and then falls into the text
interpreter loop QUIT.

; COLD (--)
; The high level cold start sequence.

 DCD _HI-MAPOFFSET
LASTN DCB 4
 DCB "COLD"
 ALIGN
COLD
; Initiate Forth registers
 MOVW R3,#0xFF00 ; user area
; MOVT R3,#0x2000 ;
 MOV R2,R3 ; return stack
 SUB R1,R2,#0x100 ; data stack
 MOV R5,#0 ; tos
 NOP
 _NEST

136

COLD1
 _DOLIT
 DCD UZERO-MAPOFFSET
 _DOLIT
 DCD UPP
 _DOLIT
 DCD ULAST-UZERO
 BL MOVE ;initialize user area
 BL PRESE ;initialize stack and TIB
 BL TBOOT
 BL ATEXE ;application boot
 BL OVERT
 B.W QUIT ;start interpretation
 ALIGN
COLD2
CTOP
 DCD 0XFFFFFFFF ; keep CTOP even
 END

137

3.7 Final Remarks

Never mind my badmouthing, STM32F4 is my dream Forth computer. All these years, I am looking for
a microcontroller with lots of RAM, lots of programmable ROM, lots of GPIO pins, lots of
communication channels, lots of counter-timers, lots of ADC, lots of DAC, fast clocks, low power
consumption, small package, etc, etc. And it has to be cheap, too. Remember this saying?

 Fast, big, and cheap. Pick two.

Actually, STM32F4 has them all.

Remember the old microcontroller development systems? The Intel blue box? You have a 19” rack
with a big bus cage. A CPU board, a RAM board, a ROM board, many different IO boards, an EPROM
programmer, an UV eraser, two floppy drives, and an expansive hard disk drive. All these things are
now squeezed into a single chip, assembled on a small pc card, and selling for $20! What else do you
want?

Coming with it, the software is complexity beyond belief. Black box approach? Third party libraries?
C++ compiler? I don’t think these tools work at chip level for microcontrollers. You have to dive into
the devices yourself and gain control over them. Only Forth gives you a fighting chance.

I tried to get Arduino Uno to play Bach’s organ pieces. It has only 3 counter-timers, and I could only
play his 3-part music. Now, STM32F4 has 14 counter-timers. Old Bach will be very pleased with it.

There are 80 IO pins on STM32F4-Discovery Kit. A walking robot, perhaps?

A digital storage oscilloscope? Well, I need a good LCD display.

A remotely controlled telescope?

A high resolution digital spectrometer?

Well. Where is my retirement plan?

	Irreducible Complexity
	1. eForth for ARM chips
	1.1 Moore’s Law Marches On
	1.2 THUMB2—Death of a RISC
	1.3 Dire Consequence of Moore’s Law
	1.4 Oddity of Thumb Transfer Instructions
	1.5 eForth1 and eForth2
	1.6 THUMB2 Instruction Set
	1.7 Branch and Link
	1.8 First ARM Assembly Program
	1.9 Blinky
	1.10 Hello World
	1.11 HyperTerminal Setup
	1.12 Irreducible Complexity

	2. Assemble and Test STM32eForth720.s
	2.1 STM32F4-Discovery Kit
	2.2 IDE and Assembler
	2.3 Install μVision5
	2.4 Setting up Target Environment
	2.5 Build and Debug eForth System
	2.6 Set up HyperTerminal
	2.7 Return to Debugger
	2.8 Firmware Engineering

	3. Stm32eforth720 Source Code
	3.1 A Brief History of ARM eForth
	3.2 Virtual Forth Machine
	3.2.1 Virtual Forth Machine on STM32F4
	3.2.2 Reset Vector and Reset Handler
	3.2.3 Remap RAM memory
	3.2.4 Initialize IO Devices
	3.2.5 Virtual Memory of STM32F407
	3.2.6 Constants Used by Assembler
	3.2.7 Assembly Macros
	3.2.8 User Variables
	3.2.9 USART1 Communication

	3.3 eForth Kernel
	3.3.1 Original Primitive Commands
	3.3.2 Integer Literals
	3.3.3 Loop and Branch Commands
	3.3.4 Memory Commands
	3.3.5 Return Stack
	3.3.6 Parameter Stack
	3.3.7 Logic and Arithmetic Commands
	3.3.8 Extended Primitive Commands
	3.3.9 User Variables Commands
	3.3.10 Common Functions
	3.3.11 Scaling, Multiply-Divide
	3.3.12 Miscellaneous Commands
	3.3.13 Memory Array Commands

	3.4 Text Interpreter
	3.4.1 Numeric Output
	3.4.2 Numeric Input
	3.4.3 Terminal Output
	3.4.4 String Literals
	3.4.5 Parsing
	3.4.6 Dictionary Search
	3.4.7 Terminal Input
	3.4.8 Error Handling
	3.4.9 String Interpreter
	3.4.10 Flash Memory

	3.5 Forth Compiler
	3.5.1 Compiler Loop
	3.5.2 Compiler Tools
	3.5.3 Structure Commands
	3.5.4 String Compiler
	3.5.5 Branch and Link Token
	3.5.6 Defining Commands

	3.6 Debugging Tools
	3.6.1 Memory Dump
	3.6.2 Parameter Stack Dump
	3.6.3 Compound Command Decompiler
	3.6.4 Dictionary Dump
	3.6.5 Cold Start

